
Graph-Based Managing and Mining of Processes and Data in
the Domain of Intellectual Property

Gerd Hübschera,d, Verena Geistb, Dagmar Auerc,∗, Andreas Ekelharte, Rudolf Mayere,
Stefan Nadschlägerc, Josef Küngc

aHübscher & Partner Patentanwälte GmbH, Spittelwiese 4, 4020 Linz, Austria
bSoftware Competence Center Hagenberg GmbH, Softwarepark 21, 4232 Hagenberg, Austria

cJohannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
dpolymind GmbH, Salierigasse 1/5, 1180 Vienna, Austria
eSBA Research gGmbH, Floragasse 7, 1040 Wien, Austria

Abstract

Digitalization of knowledge work in communication-intensive domains such as intellectual
property protection poses great challenges but also opportunities to improve today’s
working environments. The legal domain is strongly characterized by knowledge work,
whereby, despite a common legal framework, creativity of individual experts is decisive.
This knowledge-intensive work deals with a great amount of data objects, not only as
a working basis, but also as a result. While experts heavily follow individual working
styles, they still rely on a vast amount of administrative tasks, which are carried out by
the supporting staff. These tasks are expected to be performed regularly, reliably and
without errors, despite necessary adjustments to the current case and the changing legal
framework. Today, knowledge work and administrative tasks are typically supported
by different tools that are hardly integrated. Therefore, the tracing of continuous work
processes based on exchanged data objects is a great challenge. This traceability is
crucial, not only for legal security reasons, but also to enable mining and learning of
applicable knowledge about processes. In this paper, we propose a bottom-up approach,
which applies a continuously evolving graph of integrated data objects and tasks to
model and store static and dynamic aspects of administrative as well as knowledge work,
and test the approach in a real-world setting in the domain of intellectual property.
We further present initial results of a novel dependency-based mining approach to learn
data-dependent task sequences in the graph-based model and discuss several methods
for enabling privacy-preserving sharing and mining.

Keywords: Graph-structured Data, Business Process Management, Knowledge Work,
Process Mining, Graph Mining, Privacy
2020 MSC: 68T05, 68T30, 68U35

∗Corresponding author
Email address: dagmar.auer@jku.at (Dagmar Auer)
URL: www.huebscher.at, www.polymind.gmbh (Gerd Hübscher), www.scch.at (Verena Geist),

www.jku.at (Dagmar Auer), www.sba-research.org (Andreas Ekelhart), www.sba-research.org
(Rudolf Mayer), www.jku.at (Stefan Nadschläger), www.jku.at (Josef Küng)

Preprint of doi:10.1016/j.is.2021.101844, Journal of Information Systems

https://doi.org/10.1016/j.is.2021.101844

1. Introduction

Knowledge-intensive application domains such as the juridical domain are gaining
more and more interest in approaches for adequate work support. Well-structured ad-
ministrative work, which is often about extracting data from documents or transferring
data to different data pools and people, can be supported by traditional business process
management (BPM) systems [1, 2]. These systems typically rely on well-defined, stable
processes with a high number of repetitions and often follow a control-flow oriented ap-
proach. In contrast, knowledge work [3, 4, 5, 6] is more about managing and applying
knowledge to creatively build new knowledge, often in a highly dynamic environment,
where legal constraints and compliance rules are frequently changing. In an organiza-
tional setting, however, different kinds of work must go hand in hand. Only a flexible,
adaptable and at the same time very well coordinated and comprehensible interaction
makes an organization successful.

From a knowledge perspective, observable communication data is mostly unstructured
and requires a-priori knowledge to extract semantic concepts. The lack of a model that
allows to define and handle mental models1, which typically evolve during daily work,
hinders the development of a consistent process of data transformation tasks of individual
users. This might be one reason that business process modeling, as well as individual and
organizational learning processes, have not yet been successfully applied to data-driven,
process-oriented knowledge work.

A further complicating factor is that the externalization of tacit knowledge is a lengthy
process, which requires the repetitive articulation (converting tacit knowledge into ex-
plicit knowledge) and internalization (using that explicit knowledge to extend one’s own
tacit knowledge base) [7]. We have observed that externalization of tacit knowledge re-
gardless of a specific use case is particularly difficult for knowledge workers and requires
means to systematically capture work artifacts and facilitate externalization of derivable
knowledge by way of abstraction.

From a process perspective, the need for a high degree of adaptability for non-routine,
problem-solving tasks does not fit with traditional activity-centric BPM systems, which
mainly adopt a top-down approach for predefined administrative processes and particu-
larly lack the integration of data [8].

In an organizational setting, not only highly dynamic knowledge work, but also well-
structured standardized processes within the same context need to be supported, e.g.,
legal constraints or compliance rules that clearly define procedures. Furthermore, trace-
ability of actions and decisions based on the collected information is increasingly becom-
ing a mandatory requirement. The obligation to provide information under the General
Data Protection Regulation and support for providing evidence e.g., in the course of
reinstatement cases or unplanned takeover of tasks due to sick colleagues, are everyday
challenges in today’s organizations.

In this article, we propose a highly adaptable, integrated model, which considers data
and tasks equivalently and supports their interaction. Data are described on different
levels of granularity, ranging from a complex patent portfolio, a case file, an e-mail,

1Despite of different definitions of the term mental model, we consider a mental model as an abstract
representation of a certain thing or set of things, such as people, objects, places or actions that can be
organized in hierarchies.

2

a natural person, a deadline, an e-mail address, to a single string. These entities are
organized in a directed graph, with edges indicating containment or association. To
allow for a high level of adaptability and continuous evolvement of the overall model,
we consider a data-centric, multi-layer model. Based on a stable meta model, concepts
for types and instances can be adapted or added at runtime. Duplicated data objects
should be avoided to provide consistent, high-quality data, which provide the basis for
executing and tracing data-driven processes. The execution of a task is determined by
data and produces data [9, 10, 6]. These (intermediate) results are therefore the driving
force of the business processes and form sequences of alternating tasks and data artifacts
that evolve in the graph when knowledge is created.

Process instances in general, and specifically in the legal domain, carry information
about potentially confidential cases, as well as information about individuals partak-
ing in those processes. Protecting confidential information about cases and clients is a
fundamental requirement of law firms and prescribed by law. Therefore, in case of non-
compliance, law firms may face high fines and further negative impact due to reputation
damage. Thus, utilizing personal and confidential data poses a challenge to collabo-
rative process graph sharing and mining. We discuss potential methods for enabling
privacy-preserving sharing and mining, and describe already implemented approaches.

Our contributions to solve the identified problems are (i) a highly flexible and adapt-
able three-layer graph-based model with a stable meta model which integrates data and
task management conceptually. The high level of adaptablility is achieved by a data-
centric domain model and an instance model which allows to support highly creative,
flexible knowledge work and guided administrative work, including detailed tracing of
task and data flows, (ii) a real-world demonstration of our model in the domain of in-
tellectual property, (iii) a discussion on methods to preserve privacy and confidentiality
in our model, and (iv) initial results from applying a mining approach in order to learn
from task sequences carried out in the integrated data and process graph and to assist
users by suggesting next process steps.

In Section 2, we outline the research methodology and provide our research questions.
The following Section 3 gives an overview of related work in the area of knowledge work
and flexible support for business processes. Our proposed model, the modeling approach
and the prototype implementation are presented in Section 4. In Section 5, we discuss
methods to preserve privacy and confidentiality in our graph-based model for sharing and
mining scenarios. In Section 6, we introduce a data dependency-based mining approach
that learns from recorded task sequences in the proposed model and is able to recommend
a selection of probable next process steps to the user. Finally, in Section 7, we summarize
and discuss the main results. The paper concludes with a summary and an outlook on
future work in Section 8.

2. Research Methodology

We follow a design science research (DSR) methodology [11]. Vom Brocke et al. [12]
describe DSR as “... a problem-solving paradigm that seeks to enhance human knowledge
via the creation of innovative artifacts.”

The following Fig. 1 provides an overview of the applied DSR framework, which is
based on [11, 12]. Starting with the definition of needs based on a real-world problem in
a defined environment, artifacts and knowledge are designed, developed and evaluated in

3

an iterative research process. Evaluation results are used in further iterations to improve
the design and implementation. Furthermore, the achieved results are applied in the
appropriate real-world environment, and design knowledge (i.e., “. . . knowledge of how
things can and should be constructed or arranged (i.e., designed)” [12]) is added to the
knowledge base.

Environment Knowledge BasePerform

Needs
Applicable
Knowledge

Relevance Rigor

People

Organisations

Technology

Design and Build

Theories and
Artefacts

Evaluate

Foundations

Methodologies

Application in the Appropriate Environment Additions to the Knowledge Base

A
ss

es
s R

efine

Figure 1: Applied DSR framework (cp. [11, 12])

The research results presented in this paper were achieved in a series of joint research
projects with partners from business and research, starting in 2017. Within each of these
projects, we followed a design science research methodology. The initial business partner
was a patent law firm of one of the team members, who is also a computer science
researcher and developer. After the initial project, the polymind GmbH was founded
to ease product development and to enable and promote practical application of the
promising basic concept in the real world. However, the starting point of our research
in the domain of patent and trademark prosecution remained the main environment
throughout the projects. In the following, we give a summarized overview of the research
efforts relevant for the results we present in this paper.

The environment of our research in the domain of patent and trademark prosecution
is characterized by a highly standardized, legally prescribed process on the one hand, and
individual knowledge work, for example, when translating new technical knowledge into
legally binding language on the other. Furthermore, this work requires intensive com-
munication, within an organization as well as with clients and external partners. Two
organizational roles are the most important in this environment – office administration
and patent attorney. Work of people in these roles is strongly interconnected, which is
not sufficiently supported by the current IT systems, because they lack integration of
processes and data. Today, a range of rather isolated tools is used, i.e., a traditional
customer relationship management system, a document management system, an email
system and not to forget about folders and documents in the file systems of the local
computers as well as the server. Traceability of the overall process and data is not only
important with respect to the General Data Protection Regulation, but also concerns
the all due care requirement with respect to the re-establishment of rights. Furthermore,
the opportunity for individual and organizational learning from previous work requires
adequate support. Not all of these needs were considered within the first project, but the
relevant environment was continuously extended to iteratively develop new ideas and re-
sults on top of evaluated previous ones. In particular, the lacking integration of processes

4

and data in traditional activity-centric BPM systems is regarded as an essential point,
preventing their successful use to support knowledge-intensive processes [8]. Therefore,
we consider a data-driven approach promising, which equally considers data and tasks.
Furthermore, to support highly creative, individual knowledge-intensive work on the one
hand, and well-structured, predefined, highly repetitive work on the other, there is a
strong need for a highly flexible, adaptable model. Continuous evolution of the model
should allow to overcome the distinction between design time modeling and runtime ex-
ecution of processes. To formalize and encode domain-specific, explicit knowledge, some
kind of shared knowledge base is needed, which defines the task concepts including rel-
evant data. To increase this knowledge base, also implicit knowledge of the users needs
to be included, e.g., by learning from the way people perform their daily work. As often
sensitive personal data is involved in patent and trademark prosecution, privacy aspects
must be considered as well.

Based on the selected needs the core research is performed, considering the following
research questions:

RQ1: How can a highly accurate knowledge representation be obtained to support well-
structured, predefined data-driven processes as well as highly adaptable, individual
ones?

RQ2: How and to what extent can sensitive information inside the graph-based model be
protected for data sharing and process mining?

RQ3: How and to what extent can statistical, process and graph mining methods sup-
port the discovery of data-dependent sequences in the given context and facilitate
predictive analytics, such as suggesting the best possible next tasks to a user?

Each of these research questions was studied in an iterative design, build and eval-
uation process based on the needs and relying on knowledge from disciplines such as
knowledge work, BPM, knowledge-intensive business processes, information manage-
ment, knowledge management, process mining, privacy and graph data modeling. Some
specific parts of the initial knowledge base, especially the foundations, are discussed in
the state of the art in Section 3.

For the evaluation phase we used different methodologies, depending on the research
question and the focus of the particular iteration. In the initial iterations, we focused
on analytical proofs of concept, further involving external experts into feedback circles
and discussions, followed by a proof by construction to show that the concept can be
implemented appropriately. The prototype was further used to conduct a case study
on real-world data, which were imported from the management systems in place. The
participants of the case study performed certain predefined tasks after some introduction
to the prototype, but also played around with it individually. Besides some observations
and studying the produced results, also interviews with the people participating in the
case study were performed to get feedback on the results but also to generate new ideas for
the following iterations. We tested the case study with one law firm and then performed
the case study with five law firms in comparable environments. To study more technical
aspects also different metrics were selected, defined and evaluated. Since real-world data
can sometimes lead to privacy problems and some ground truth was needed to reduce the
data volume and to deal with long-running processes, we also used test scenarios with

5

generated test data (according to real-world scenarios) for evaluation, especially in the
context of research question RQ3.

To sum up, throughout these research projects several concepts, models and proto-
types were built and evaluated. The case study not only convinced the participating
offices, but also triggered new application possibilities which were further refined and
developed at polymind GmbH, especially in areas such as learning management, and
research and development support. The results, i.e., the concepts, models and artifacts,
added to the knowledge base are described in detail in Section 4 to Section 6, followed
by the most important findings from answering the research questions in Section 7 (i.e.,
RQ1 in Section 7.1, RQ2 in Section 7.2 and RQ3 in Section 7.3).

3. Related Work

The related work sketched in this section is concerned with the overall topic of this
work, i.e., integrated data and process model. Further literature on aspects, such as
privacy or mining, are included in the proper sections.

Business process management (BPM) [1, 2] solutions are already state-of-the-art for
well-structured, predefined standard tasks and processes with a high number of repeti-
tions, like typical administrative tasks. The underlying models are usually activity-centric
and control flow-oriented. Predefined process models with traditional BPM approaches
restrict flexibility but provide good guidance for the users, clearly indicating how things
should be done. These models are not intended to be constantly adapted by users. Fur-
ther, business process modeling languages such as BPMN2 do not focus on data. This
aspect is rather regarded as one of their weakest points [13, 14]. BPMN, for example,
provides so-called data objects to document data usage. These data objects are unstruc-
tured and have no execution semantics. Thus, neither the required level of integration
of data and tasks [15], nor an adequate representation of complex data objects can be
achieved. With the increasing importance of knowledge work, which is characterized by
its adaptable and creative nature [3], no longer only well-structured processes with highly
repetitive tasks must be considered, but highly flexible and easily adaptable emergent,
collaborative ones [6, 16]. The characteristics of such knowledge-intensive business pro-
cesses in detail differ due to the heterogeneous application domains of knowledge work -
from highly-creative, non-repeatable, completely unpredictable work to areas with con-
straints and rules (e.g., legal frameworks or compliance rules) but still a high level of
individual, knowledge-relying work. Di Ciccio et al. [8] discuss a comprehensive set of
characteristics of knowledge-intensive processes, additionally considering goal-oriented
and event-driven.

Traditional activity-centric BPM approaches were extended to allow for more flexi-
bility at runtime, e.g., via process configuration, variants, or ad-hoc tasks. Still the frame
of their stable build-time models is restrictive and data is hardly considered [17, 18].

Thus, data-driven models started to get more attention during the last 15 years, espe-
cially in research. The key driver for process execution is no longer a predefined control
flow, but the availability of data. Case management [19, 9, 20, 17], for example,, allows
to define quite flexible data-driven models, but only coarse-grained data are considered.

2Business Process Model and Notation, www.omg.org/spec/BPMN

6

Object-aware processes [21, 22] better support the data aspect, but are not designed for
adaptability and dynamic model evolution at runtime.

Other approaches such as rule-based or constraint-based declarative models [23, 17]
offer a higher level of flexibility at design-time, but many of them generate control flow-
oriented process models, e.g., SDeclare [24] which rarely take the data perspective into
account.

None of these approaches sufficiently integrate the data and task view. Especially,
fine-grained, emergent data, information and knowledge are not within the focus.

Previous works towards a more flexible business process technology integrate pro-
cesses with data and user interaction modeling [15, 25]. They base on a methodology
to model interactive software systems with form-based, submit/ response-style inter-
faces [26]. This basis provides a clear semantics of dialogues, constituted by application
programs and bridging process states, as typed, bipartite state machines called form-
charts [27].

In [15], BPMN is extended with submit/response-style user interaction modeling to
mitigate communication problems between business analysts and software engineers, hav-
ing different views on a system. Thereby, a two-staged interaction schema is enforced,
which consists of providing a page (= information) to a user and processing submitted
data. In [25], formcharts are further extended to the needs of business process specifica-
tion, i.e., to support users/roles, the worklist paradigm, and parallelism. The resulting
typed workflow charts are proposed as a new formalism for modeling and automating
business processes [28]. They also build a solid foundation for the design of an integrated
business process platform in [29].

An experience-proven methodology for modeling interaction with web information
systems as task-oriented systems is presented in [30].

There are many similarities but also key differences between the presented previous
works and the current model proposed in this work: (i) all approaches offer a rigor-
ous way to specify information systems. Draheim and Weber consider certain kinds
of submit/response-style systems [27, 26], whereas Schewe and Thalheim address a
broader field of web information systems [30]. Both methodologies aim to design hu-
man/computer interaction in workflow-intense systems. However, our focus is on knowl-
edge presentation and communication of human workers in dynamic, knowledge-intense
environments.

(ii) Data models play a central role in all works. The work in [30] is characterized
by a tight coupling with databases. Similar to our work, a layered data model, basically
divided into an information model (of aggregated, processed data) and an unchangeable
data/message model (of observable data) is used in [27], following the basic understanding
of the two lowest levels of the DIKW pyramid [31].

(iii) All approaches make use of directed graph-based models. Formcharts, for exam-
ple, exhibit a bipartite structure in state transition diagrams; similarly we use a bipartite
model for storing data dependencies in a graph database. Unlike the other approaches,
we do not link data (and information) objects solely in a static sense but also through
experience and use (cp. definition of knowledge in [31]).

(iv) Data and information are typed in all works, which allows for constraint speci-
fication. However, we cannot use a strict schema because we want the model to evolve
dynamically at runtime (driven by the user). For example, in [27] and all formchart-based
approaches, a user action is a method call with clearly defined input parameters (which

7

represent input capabilities of a form), whereas in the TEAM model, a user action is a
domain-specific task, which follows a flexible type to reference and create data objects
and allows knowledge workers to extend or build new types during their work.

(v) Finally, all approaches can be used as conceptual system modeling languages (e.g.,
for redocumentation purposes) but also as executable specification languages (towards
business process automation). A major difference to our work is that the proposed ap-
proaches in [15, 25, 28, 30] are intended to model and automate a-priori known, structured
processes (e.g., using BPMN [13, 29]), whereas due to the creative nature of knowledge
work little to nothing needs to be predefined in the TEAM model.

Earlier works in the area of semantic BPM [32, 33] focus on combining Semantic
web services with BPM technology to support agile process implementation, but with a
rather technical perspective on machine-accessible semantics, not sufficiently respecting
dynamic processes with different participants. To gradually develop fine-grained types
and instances from different data sources (structured or semi-structured data as well as
free text), knowledge representation such as knowledge graphs [34, 35] are promising.
Even though the Resource Description Framework (RDF) [36] is well-established, the
absence of (i) attributes on vertices and edges and (ii) unique identities for relationships
hinders an application for our problem case.

4. The TEAM Model

The overall vision for the TEAM model (TEAM – inTEgrated dAta and tAsk
Multidimensional graph) is to support people to effectively and efficiently work on their
predefined administrative tasks as well as on flexible knowledge-intensive ones. Thus, we
propose a highly flexible model of integrated data and tasks, which allows for seamlessly
maturing of the model also at runtime. With regard to process-awareness, we follow a
data-driven approach, i.e., tasks can be activated it the needed data is available. While
performing work, task-related as well as the data-related information is continuously
tracked, which allows for fine-grained tracing of processes and data flows as well as the
evolution of data.

The required adaptability and flexibility of the overall model is achieved via a three-
layer architecture.

4.1. Three Layers Architecture

The architecture of the TEAM model consists of the three layers, i.e., the meta model,
the domain model and the instance model. Each of these layers supports the dimensions
data and task as well as their integration. Each of these models is described in a graph
model. Fig. 2 provides an overview of these models and their dependencies.

The meta model defines the stable foundation of the TEAM model - the core char-
acteristics of both, the instances (i.e., data object, data object relation, task, and task
relation) and their classifying types (i.e., data object type, data object type relation,
task type, and task type relation). Data object types can be related to each other via
data object type relations, which allows to build fine-grained data views in the domain
model. This pattern also holds for the instances. As we follow a data-driven approach
to describe the behavior of the system, the interface of each task type (and thus task) is
defined by task type relations (task relations) to or from the corresponding data object

8

Meta Model
Defines all characteristics of

type and instance

Domain Model
Defines all domain-specific

types and their relations

Instance Model
Defines all domain-specific
instances and their relations

type

defines

defines

Figure 2: Overview of the three layers of the TEAM system.

types (data objects). Further, data object type relations (data object relations) can be a
result, an output, of a task type, but it must not be an input. Such fundamental model
constraints are also defined in the meta model.

The domain model holds all domain-specific types. They do not correspond to types
in programming languages, but are mental models [37] used for classifying instances.
These types can be based on an established ontology of the legal domain and can be
continuously refined at runtime.

The instance model describes all instances, which are classified by a domain-specific
type (see arrow with label type in Fig. 2).

Seamless knowledge and process maturing can be achieved by starting with only a
small set of basic types and instances, and adapting and extending the domain model
and instance model whenever needed. Therefore, we do not rely on rather stable data
types, but on a flexible approach using types for classification.

We use the following real-world scenario to explain the details of the TEAM model
within some practical context.

4.2. Real-world Scenario

The following scenario shows a small process in a patent office including administra-
tive and knowledge-intensive work.

Starting point is the receipt of an e-mail from a client with two distinct concerns:
(1) It contains the notification that the address of one patent proprietor has changed.
(2) The client requests whether, in view of the first office action received, it is appropriate
to pursue a certain patent application. The reply is urgently expected because the time
limit for filing observations in reply to the office action expires in a few weeks. This
e-mail initiates two actions: (1) As it cannot be assumed that the e-mail is already an
order to enter the address change in the relevant official registers, certain facts need to
be clarified: property rights where the indicated patent proprietor is the owner, costs
of the changes and finally a professional assessment whether such a change should be
indicated before the relevant offices at all. Furthermore, this change potentially not only

9

affects a single case but several ones. (2) Requires to study the related case file as well
as the office action, to procure the prior art cited therein, to exam the citation, and to
elaborate one or more means of defense. Experience and knowledge of the practice of the
patent office are needed for this. Furthermore, it is questionable whether the stated ur-
gency applies at all, whether extensions of time limits are possible or whether alternative
prosecution routes are available. Finally, an evaluation of the existing possibilities and
a concrete recommendation for action are required. Since all actions can have serious
legal consequences, in particular tracing of actions and decisions based on the collected
information is needed. Throughout the discussion of the TEAM model in this section we
will focus on different aspects of this scenario.

In the following, we will discuss the core components of the data and the task views
in detail and then head towards their integration. We use Latin letters for instance and
Greek ones for type abbreviations.

4.3. Data View

In practice much information and knowledge is stored in unstructured or semi-struc-
tured documents, thus, we strive to extract a fine-grained representation of the data
and classify it with the according type. To increase data quality and to build consistent
process chains, each entity is unique within the system, e.g., if several people have the
same first name, it is only created once and then the unique entity is referenced by all
concerned persons.

The data view defines a graph of fine-grained concepts for classifying data entities
(data object type, δ) and their relations (data object type relation, ρ), the type model of the
data view. The instance model holds the fine-grained data instances and coarse-grained
documents (data object, d), as well as the relations (data object relation, r) between them.

Definition 1. – A data object (d) represents the mental model for an instance, e.g.,
the natural person John Doe. Each data object is unique within the TEAM model. Two
different kinds of data objects are distinguished - observable and non-observable data
objects. An observable data object contains an observable value, while a non-observable
data object is the root for the subgraph describing the overall data object.

Example. The natural person John Doe is a non-observable data object as it represents
the mental model without providing an immediately observable representation. In con-
trast, the data object John of type String is an observable data object as it holds the
string value John.

Definition 2. – A data object type (δ) describes a concept that classifies a set of data
objects, e.g., natural person, address.

Data objects and data object types are further described by attributes. Data object
type attributes define characteristics such as the name of the type or rules to define
constraints shared by all data objects classified by this type. Data object attributes
differ as they deal with runtime aspects such as status history or the value of observable
data objects, i.e., the transactional data. Partonomical relationships are not described
by attributes, but by relations. Therefore, entropy decreases along the direction of these
relations.

10

Definition 3. – A data object relation (r) can be either a partonomical (with the
kinds has and hasValue) or an associative (with kind role) relation (thus directed)
between two data objects.

Non-observable data objects are always connected to their containing, superordinate data
objects via data object relations of kind has, observable ones need the kind hasValue.
A data object relation of kind role links a data objects to its role. The direction of the
relation is from role to object, i.e., the semantics of isRoleOf. The corresponding concept
on the type level is the data object type relation. The partonomical relations of kind has
and hasValue, the associative of kind role as well as the generalization via the is relations
are used to build the concept hierarchy.

Definition 4. – A data object type relation (ρ) is a bipartite, directed type-level
relation, which specifies its kind (taxonomical, partonomical or associative) and its source
and target data object type.

Data object relations are classified by data object type relations, thus each data object
relation holds a reference to its classifying data object type relation in its attribute type.

In the following we demonstrate the defined concepts with a real-world example. An
observable data object d?

i has exactly one unique value that can be observed e.g., in
messages. Its value can be of any primitive data type such as String or Integer, but also
represent a whole document. For example, the value of d?

1 is "John" in Fig. 3. d?
1 is

an observable data object with the data type String. Non-observable data objects d◦
i

have no value. They stand for abstract mental models which are represented (encoded)
by related observable but also non-observable data objects (e.g., d◦4 in Fig. 3). Both,
observable d?

i and non-observable d◦
i data objects are discrete, unorganized and have no

specific meaning. The two sets of data objects are defined in equation (1).

D? = {d?
1, . . . ,d

?
n} D◦ = {d◦

1, . . . ,d
◦
n} D = D? ∪D◦ (1)

Meaning is added by the relations. We can partition the edges R into two sets R?

and R◦ (cf. equation (2)).

R? = {r?1, . . . , r
?
n} R◦ = {r◦1, . . . , r

◦
n} R = R? ∪R◦ (2)

R? connects observable data objects D? and non-observable ones D◦, while R◦ only
connects non-observable ones D◦. These disjoint independent sets contain the vertices
D (i.e., data objects) of a directed graph GD = (D,R), interconnected by the edges R
(i.e., data object relations).

The graph GD in Fig. 3 describes the non-observable data object d◦
10 (email from

John Doe with all its details). Starting with the observable data objects D?, a bottom-
up approach is used to build enriched data objects along a path of aggregating hasValue
and has relations as well as the associating role relations (e.g., r◦3). Thus, each element
is finally assigned to an observable data object (d?

1 – d?
4), which relates to one or more

non-observable data objects (d◦
1 – d◦

10). The values of the observable data objects are
also provided in Fig. 3.

To support the continuous further development of the data instance model represented
by data objects and data object relations all of them have instance attributes such as

11

d?1 d?2

John Doe

d�1 d�2

r?1 r?2

d�4
r�1 r�2

d�5

r�3

d�3

d?3

doe@polymind.gmbh

r?3

r�4

d�6 d�7

...

d�8 d�9

...

r�5

d�10

d?4

request

r?4

r�6
r�7 r�8

r�9

Figure 3: GD = (D [R) with observable d?i and non-observable d�i data objects.

data object (d?
1 – d?

4), which relates to one or more non-observable data objects440

(d�
1 – d�

10). The values of the observable data objects are also provided in Fig. 3.
To support the continuous further development of the data instance model

represented by data objects and data object relations all of them have instance
attributes such as valid and invalid, indicating the current status of the in-
stance as well as the timestamp, when the status has been set to a certain445

value. Initially data objects and data object relations are valid, but they can
be invalidated and validated whenever necessary.

Within the TEAM model, we have two connected semantic subgraphs, the
instance and the type graph, integrated via type relations. To maintain an
overview, Fig. 3 only shows the data instance graph.450

4.4. Task View

Besides the data objects and their relations, the tasks and the relations be-
tween data objects or data object relations and tasks build the overall integrated,
dynamic model.

Definition 5. – A task (t) represents an instance of an atomic activity of455

information processing classified by some task type.

Definition 6. – A task type (⇠) describes a concept that classifies a set of
tasks, e.g., extract address information from letter.

Similar to the data perspective, all entities of the task perspective have
attributes at type and instance levels. To specify the data interfaces of tasks460

(i.e., the data consumed and produced), task type relations are used to define
the incoming and outgoing data object types for a task type.

13

Figure 3: GD = (D ∪R) with observable d?
i and non-observable d◦

i data objects.

valid and invalid, indicating the current status of the instance as well as the timestamp,
when the status has been set to a certain value. Initially data objects and data object
relations are valid, but they can be invalidated and validated whenever necessary.

Within the TEAM model, we have two connected semantic subgraphs, the instance
and the type graph, integrated via type relations. To maintain an overview, Fig. 3 only
shows the data instance graph.

4.4. Task View

Besides the data objects and their relations, the tasks and the relations between data
objects or data object relations and tasks build the overall integrated, dynamic model.

Definition 5. – A task (t) represents an instance of an atomic activity of information
processing classified by some task type.

Definition 6. – A task type (ξ) describes a concept that classifies a set of tasks, e.g.,
extract address information from letter.

Similar to the data perspective, all entities of the task perspective have attributes at
type and instance levels. To specify the data interfaces of tasks (i.e., the data consumed
and produced), task type relations are used to define the incoming and outgoing data
object types for a task type.

Definition 7. – A task type relation (υ) is a directed type-level relation between a
source and a target type with a specific kind k (e.g., specifying data dependency, validity
of data objects or relations, user action on the task, etc.). Source and target types are
mutually a data object type or data object type relation and a task type. There is only
one special case, a data object type relation can only be the target of a task type relation
and never the source.

12

Table 1: Details for the data objects d in Fig. 3.

id data object type value
d?1 String “John”
d?2 String “Doe”
d?3 String “doe@polymind.gmbh”
d?4 String “request”
d◦1 FirstName -
d◦2 LastName -
d◦3 EMailAddress -
d◦4 NaturalPerson -
d◦5 EMailContact -
d◦6 Sender -
d◦7 Receiver -
d◦8 Subject -
d◦9 DateReceived -
d◦10 EMail -

Definition 8. – A task relation (y) is a directed relation between a source and a
target with a specific kind. Either the source is a data object and the target a task or the
source is a task and the target a data object or data object relation. A task relation is
the counterpart of a task type relation on the instance-level and has a task type relation
assigned.

As described in more detail by means of the example in Fig. 4, within the context of a
task, task relations describe the usage and creation of data objects as well as data object
relations. Task relations thus associate tasks with the information used or generated
in them. In this way, task relations also represent the transformation of information
that takes place in a task, which is mapped by incoming and outgoing data objects and
data object relations. Each task relation represents a traceable action (e.g., with the
kind creates, validates or invalidates), which is abstracted on the type level and, thus,
becomes available as generally available knowledge about the relevant task type.

Like the data view also this dynamic, process-oriented part of the model is steadily
maturing during use.

Equation (3) provides the sets for the task perspective on instance level and for the
overall instance graph GI – data and task perspectives.

T = {t1, . . . , tn} Y = {yk
1 , . . . , y

k
n} GI = (T ∪D ∪ Y ∪R) (3)

The data and the task views on instance level are integrated via task relations of
different kinds k, which can be split into three distinct groups: (1) input and output data
objects (with output also data object relations) related to tasks, (2) user assignment to
tasks, and (3) status transitions of tasks. These relations need to be defined on the type
level in advance.

Fig. 4 provides a small part of the integrated data objects and tasks of the scenario
(cf. Section 4.2). For better understanding, we focus exclusively on the instance model.

13

Even though the type level is not shown, each element of the instance model is associated
with its corresponding type.

The scenario describes the user d◦
u1 who reads an email, realizes that the email is

relevant for a case d◦
11 and thus picks the case and attaches the email to it. Therefore,

a couple of relations are created to document this process. User d◦
u1 first instantiates

(i) the task t1 to handle the email d◦
10. Thus, the corresponding task relation yi1 from

the user to the task is created. Furthermore, the email d◦
10 is linked to the task as an

incoming data object via the task relation yr4. Then user d◦
u1 allocates (a) the task and

the task relation ya2 is added. Finally, user d◦
u1 processes (p) the task t1 and another task

relation (i.e., yp3) is added to the graph. To link the incoming email d◦
10 to the relevant

case file d◦
11, the case file needs to be added as an incoming data object to the task via a

task relation (i.e., yr5). Then the user links the email to the case file by creating a data
object relation from the case file to the email (i.e., r◦11). To document that this relation
has been created in the context of task t1, the task relation yc6 is added. Table 2 provides
an overview of the types of all instances involved in Fig. 4.

The latter part of the scenario also shows the key concept for supporting traceability,
i.e., to be able to explain at any time why objects are related to each other. Therefore,
edges also have properties, such as timestamps, status information, etc., which can be
target of another edge, thereby creating, referencing or invalidating the relation. This
requires extending the classical understanding of graphs as nodes connected by edges by
also allowing ‘edges connected by edges’. Note that we do not use hypergraphs but rather
an artificial node of type ’edge’, which is simply represented as an edge only. Thereby,
the incoming/outgoing edges remain the same and our extended view on graphs can be
mapped to RDF (via reification). Thus, equivalence to a classical graph is ensured.

The data and the task views on instance level are integrated via task relations
of di↵erent kinds k, which can be split into three distinct groups: (1) input and
output data objects (with output also data object relations) related to tasks,
(2) user assignment to tasks, and (3) status transitions of tasks. These relations490

need to be defined on the type level in advance.
Fig. 4 provides a small part of the integrated data objects and tasks of the

scenario (cf. Section 4.2). For better understanding, we focus exclusively on the
instance model. Even though the type level is not shown, each element of the
instance model is associated with its corresponding type.495

The scenario describes the user d�u1 who reads an email, realizes that the
email is relevant for a case d�11 and thus picks the case and attaches the email to
it. Thus, a couple of relations are created to document this process. User d�u1

first instantiates (i) the task t1 to handle the email d�10. Thus, the corresponding
task relation yi

1 from the user to the task is created. Furthermore, the email d�10500

is linked to the task as an incoming data object via the task relation yr
4. Then

user d�u1 allocates (a) the task and the task relation ya
2 added. Finally user d�u1

processes (p) the task t1 and another task relation (yp
3) is added to the graph.

To link the incoming email d�10 to the relevant case file d�11, the case file needs
to added as an incoming data object to the task via a task relation yr

5. Then505

the user links the email to the case file by creating a data object relation from
the case file to the email (i.e., r�11). To document that this relation has been
created in the context of task t1, the task relation yc

6 is added.
This latter part of the scenario also shows the key concept for supporting

traceability, i.e., to be able to explain at any time why objects are related to each510

other. Therefore, edges also have properties, such as timestamps, status infor-
mation, etc., which can be target of another edge, thereby creating, referencing
or invalidating the relation. This requires extending the classical understanding
of graphs as nodes connected by edges by also allowing ‘edges connected by
edges’ using a kind of hyper-relation. Note that we do not use hypergraphs but515

rather an artificial node of type ’edge’, which is simply represented as an edge
only. Thereby, the incoming/outgoing edges remain the same and our extended
view on graphs can be mapped to RDF (via reification). Thus, equivalence to
a classical graph is ensured.

d�
u1 t1 d�

11

d�
10

yi
1

ya
2

yp
3

yr
4

yr
5

r�11

yc
6

Figure 4: Graph GI , integrating instances of the data and task perspectives.

Table 2 provides an overview of the types of all instances involved in Fig. 4.520

Task relations also denote the exchange of data objects between tasks,
thereby describing the underlying business processes and make communication

15

Figure 4: Graph GI , integrating instances of the data and task perspectives.

Task relations also denote the exchange of data objects between tasks, thereby de-
scribing the underlying business processes and make communication between users ex-
plicit. Thus, the orientation of the corresponding task type relations explicitly documents
the process direction.

4.5. Data-dependent Task Sequences

As each data object is unique within the TEAM model, the relations between data
objects and tasks result in a continuous, integrated instance graph GI also describing all
business processes implicitly.

To prepare for our approach to mining these highly adaptable data-driven business
processes, we present a part of the real-world scenario in more detail (cf. Section 4.2).
In Fig. 5 more tasks and users are considered. Different colors are used for data object

14

Table 2: Details for the instances in Fig. 4.

id type
t1 ProcessEMail

d◦u1 User

d◦10 EMail

d◦11 CaseFile

r◦11 CaseFileHasEMail of kind has

yi
1 relation of kind instantiates

ya
2 relation of kind allocates

yp
3 relation of kind processes

yr
4, yr

5 relation of kind references

yc
6 relation of kind creates

relations and task relations to improve readability. The types for all elements involved
in the scenario are summarized in Tab. 3. The scenario in Fig. 5 contains the two users
d◦
u1 (backoffice) and d◦

u2 (patent attorney) working on three tasks t1, t2, and t3. Within
the context of task t1 user d◦

u1 creates a meeting act d◦
1 and a deadline d◦

2 which is then
connected with the meeting act by r◦1. Users and tasks are connected by task relations of
different kinds, e.g., instantiates (yi1), allocates (ya1), and processes (yp1). The results of t1
are the inputs of t2. Thus, when user d◦

u2 is informed that there is an assigned deadline
d◦
2, the user creates a new task t2 and works on it to produce the resulting meeting notes

d◦
3 related to the meeting act d◦

1 via r◦2. As it is the backoffice’s task to prepare the
offer d◦

4 and send it to the client via e-mail d◦
5, d◦

u2 instantiates the corresponding task
t3 referencing the relevant data object d◦

3. Then d◦
u1 takes over this task t3, creates the

offer document d◦
4 and attaches it to the e-mail d◦

5.

yi
1ya

1yp
1 yi

2ya
2yp

2 yi
3

ya
3 yp

3

yc
1

yc
2

r�1

yc
3

yr
1

yr
2

yc
4

r�2

yc
5

yr
3 yc

6 yc
7

r�3

r�4
r�5

yc
8

yc
9 yc

10

d�
u1 d�

u2

t1 t2 t3

d�
1 d�

2 d�
3 d�

4 d�
5

Figure 5: Graph GI , integrating instances of the data and task perspectives.

Table 3: Details for the instances in Fig. 5.

id type
t1 CreateMeetingAct

t2 ConductMeeting

t3 PrepareOffer

d�u1, d�u2 User

d�1 MeetingAct

d�2 Deadline

d�2 MeetingNotes

d�2 Offer

d�2 Email

r�n data object relation of kind has

yi
n task relation of kind instantiates

ya
n task relation of kind allocates

yp
n task relation of kind processes

yr
n task relation of kind references

yc
n task relation of kind creates

between users explicit. Thus, the orientation of the corresponding task type
relations explicitly documents the process direction.

4.6. Backend and User Interface Prototype

The prototype for the TEAM System has been developed relying on es-555

tablished design patterns in enterprise systems and latest ones in knowledge
processing systems (e.g., [38, 39]).

17

Figure 5: Graph GI , integrating instances of the data and task perspectives.

Data objects not indicating users are related to tasks either via task relations of kind
creates yc

n or references yr
n. Task relations linking users to tasks are of kinds such as

instantiate yi
n, allocate ya

n or process yp
n.

15

Table 3: Details for the instances in Fig. 5.

id type
t1 CreateMeetingAct

t2 ConductMeeting

t3 PrepareOffer

d◦u1, d◦u2 User

d◦1 MeetingAct

d◦2 Deadline

d◦2 MeetingNotes

d◦2 Offer

d◦2 EMail

r◦n data object relation of kind has

yi
n task relation of kind instantiates

ya
n task relation of kind allocates

yp
n task relation of kind processes

yr
n task relation of kind references

yc
n task relation of kind creates

To sum up, all relations between user and task are documented via task relations.
Task relations also denote the exchange of data objects between tasks, thereby describing
the underlying business processes and making communication between users explicit.
Thus, the orientation of the corresponding task type relations explicitly documents the
process direction.

4.6. Backend and User Interface Prototype

The prototype for the TEAM System has been developed relying on established design
patterns in enterprise systems and latest ones in knowledge processing systems (e.g., [38,
39]).

The TEAM System is divided into a server (backend) and a client (frontend). The
server is implemented using the Java Spring application framework, especially Spring-
Boot3 and the multi-model database ArangoDB4 for storing the graph data. We delib-
erately chose a multi-model database, where an edge has the same base type as a node
(i.e., document) and connects elements of the more general type document, in order to
allow ’edges connected by edges’ – enabling traceability – in a simple and straightforward
way. The frontend is developed in Angular 8 5 using the framework’s extensive support
for reusable, yet dynamic interface components, which allows to adapt the user interface
to the evolving, underlying graph.

The basic architecture of the server is a three-layer architecture: interface, service
and data access (see Fig. 6). The communication interface with the client provides
functionality via controllers, based on the REST architecture style [40]. The second

3https://spring.io/projects/spring-boot
4https://www.arangodb.com
5https://angular.io

16

https://spring.io/projects/spring-boot
https://www.arangodb.com
https://angular.io

layer deals with business services, while the third layer applies the data access object
(DAO) design pattern [41] to access data in ArangoDB.

User interaction is task-oriented. Therefore, the work context of the users is their
individual tasks with the task contexts, i.e., the connected data objects. Thus, users can
focus on what they want to do, and get assistance in identifying data, information and
knowledge they need. Users can add new data and relations whenever needed in the
context of specific tasks, thus, user interaction builds the evolving graph model following
the layered approach.

Interface Layer

Service Layer

Data Access Layer

DataObjectController TaskController TaskTypeController …

DataObjectService TaskService TaskTypeService …

DataObjectDAO TaskDAO TaskTypeDAO …

DataObject Collection Task Collection TaskType Collection …

DataObject

DataObjectType

Task

TaskType

ArangoDB

Keycloak

Author-
isation

Sp
rin

g
Bo

ot

User Interface

User/Browser

Authentication

Angular

Ba
ck

en
d

Figure 6: Overview of the system architecture.

5. Privacy

Process instances in general, and specifically in the legal domain, carry information
about potentially confidential cases, as well as information about individuals partaking
in those processes. Protecting confidential information about cases and clients is a fun-
damental requirement of law firms, and typically secured by non-disclosure agreements.
Therefore, in case of non-compliance, law firms may face high fines and further negative
impact due to reputation damage.

Personally identifiable information (PII) are any data that could be used to identify
a particular person. Common examples include a full name, a social security number,
document numbers (passport, driver’s license), e-mail addresses or telephone numbers.
The Health Insurance Portability and Accountability Act of 1996 (HIPAA)6 lists several

6https://www.cdc.gov/phlp/publications/topic/hipaa.html

17

https://www.cdc.gov/phlp/publications/topic/hipaa.html

further potential PIIs. Beyond this, datasets in the legal domain may contain other
sensitive information not considered PII, such as companies or organizations involved,
which needs to be kept confidential for business reasons.

Protecting the privacy of individuals involved in the legal processes is considered a
fundamental human right, and thus is included in the legislation of different countries. In
the EU, data controllers must design information systems with privacy in mind according
to the General Data Protection Regulation (EU GDPR). The knowledge-intensive pro-
cesses and graph structures introduced in this paper contain detailed information about
case activities, involved data, and data subjects (e.g., lawyers, clients, office employees).

There are multiple scenarios that can profit from an in-depth analysis of the data, po-
tentially also in a collaborative setting, and therefore require privacy and confidentiality
preserving techniques:

� Analyzing the activity data inside the system could help to optimize processes,
but this requires consent from involved individuals. Obtaining this consent can
be difficult, considering that process discovery operates in an exploratory fashion
without a clear analysis question in mind at that point in time [42].

� In a collaborative setup, law firms could profit by exchanging knowledge models,
but they could be reluctant to permit analysis of their process information, fearing
that confidential information might get into the hands of potential competitors or
other interested parties.

� For testing and development purposes, production data is often beneficial but due
to privacy and security reasons its usage is restricted.

5.1. Privacy Protecting Methods

A basic data sensitization approach is the removal of directly identifying attributes,
e.g., the ones mentioned above. Some of these attributes might not be removed, but
rather replaced with other, random identifiers, in a process commonly referred to as
pseudonymization. However, still from such treated data, information can be inferred.
For instance, [43] mentions that 87 % of U.S. citizens in 2002 could be re-identified
by using attributes zip code, sex and date of birth. These attributes are called quasi-
identifiers, as they do not identify by themselves, but may identify in their combination.
Re-identification in pseudonymous datasets is often achieved by matching data from the
published dataset with other available databases.

Data anonymization approaches address the problem of data protection and privacy
/ confidentiality aspects, by further sanitizing the data before publishing or process-
ing. Well-known approaches include k-anonymity [43] or differential privacy [44]. For a
detailed overview on privacy-preserving methods, see [45, 46].

k-anonymity aims to ensure that for a given dataset, there are at least k data objects
(rows) that are indistinguishable regarding their quasi-identifiers. Differential privacy,
on the other hand, is an approach for publicly sharing information about a dataset by
describing the patterns of groups within the dataset, while withholding information about
individuals in the dataset. It mathematically guarantees that anyone seeing the result
of a differentially private analysis will essentially make the same inference about any
individual’s private information, whether or not that individual’s private information is
included in the input to the analysis.

18

k-anonymity and differential privacy are most commonly applied to tabular, relational
data. They can thus also be applied to the data that we consider in this paper, if we
treat individual data objects as their own relational tables. However, there might be
additional inference possible on top of the tabular representation. This is because the
interconnections in the graph might provide additional contextual information that was
not considered in anonymizing the individual tables.

It has been shown that removing the identity of each node in a social graph before
publishing does not always guarantee privacy, as the structure of the graph, combined
with prior knowledge of an attacker, could allow the identification of individuals [47].
Motivated by the works [47, 48] the authors in [49] introduced a definition of anonymity
in graphs. Feder et al. [50] build on previous definitions and propose a formal (k, `)-
anonymity algorithm for the graph anonymization problem. A graph is (k, `)-anonymous,
if for every node in the graph there exist at least k other nodes that share at least ` of
its neighbors. They focus on finding the minimum number of edges to be added so
that the graph becomes (k, `)-anonymous. Subsequent works on graph anonymization
can be found in [49, 51, 52, 53]. Aggarwal et al. [54] examine the problem of node re-
identification from anonymized graphs and show that even low levels of anonymization
require perturbation levels which are signification enough to result in a massive loss of
utility. In the survey [55] one of their conclusions is that state-of-the-art anonymization
schemes are vulnerable to several structure-based de-anonymization attacks. Later works
also focus on the challenge of heterogeneous graphs, compared to simple networks with
only one node and edge type [56, 57].

5.2. Privacy in Process Mining

In the following, we discuss existing anonymization approaches for process mining
and possible solutions for the specific data structure and setup we propose in this article.

Until recently, process mining and privacy were considered orthogonal [42], and dis-
covering accurate process models from event logs was the main goal. While the trade-off
between privacy and data mining [58] has been illustrated and analyzed before, [59] was
one of the first to discuss technical- and organizational privacy challenges for process
mining. A requirement for anonymization techniques in process mining is to have an
acceptable trade-off between gain in privacy vs. loss of utility, i.e., process discovery
remains useful while the disclosure of sensitive data is reduced. The follow-up paper [42]
focuses on technological privacy-preserving challenges by introducing differential privacy
for process discovery. The authors approach the problem by defining a protection model
for event log privacy. They introduce a privacy engine that acts as a single point of access
for process mining algorithms and introduces noise to each query result from log files in
order to maintain differential privacy guarantees. There are two interesting aspects that
distinguish their approach from our setup: first, they operate on typical process mining
input, i.e., log lines with activity names and timestamps, and existing trace identifiers. In
our solution, we record activities without a predefined case identifier. Second, additional
attributes are usually restricted or completely ignored, while our solution preserves rich
attribute information and linkage between objects.

Our approach requires privacy solutions at the intersection of process mining and
graph anonymization. In the following, we discuss approaches to protect the privacy/confidentiality
of process graphs:

19

Prune value nodes. This solution is specific to the meta model of our graph-structured
TEAM model. Since values are separated from the instance types, we have the possibility
to remove value nodes while keeping the types and their relations for mining. While
this approach offers an easy solution to remove identifiers and potential quasi-identifiers,
mining algorithms cannot take advantage of the rich object information. It is also possible
to remove only identified sensitive types or type relations, while preserving others.

Node replacement. A common technique to protect the identity of users inside a social
graph is to remove sensitive information (e.g., ids, e-mail addresses, phone numbers, ac-
tual names) from nodes by replacing them with random identifiers. A similar approach
can also be applied to the graph structures introduced in this paper by replacing the val-
ues corresponding to potentially sensitive object types with other identifiers (e.g., hashes
or random values). Such replacements signify pseudonymization, which is a measure to
make identification more difficult, but cannot be considered anonymous. The replace-
ment can be one-way (e.g., deleting salts after hashing) or reversible, by keeping the
information on how the data has been created (e.g., mapping lists).

Replacement methods to reach anonymity include generalization (e.g., replace date
by year) and suppression (e.g., masking parts of the zip code).

Any solution implementing node replacement has to deal with the specifics of our data
model, such as the uniqueness and re-use of value nodes. Replacement configurations
could be defined once for the core model and reused by companies working with the
TEAM System. In case of company specific extensions and changes, the anonymization
configuration would have to be adapted as well.

Graph anonymization. As mentioned in Section 5.1, the aforementioned approaches
(pruning value nodes and node replacement) potentially leave the graph vulnerable to
re-identification by taking advantage of the graph structure itself combined with back-
ground knowledge of the attacker. To give examples, despite removing all value nodes,
it could still be possible to i) identify a company inside the graph, if we know that this
company had contact with two different law firms recently, ii) identify employee nodes
by knowing specific interactions (e.g., answered 5 calls from the same phone number in
a short period of time), or iii) find the client node with most open patent cases.

Applying graph anonymization on our heterogeneous structures is not straight-forward
and an open research challenge. While the basic ideas from e.g., [50, 56] could be adapted
to our structures, the utility – privacy trade-off must be carefully studied.

6. Mining and Learning in the TEAM Model

Based on the recording and managing of incoming and outgoing data for knowledge
and communication tasks we are able to discover and analyse temporal and logical rela-
tions from the underlying graph-based representation by applying mining techniques.

Established process mining techniques basically require structured data in the form of
“flat” (denormalised) models with a certain a-priori knowledge about process instances
(i.e., a case ID), as described in due course in Section 6.1. In contrast, graph-based
mining algorithms can directly work on the very flexible data model (cf. Section 4) and
rely on defined instance data dependencies. These dependencies support the different
working styles of users and express what can happen logically. This may differ from the

20

presentation of what exactly happened one after the other. However, by mining instance
data dependencies (which can be done on the type graph) no knowledge about an explicit
control flow or concrete process instances is needed. By counting all corresponding
instances, probabilities can be calculated and associated with the mining result without
having to know the individual instances. Suitable graphical representations of the found
relationships already offer an added value for the strategic view of processes (i.e., in
certain dashboards). They further form the basis for forecasting models for predicting
the next possible process step and performance measures or risk indicators.

In this section, we discuss related process mining approaches and present our solution
to mining and learning in a multi-dimensional knowledge/process graph. This novel,
instance data dependency-based mining approach aims (i) to find typical patterns in
the graph (knowledge and process discovery), (ii) to identify best practices for business
process classes, such as registration of an intellectual property, and (iii) to suggest possible
next tasks on these data to the user (prediction and enhancement).

6.1. Background

Process mining bridges the gap between traditional model-based process analysis in
BPM (simulation, verification, optimization, etc.) and classical data analysis techniques
(data mining, machine learning, etc.). It is a well-known technique for identifying, mon-
itoring and improving business processes by extracting knowledge from process log data
of information systems. Main characteristics of process mining are that it is not a specific
type of data mining since it considers end-to-end processes and focuses on event data,
requiring at least case ID, activity ID and the timestamp in the event log. The main
difference to classical BPM is that BPM is based on a top-down approach (definition
of the de jure process model), whereas process mining provides a bottom-up approach
(identifying the de facto process model).

Mining business processes has become a major field of interest in recent years. In
particular, existing work on process mining focuses on reconstructing meaningful process
models from process instances [60, 61], mainly considering the control-flow perspective.
A newer line of research concentrates on data-aware process mining [62, 63] to discover
not only the control flow of a process but also the data flow and associated guards, which
can then be added to a process model. Similarly, multi-perspective process explorer
(MPE) [64] supports the discovery of data-aware process models based on data attributes
attached to events. Further approaches on conformance checking [65, 66] also align an
event log with data to evaluate the quality of discovered process models. They are
typically based on Petri nets with data. A basic challenge, thereby, is that the discovered
models tend to be complex and large, especially in flexible environments [67]. Thus,
some approaches suggest the discovery of declarative process models [67, 68], where the
discovered process behaviour is described as a set of rules.

All of these techniques to mine, analyse and check conformance of business processes
have been developed based on event logs. This means that they require a case ID in
the log, otherwise the techniques cannot be applied. If the case ID is missing, which
is the case for both the administrative processes and highly flexible, knowledge-intense
processes in the TEAM model, manual preprocessing of the log is necessary to assign a
case ID to each event [69]. This might be done by correlating multiple IDs and dealing
with many-to-many relationships (in case of cross-process relations), which is also referred
to as “flattening reality” [61]. Nevertheless, a-priori knowledge of the process model

21

and driving key data objects is required. The issue of process mining without explicit
case IDs is also addressed using sequence partitioning in [70, 71], which only works
for simple workflow patterns, or for correlation mining in service-oriented systems [72].
The proposed approach for deducing case ids for unlabelled event logs in [69] requires
an explicit process model, while the ICI approach for automated labelling of event log
attributes [73] works without explicit process models but assumes that a case (trace) is
explicitly mentioned in the log.

A brief survey on predictive monitoring of business processes is given in [74]. In [75]
a predictive modelling approach, which also proposes a way to visualise the probabilistic
process models (via a Petri net visualisation) is designed. However, this approach again
only supports simple workflow patterns and requires a-priori knowledge of the process
model. Further research on predicting process behaviour is given by early works using
deep learning with recurrent neural networks (RNN) [76] and long short-term memory
(LSTM) neural networks [77].

Since these approaches basically require structured data in the form of denormalized
models or graph embeddings, the connection of such algorithms to the very flexible data
storage, i.e., the dynamic, highly connected knowledge/process graph, is another major
problem in addition to the missing case ID.

Relevant related work that deals with (instance) graphs as the underlying basis is
given in [78, 79]. The authors propose a multi-step approach to aggregate a number of
instance graphs (i.e., the representation of an execution of a business process for a single
case) to obtain an overall model for an entire dataset. In contrast to this, in our work all
execution paths are naturally supported and stored in the different layers of the TEAM
model, which forms the basis for our mining approach.

Since real-world processes are often unstructured and result in “spaghetti-like” mod-
els, a flexible approach for Fuzzy Mining, i.e., adaptively simplifying mined process mod-
els to provide meaningful abstractions of operational processes, is described in[80]. We
refer to some of the proposed transformation methods to remove edges and less significant
nodes in the resulting graph mining results. Similarly, the work on graph summariza-
tion to reduce data complexity and on local pattern mining to identify interesting graph
patterns and sequential structures presented in [81] is relevant to our approach.

6.2. Data Dependency-based Mining

The essence of knowledge work is that processes are not known a priori, but are
often designed task by task on the basis of the available data and information. For this
reason, we choose a data-driven approach to support knowledge work, without the need to
define pre-known processes. In doing so, we also avoid the delimitation and identification
of individual processes, because such delimitation is not possible in practice or only
possible for sub-processes. For example, in the case of a new property right application,
bibliographic data of the applicant will be reused if the applicant is already an existing
client.

6.2.1. Model Elements for Data Dependency-based Mining

Due to the uniqueness of data objects in the graph, it can be ensured that data objects
created, validated or invalidated by a task are linked to the first task as well as to the
subsequent task when data objects are reused. The data objects are linked to the tasks

22

via task relations, directed from the first task to the subsequent one, as shown in Fig. 7.
A task is linked to one or more subsequent tasks via one or more data objects. These
data objects are created in the first task and are therefore linked to it via a task relation
yc of the kind creates. When used in subsequent tasks, these data objects are referenced
by a task relation yr of the kind references directed towards each of the subsequent tasks.
Since several data objects are usually exchanged between two subsequent tasks, for the
sake of clarity, we reduce all intermediate task relations and data objects to a instance
data dependency represented by a single relation θ.

to the subsequent one, as shown in Fig. 7. A task is linked to one or more
subsequent tasks via one or more data objects. These data objects are created840

in the first task and are therefore linked to it via a task relation yc of the kind
creates. When used in subsequent tasks, these data objects are referenced by a
task relation yr of the kind references directed towards each of the subsequent
tasks. Since several data objects are usually exchanged between two subsequent
tasks, for the sake of clarity, we reduce all intermediate task relations and data845

objects to a instance data dependency represented by a single relation ✓.

t1 d1 t2
yc yr

✓

Figure 7: Instance data dependency ✓ (dashed) between two tasks t1 and t2 linked by a
common data object d1.

6.2.2. Data Dependency Paths

Under the condition of continuous instance data dependencies, for a given
start and end node, all data dependency paths between both nodes describe the
data flow between start and end node. The relevant data dependency paths can,850

for example, be found by executing a k-shortest path mining algorithm based
on the start and end nodes. It makes no di↵erence whether start and end nodes
are tasks or data objects, but since a data object can only be created in a task,
we assume one start task and one end task in the following.

6.2.3. Issues of the Data-driven Approach855

In contrast to control flow-based mining, the problem with a data-driven
approach is that there are not only instance data dependencies between two
consecutive tasks, but that instance data dependencies may or may not exist to
multiple tasks independently of their control flow. The resulting problems are
illustrated in Fig. 8.860

�1 t1 t2 t3 t4 t5

�2 t6

�3 t7 t8 t9

�4 t10 t11

Figure 8: Identifying di↵erent data dependency paths �1 - �4 between a start node t1 and
an end node t11.

25

Figure 7: Instance data dependency θ (dashed) between two tasks t1 and t2 linked by a common data
object d1.

6.2.2. Data Dependency Paths

Under the condition of continuous instance data dependencies, for a given start and
end node, all data dependency paths between both nodes describe the data flow between
start and end node. The relevant data dependency paths can, for example, be found
by executing a k-shortest path mining algorithm based on the start and end nodes. It
makes no difference whether start and end nodes are tasks or data objects, but since a
data object can only be created in a task, we assume one start task and one end task in
the following.

6.2.3. Issues of the Data-driven Approach

In contrast to control flow-based mining, the problem with a data-driven approach is
that there are not only instance data dependencies between two consecutive tasks, but
that instance data dependencies may or may not exist to multiple tasks independently
of their control flow. The resulting problems are illustrated in Fig. 8.

to the subsequent one, as shown in Fig. 7. A task is linked to one or more
subsequent tasks via one or more data objects. These data objects are created840

in the first task and are therefore linked to it via a task relation yc of the kind
creates. When used in subsequent tasks, these data objects are referenced by a
task relation yr of the kind references directed towards each of the subsequent
tasks. Since several data objects are usually exchanged between two subsequent
tasks, for the sake of clarity, we reduce all intermediate task relations and data845

objects to a instance data dependency represented by a single relation ✓.

t1 d1 t2
yc yr

✓

Figure 7: Instance data dependency ✓ (dashed) between two tasks t1 and t2 linked by a
common data object d1.

6.2.2. Data Dependency Paths

Under the condition of continuous instance data dependencies, for a given
start and end node, all data dependency paths between both nodes describe the
data flow between start and end node. The relevant data dependency paths can,850

for example, be found by executing a k-shortest path mining algorithm based
on the start and end nodes. It makes no di↵erence whether start and end nodes
are tasks or data objects, but since a data object can only be created in a task,
we assume one start task and one end task in the following.

6.2.3. Issues of the Data-driven Approach855

In contrast to control flow-based mining, the problem with a data-driven
approach is that there are not only instance data dependencies between two
consecutive tasks, but that instance data dependencies may or may not exist to
multiple tasks independently of their control flow. The resulting problems are
illustrated in Fig. 8.860

�1 t1 t2 t3 t4 t5

�2 t6

�3 t7 t8 t9

�4 t10 t11

Figure 8: Identifying di↵erent data dependency paths �1 - �4 between a start node t1 and
an end node t11.

25

Figure 8: Identifying different data dependency paths Φ1 - Φ4 between a start node t1 and an end node
t11.

Graph mining from start node t1 to destination node t11 poses a number of structural
problems.

23

Mining the longest path. Only two complete data dependency paths can be identified
between t1 and t11, namely Φ1 and Φ2. Although Φ2 is the shortest data dependency
path, it hides the longer data dependency path Φ1, especially the tasks t2 and t3.

From the perspective of mining, it is therefore, not the shortest data dependency path
between start and end node that is relevant, but rather the longest data dependency path,
which equally represents the critical process path from a data perspective.

Gaps within the data flow. However, if there is a gap within the data flow, as in data
dependency path Φ3, a potentially longer data dependency path might not be identified
as there is no linking data object between intermediate tasks t8 and t9. As a consequence,
tasks t8 and t9 would not be considered during graph mining.

Such a situation occurs, for example, when a data object leaves a system instance
(e.g., sending an e-mail), tasks are performed outside the system instance, and then
a resulting data object (e.g., a response e-mail) is reentered into the system instance
through a task (e.g., receive an e-mail) without establishing a proper task relation to the
last preceding task within the system instance.

In a complex, integrated knowledge/process graph it is unlikely that not a single
data object is exchanged between two actually consecutive tasks, but if this is actually
the case, it is possible to infer the actual sequence of tasks over the runtimes ζt of the
tasks and the time ζθ elapsed between the end of the preceding and the beginning of
the following task. Although this does not yet allow to reconstruct any missing instance
data dependency, the tasks can be aligned to a time grid, which, analogous to classic
process mining, does indicate the order in which the tasks are performed.

Connected partial paths. There are usually side paths from the longest path between
start and destination node. For the data flow from t1 to t11 the data provided by t4 for
t5 is irrelevant. Data created by t10 however, may be a precondition for t11.

Therefore, the search for all connecting paths between a start and an end node has
to be supplemented with connected tasks and/or data objects starting from each task of
the connecting paths found.

Explicitly and implicitly related data objects. Unique data objects are necessary to build
reliable instance data dependencies. To reduce the complexity of the system for users,
they rather use explicit references to usually more complex data objects in a task.

A large part of especially subordinate data objects, such as cities, postal codes, coun-
tries, etc. are only referenced implicitly, for example by assigning them to a new address
data object within the respective task. These implicitly referenced data objects not only
make up a large part of the resulting instance data dependencies, but - at least compared
to classical process mining - hardly contribute to the progress of the local process.

Due to the lack of a clear tree structure, this problem also occurs in the selection
of data objects that should be displayed to a user, wherefore a separate task relation of
kind displays was introduced, giving an indication on which data objects are actually
relevant to a user in the context of a task.

In the context of graph mining, we refer to these task relations to identify (i) ex-
plicit instance data dependencies, which contain data objects that are displayed by both
interconnected tasks, and (ii) implicit instance data dependencies, which lack common
displayed data objects.

24

Mining boundaries. One of the main issues with instance data dependency-based mining
on instance level of the proposed model is the strong interconnection between tasks
across process boundaries. This problem increases with growing graph size, because with
regard to data objects an increasing saturation occurs, while mainly data object relations
between already existing data objects are created or modified.

Although suggestions for future tasks could be made on the basis of task sequences
carried out so far, it is not possible to identify typical task sequences and distinguish
them from untypical ones in a meaningful way.

6.2.4. Data Dependency-based Mining on Type Level

Therefore, our approach follows mining at type level, because this allows insights
about statistically relevant task sequences even without identifng individual processes.
For this purpose, we introduce a type data dependency Θ, analogous to the instance data
dependency θ, to which we assign properties aggregated from the instance model.

Transition probability and other measures. On type level, apart from simple item counts,
a key metric is the transition probability for task type relations υ, i.e., the probability
Pυ that, given a start node (task or data object) of a certain start node type υ.from, a
certain number of task relations exists, that link said starting node with a subsequent end
node (data object or task) of a certain end node type υ.to. For type data dependency,
we calculate a similar transition metric for the probability PΘ, that given a start task of
a certain task type Θ.from, a certain number of instance data dependencies exists, that
link said starting task with a subsequent task of task type Θ.to.

In addition, we aggregate an average execution time ζξ of tasks and apply the results

to the relevant task types. Together with an average transition period ζΘ assigned to
type data dependencies, all task types can be again aligned to a common time grid.

Possible suggestions based on the mining approach. Although the described approach
may not yet deliver satisfactory results with regard to long, continuous task chains,
users can still be supported with reliable suggestions for action, especially in the local
environment of some task nodes. For example, possible follow-up task types can first be
selected on the basis of the type data dependency transition probabilities, then ranked
in ascending order according to the average length of the time intervals, and finally those
task types can be removed, that still have unfulfilled instance data dependencies. The
proposed task types can be further limited by allowing the user to define data objects,
data object types or task types that should be part of his further steps.

Advantages and disadvantages of type-based mining. The main advantage of this ap-
proach is that the introduction of case IDs is basically obsolete, even though the expected
mining results are not directly comparable with classical process mining. Due to the fact
that the type model depicts all possible type data dependencies and not only those which
are actually manifested in an instance data dependency, data dependency-based mining
on type level creates an options space.

If, for example, two process types A and B were recorded in the instance model,
where A comprises an end task of a task type, that corresponds to the task type of the
initial task of B, then a coherent data dependency path results in the type model, which
has no equivalent in the instance model.

25

The significance of the mining results is therefore particularly dependent on the gran-
ularity of the assigned types. The more specific the assigned task types (and data object
types as well) are, the more valid the data flow can be mapped and more specific type
data dependencies are identified.

The alignment of the task types in a time grid further depends on the consistency
of the time intervals at instance level. If the time intervals diverge too much, a sensible
temporal alignment of the task types can no longer be done globally, which is why con-
tradictions may arise between different type data dependencies with regard to the actual
timing of the task types. In addition, time alignment is by its very nature extremely sen-
sitive to cyclical data dependency paths, but this can be largely avoided by introducing
specific types as described above.

Nevertheless, the proposed approach allows for proposals that are essentially based
only on local properties of the graph (i.e., local transition probability and mean time
intervals) and are therefore also applicable to very large knowledge/process graphs.

6.3. Test Data Generation

In order to validate our mining approach we were inspired by the methods in [82, 83]
and developed our own synthetic event log generation tool. Existing tools, such as
PLG [84] and Gena [85] address the problem of missing real-word execution logs and offer
generators to simulate process models and capture the generated event logs. However,
they typically focus on standard event logs without simulating the resources interacting
with the running processes, which is a fundamental aspect in our approach. Hence, we
developed our own log generator in order to have a valid ground truth of a trademark
application scenario, which follows two stages as described in [83]: in the first stage
Model Generation domain experts define processes in a chosen modelling notation, such
as BPMN. In the second stage Log Generation, event logs are generated based on the
previously defined process models.

As input our solution accepts a BPMN 2.0 XML model with custom statements
encoded in bpmn:documentation elements. For objects, which are the main connectors
in our model, we use Data Object References, which are either created in process activities
or reused with a certain probability between process runs (e.g., the same client can file
different trademark applications and the same lawyers work on multiple processes inside
the law firm). Each Task takes 0 to n Data Objects as input and can create or modify
0 to n Data Objects as output. Furthermore, each Task defines an execution duration
range (e.g., [30, 60] minutes) from which a random duration value will be drawn in
each simulation run. For Gateways we define a transition probability for each outgoing
Sequence Flow. Finally, the Start Event contains a starting time range, from which a
date is randomly drawn for each process run.

Fig. 9 shows an example trademark application process7. In our Java generator,
we take the exported BPMN 2.0 XML model as input and generate event logs for n
simulated process runs in XML. The XML events are then imported into our process
graph database for analysis.

7Modeled with https://cawemo.com

26

https://cawemo.com

P
at

en
t l

aw
 fi

rm

Client known?

Check for
Conflict of
Interest

Conflict of
Interest?

E-Mail: Rejection

Audit Report

Rejection

Client yes

no

no

yesReceive
Request

Receive
E-Mail

E-Mail: Request

Request

Trademark name

Scope of
Protection

Start

Figure 9: Trademark application process model (excerpt)

6.4. Determining the Ground Truth using Traditional Process Mining

Traditional process mining is used to analyse historical event data regarding the tasks
of the communication processes from a process perspective. We, thereby, made use of
the generated case IDs of the different process runs from our generator tool to be able
to apply established process mining algorithms.

We first created the event log by querying the graph database and extracted all
recorded tasks (instances). Since all relevant information (administrative and knowledge
tasks) is available within one single TEAM instance, we did not have to face issues such
as incomplete or incorrect cases. We considered the task names as activities to determine
the steps in the process as well as their start and end dates as timestamps to determine
the temporal order in the process. The case IDs determine the scope of the process.

Fig. 12a illustrates the result (directly follows graph) of a standard process mining
tool (ProM 6.9) used on the synthetic event logs with case IDs. This representation was
used to verify the correct generation of process runs and is considered as ground truth
for our instance data dependency-based mining approach, which does not use any case
IDs .

7. Results

In this section, we sum-up the most important findings from answering the three
research questions given in Section 2.

The results from developing the TEAM model to answer RQ1 are summarized in
Section 7.1, while Section 7.2 provides the answers to RQ2 dealing with privacy in the
context of the TEAM model. Finally, Section 7.3 shows details concerning mining task
sequences in graphs and predicting best next steps in order to answer RQ3.

27

7.1. TEAM Model (RQ1)

To answer the research question RQ1 concerning the support of highly accurate knowl-
edge representation for data-driven, highly adaptable and individual processes, we devel-
oped the TEAM model introduced in Section 4.

The meta model in the three-layer TEAM model is the stable part of the overall
model. It consists of a conceptual (type model) and an instance level (instance model)
which are related to each other via the type relation. The type model defines all type
level aspects such as (i) the sort of concepts (i.e., data object type (δ) and data object
type relation (ρ) for the data view, and task type (ξ), including the integrating task type
relation (υ) for the task view), and (ii) how to specify them, e.g., by name, creation date,
etc. Thus, it is the type model in the meta model which defines how to describe our
domain specific ontologies. The meta model further defines how to describe the instances.

The high level of flexibility and adaptability of the TEAM model is achieved via the
data-centric domain model and instance model. These two models rely on the stable
meta model and can both be continuously adjusted and extended also at runtime.

To support data-driven processes, data quality and especially the constraint that
instances are unique are very important. Further, the data interfaces of tasks are defined
by their incoming and outgoing data objects.

Initial rather technical tests, analytical proofs of concepts including discussions and
feedback circles with external experts, but also the case study shows that the TEAM
model provides the anticipated means to accurately define the concepts and instances for
integrated highly-adaptable but also predefined processes. Furthermore, the information
tracked while working on the system, promises to be an adequate source to generate
additional knowledge which can be used to improve user support. The practical value of
this approach for the legal domain has been demonstrated in a prototype, which was pro-
vided to five patent law firms in Austria. In the context of a case study, actual case data
from existing management systems was imported and user feedback was continuously
collected from administrative staff (8 users) and knowledge workers (9 users). Details on
the user interface prototype as well as the insights gained are documented in [86].

7.2. Privacy (RQ2)

The overall research question RQ2 in regards to privacy was how and to what extent
we can protect confidential information in the process graph management and mining.
In Section 5.1, we discussed current results for enabling privacy-preserving, graph-based
process sharing and mining.

Due to the domain model carrying semantic information on the connections between
the various type nodes, we can apply a value pruning approach. This deletes actual
values (such as names, dates, and textual data), however, while still keeping the semantic
description inside the graph. The mining approach presented in this paper can still
produce conforming process models from this structure alone. In this settings, most of
the inference issues are reduced.

Node replacement can implement a form of pseudonymization, where we do not delete
all values, but replace identifying attributes (such as names) with pseudonyms. This
enables interlinking different processes along, e.g., common actors, w/o revealing their
true identity, which is helpful in further analysis of the processes. It, however, introduces
a larger attack surface for an adversary trying to infer information from the data.

28

Adapting k-anonymity for the value nodes that contain information on quasi-identifiers,
such as dates or location information, is another option. This significantly reduces the
attack surface for re-identification attacks. In future work, we will design a setting on
which also differential privacy can be used for value nodes. This requires well-defined
query interfaces and use-cases.

Furthermore, the graph structure could enable certain inference attacks, hence, graph
anonymization, i.e., a deliberate blurring of the connections in the graph, needs to be
incorporated into our solution.

We can measure the extent of privacy-preservation on the one hand by measures
such as the achieved level of k for k-anonymity, or achieved values of ε in a Differential
Privacy system. However, these remain rather abstract measures. More practical mea-
sures include a comparison of the success rates of attacks to the confidentiality of the
data in the process graph. For example, we can measure the re-identification possibili-
ties by an attacker with certain background knowledge on a real-world dataset in a lab
setting. Measuring these before and after applying privacy-preserving measures, we can
determine the increase in privacy. These will then need to be compared to the loss in
conformance of the mined process model, against one that was obtained from original,
unabridged data.

7.3. Process and Data Dependency-based Mining (RQ3)

Finally, we address RQ3 and go for answering how and to what extent statistical,
process and graph mining methods can support the discovery of data-dependent se-
quences and prediction of tasks in the TEAM model. In Section 6, we presented the
results that enable process and data dependency-based mining in our multi-dimensional
knowledge/process graph.

According to Section 6.3, test data for 100 process instances has been imported into
a TEAM System to develop a mining approach for reconstructing the logical (i.e., data-
dependent) sequences of tasks. We evaluated the resulting models in several iterations
using visual inspections (e.g., to identify missing tasks, exceptional tasks or exceptional
sequences) and improve our mining approach according to the gained insights.

The initial import results in 14097 data objects, 1680 tasks and 51959 task relations.
Executing the proposed instance data dependency-based mining approach reduced these
task relations to 4761 instance data dependencies, which were mapped to 95 type data
dependencies. Fig. 10 shows the complete mining result, starting from start task type
Receive Request to end task type Invoice Certificate of Registration without any filter-
ing applied. Note that the figure aims to illustrate the structural complexity of data
dependencies and, thus, the contained text is not primarily intended to be readable.

29

Check for
Conflict of Interest

Perform
search

Process Office
Action

Setup

Process Application
Confirmation

Receive
request

Process Official
Search Report

Create
Application Draft

File
Application

Receive Application
Confirmation

Invoice Certificate
of registration

Report
Application

Create List of
Goods and Services

Process
Order

Invoice
Application

Process Certificate
of registration

Comment and submit
search results

Invoice
search

Figure 10: Visualised graph mining result with start task type Receive Request and end task type Invoice Certificate of Registration, showing type data
dependencies with a probability of 100 % in bold.

30

The result shows that even with a visual simplification by representing type data
dependencies as edges (i.e., by hiding explicit task type relations and data object types),
a complex type data dependency graph emerges, which without further measures cannot
easily be compared to the results of classic process mining, even if type data dependencies
with a probability of 100 % are considered (shown in bold lines). The consideration of
the typical running and transition times (indicated with time steps on the left) does not
bring any recognizable added value either.

Particularly noticeable is the diversity of the occurring type data dependencies and
that they not only connect successive task types, but often entire chains of successive
task types (divergence). A further complicating factor is that there are also type data
dependencies which at the first glance are not at all reflected in the modeled process.
This is especially true for the circular self-references of some task types. The reason
for these unexpected type data dependencies is that apparently single data objects are
created in a task of a certain task type in one process instance and are referenced in
another process instance by a task of the same task type (convergence). These cross-
references between process instances also lead to cyclic data dependency paths, which
hinder a correct temporal alignment of all task types considered.

However, such data dependency paths are rare and, therefore, not statistically rel-
evant. If, for example, the type data dependencies are only restricted to a minimum
probability of 5 %, as shown in Fig. 11, a large part of the type data dependencies are
already omitted and a better temporal alignment is possible.

Considering type data dependencies with a probability of 100 %, the main sequence
of task types begins to reveal. But still, several type data dependencies are not relevant
for the progression of the task types sequence. In order to further improve the mining
result in this respect, only those type data dependencies were considered in a further
step, which were explicitly specified by the user. As shown in Fig. 12b, this can be used
to eliminate additional type data dependencies that are not relevant for the alignment
of the task types.

Referring to RQ3, the final mining result in Fig. 12b is comparable to the result of
classical process mining shown in Fig. 12a. The research question is closely related to
the practical challenge of discovering appropriate process models and delivering valuable
artifacts for the application domain. The classical process mining result indicates a rigid
task sequence. However, the identified type data dependencies indicate that there are
stronger causal relationships between some task types, while instances of other task types
can apparently run independently or at least parallel to each other. For example, loops
make it difficult to grasp the main sequence of tasks in the process. The proposed data-
driven mining approach better resolves the concurrences in the lower part of the process.
Conversely, missing data dependencies (e.g., between the task types Invoice search and
Process Order) lead to a task type order which can only be resolved by taking into account
the time sequences. Furthermore, the task type Receive Application Confirmation, which
is still present in Fig. 10, got omitted due to incomplete backward mining of type data
dependencies for each of the resulting task type.

However, our approach allows for suggesting possible follow-up task types given a
certain start node, without having to apply complex and resource-intensive graph mining
techniques on the instance level. For example and with reference to Fig. 12b, starting
from task type Receive request, a user could be supported by the suggestion of task type
Check for Conflict of Intereset, as this is the temporally closest task type with a direct

31

type data dependency and no further required type data dependency. Alternatives are
the task types Perform Search and Process Order ; the task types Comment and submit
search results and Create List of Goods and Services, however, are ruled out due to
additional required type data dependencies with a transition probability of 100 %.

In summary, the mining result in Fig. 12b is (i) less complex (i.e., measuring the
complexity of a process model using the number of arcs, the overall complexity reduction
is 11 %) and (ii) provides more appropriate information for understanding the logical
structure of the process than the model derived from classical process mining in Fig. 12a,
which only reflects the temporal ordering.

The result, thus, shows that the presented approach is promising, but that further
adjustments to the mining algorithm are necessary in order to reliably identify, especially
longer, data dependency paths despite of missing type data dependencies and to handle
divergence and convergence issues [87, 88]. Relevant data object types for the process
under analysis need to be selected and task types should be clustered according to these
data object types. This makes it possible to further simplify the model and to obtain
different but connected views of the process with respect to specific interests.

8. Conclusion

In the legal domain, the requirement of process traceability, learning from earlier
process executions, and repetitive, reliable administrative processes collides with the
need for creative, data-driven knowledge work under an ever changing legal framework.

Our contribution is an approach that goes beyond previous methods and integrates
administrative work and creative work in a single graph-based model, which enables
continuously traceable processes via interconnected tasks and data objects. Due to a
flexible and adaptable type model, our approach allows for the evolution of a-priori
unknown or unidentifiable processes, including initially unknown task types and data
object types.

The TEAM model consists of a stable meta model which defines the core structure
of the overall model, i.e., an instance model related to its classifying domain model by
a type relation, and how to specify these two models. The domain model provides the
domain-specific mental models (types) and their relations. This graph-structured model
can be extended and adapted by users whenever necessary without changing the meta
model or recompiling parts of the software. The instance model, which relies on the
domain model, holds all entities (data, users and tasks), information and communication
flows, execution-specific data and the dynamic assignment of tasks.

As we follow a data-driven approach, sequences of data object / task pairs are created
when using this model for supporting work, documenting the data-dependencies of each
task. With our data dependency-based mining approach on type level, neither case IDs
nor mining the instances is needed, as we focus on statistically relevant task sequences.
Furthermore, the results are not restricted to a set of process executions, but define an
options space, which contains all possible execution paths. A drawback of the approach
is that long data dependency paths can only be analyzed if a fine-grained type model is
available. However, the results for near neighboring nodes are reliable, and suggestions
for the next steps can be very well supported.

In our future work, we will focus on the automated refinement of the type model based
on historical data and, furthermore, work on improvements of the mining algorithms to

32

identify gaps and deal with dead ends. Further testing is also necessary. First, we will
study additional kinds of processes within our testbed to study the influence of cross-
process links. Based on the results of this study, we will undertake another test run in a
real-world environment.

With process mining often sensitive data are involved. Therefore, privacy remains a
difficult challenge in process mining, especially when considering collaborative settings,
where different organizations need to exchange data and information. In this paper, we
highlighted a number of selected approaches to enable privacy-preserving process graph
sharing and mining. Future work will focus on measuring success rates of attacks against
k-anonymization and graph anonymization solutions on the TEAM model. Furthermore,
we want to develop solutions to explore the trade-off between privacy and utility.

Acknowledgements

This work was funded within the FFG BRIDGE project KnoP-2D (grant no. 871299).
The work was also supported by the Austrian Ministry for Transport, Innovation and

Technology, the Federal Ministry of Science, Research and Economy, and the Province
of Upper Austria/federal state of Vienna in the frame of the COMET centers SCCH and
SBA Research (SBA-K1) as well as by the LIT Secure and Correct Systems Lab funded
by the State of Upper Austria.

The prototype development and testing in real-world settings was supported by poly-
mind GmbH, Vienna, Austria.

References

[1] M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers, Fundamentals of Business Process Management,
Springer, 2018.

[2] M. Weske, Business process management: Concepts, languages, architectures, 2nd Edition,
Springer, 2012.

[3] P. F. Drucker, Landmarks of Tomorrow: A Report on the New ’Post-Modern’ World, Harper &
Brothers, New York, 1959.

[4] P. F. Drucker, Knowledge-worker productivity: The biggest challenge, California Management Re-
view Vol. 41 (No. 2) (1999) 79–94.

[5] D. E. Bailey, P. M. Leonardi, J. Chong, Minding the gaps: Understanding technology interdepen-
dence and coordination in knowledge work, Organization Science 21 (3) (2010) 713–730.

[6] D. Auer, S. Hinterholzer, J. Kubovy, J. Küng, Business process management for knowledge work:
Considerations on current needs, basic concepts and models, in: F. Piazolo, M. Felderer (Eds.),
Novel Methods and Technologies for Enterprise Information Systems, Vol. 8 of Lecture Notes in
Information Systems and Organisation, Springer International Publishing, 2014, pp. 79–95.

[7] I. Nonaka, H. Takeuchi, The knowledge-creating company: How Japanese companies create the
dynamics of innovation, Oxford university press, 1995.

[8] C. Di Ciccio, A. Marrella, A. Russo, Knowledge-intensive processes: Characteristics, requirements
and analysis of contemporary approaches, Journal on Data Semantics 4 (1) (2015) 29–57.

[9] M. Marin, R. Hull, R. Vaculin, Data centric BPM and the emerging case management standard: a
short survey, in: M. La Rosa, P. Soffer (Eds.), BPM 2012 Workshops, LNBIP, Springer, 2013, pp.
24–30.

[10] I. Bider, E. Perjons, Z. Riaz Dar, Using data-centric business process modeling for discovering
requirements for business process support systems: Experience report, in: S. Nurcan, H. A. Proper,
P. Soffer, J. Krogstie, R. Schmidt, T. Halpin, I. Bider (Eds.), Enterprise, Business-Process and
Information Systems Modeling, LNBIP, Springer, 2013, pp. 63–77.

[11] A. R. Hevner, S. T. March, J. Park, S. Ram, Design science in information systems research, MIS
Q 28 (1) (2004) 75–105.

33

[12] J. vom Brocke, A. R. Hevner, A. Maedche, Introduction to design science research, in: J. vom
Brocke, A. Havner, A. Maedche (Eds.), Design science research, Progress in IS, Springer, 2020, pp.
1–13.

[13] F. Kossak, C. Illibauer, V. Geist, J. Kubovy, C. Natschläger, T. Ziebermayr, T. Kopetzky,
B. Freudenthaler, K.-D. Schewe, A rigorous semantics for BPMN 2.0 process diagrams, Springer,
2014.

[14] H. Trætteberg, UI design without a task modeling language – using BPMN and Diamodl for task
modeling and dialog design, in: P. Forbrig, F. Paternò (Eds.), Engineering Interactive Systems 2008,
Vol. 5247 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2008, pp. 110–117.

[15] D. Auer, V. Geist, D. Draheim, Extending BPMN with submit/response-style user interaction
modeling, in: 2009 IEEE Conference on Commerce and Enterprise Computing, IEEE, 2009, pp.
368–374.

[16] O. Marjanovic, Towards IS supported coordination in emergent business processes, Business Process
Management Journal 11 (5) (2005) 476–487.

[17] M. Reichert, B. Weber, Enabling Flexibility in Process-Aware Information Systems: Challenges,
Methods, Technologies, Springer, 2012.

[18] M. Döhring, B. Zimmermann, L. Karg, Flexible workflows at design- and runtime using BPMN2
adaptation patterns, in: W. Abramowicz (Ed.), Business Information Systems, Vol. 87 of Lecture
notes in business information processing, Springer Berlin Heidelberg, 2011, pp. 25–36.

[19] W. M. van der Aalst, M. Weske, D. Grünbauer, Case handling: A new paradigm for business process
support, in: Data and Knowledge Engineering, Elsevier B.V., 2005, pp. 129–162.

[20] OMG, Case Management Model and Notation: Version 1.0, OMG, 2014.
URL http://www.omg.org/spec/CMMN/1.0

[21] V. Künzle, Object-aware process management, Dissertation, Universität Ulm, Ulm (2013).
[22] S. Rinderle-Ma, S. Sadiq, F. Leymann, V. Künzle, M. Reichert, PHILharmonicFlows: towards a

framework for object-aware process management, Journal of Software Maintenance and Evolution:
Research and Practice 23 (4) (2011) 205–244.

[23] M. Pesic, W. M. van der Aalst, A declarative approach for flexible business processes management,
in: D. Hutchison, et al. (Eds.), Business Process Management Workshops, Vol. 4103 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2006, pp. 169–180.

[24] A. Jiménez-Ramı́rez, B. Weber, I. Barba, C. Del Valle, Generating optimized configurable business
process models in scenarios subject to uncertainty, Information and Software Technology 57 (2015)
571–594.

[25] C. Atkinson, D. Draheim, V. Geist, Typed business process specification, in: 2010 14th IEEE
International Enterprise Distributed Object Computing Conference, IEEE, 2010, pp. 69–78.

[26] D. Draheim, G. Weber, Modeling submit/response style systems with form charts and dialogue
constraints, in: OTM Confederated International Conferences “On the Move to Meaningful Internet
Systems”, Springer, 2003, pp. 267–278.

[27] D. Draheim, G. Weber, Form-oriented analysis: a new methodology to model form-based applica-
tions, Springer Science & Business Media, 2005.

[28] D. Draheim, Business process technology: A unified view on business processes, workflows and
enterprise applications, Springer Science & Business Media, 2010.

[29] F. Kossak, C. Illibauer, V. Geist, C. Natschläger, T. Ziebermayr, B. Freudenthaler, T. Kopetzky,
K.-D. Schewe, Hagenberg business process modelling method, Springer, 2016.

[30] K.-D. Schewe, B. Thalheim, Design and development of Web information systems, Springer, 2019.
[31] M. Frické, The knowledge pyramid: a critique of the DIKW hierarchy, Journal of information

science 35 (2) (2009) 131–142.
[32] M. Hepp, F. Leymann, J. Domingue, A. Wahler, D. Fensel, Semantic business process manage-

ment: a vision towards using semantic web services for business process management, in: IEEE
International Conference on e-Business Engineering (ICEBE’05), IEEE, 2005, pp. 535–540.

[33] M. Hepp, D. Roman, An ontology framework for semantic business process management, in:
Wirtschaftsinformatik Proceedings, 2007, pp. 423–440.

[34] J. Pujara, H. Miao, L. Getoor, W. Cohen, Knowledge graph identification, in: D. Hutchison,
et al. (Eds.), Advanced Information Systems Engineering, Vol. 7908 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2013, pp. 542–557.

[35] H. Paulheim, Knowledge graph refinement: A survey of approaches and evaluation methods, Se-
mantic Web 8 (3) (2016) 489–508.

[36] F. J. Ekaputra, Ontology-based data integration and knowledge change management in multi-
disciplinary engineering environments, Dissertation, TU Wien, Vienna (2018).

34

http://www.omg.org/spec/CMMN/1.0
http://www.omg.org/spec/CMMN/1.0

[37] D. Saffer, Designing for interaction: Creating innovative applications and devices, 2nd Edition,
Voices that matter, New Riders, Berkeley, CA, 2010.

[38] S. Nadschläger, J. Küng, A pattern collection for knowledge processing system architecture, in:
V.-P. Eloranta, C. Preschern (Eds.), Proceedings of the 21st European Conference on Pattern
Languages of Programs - EuroPlop ’16, ACM Press, 2016, pp. 1–23.

[39] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software Archi-
tecture, A System of Patterns, Wiley Software Patterns Series, Wiley, 2013.

[40] R. T. Fielding, Architectural styles and architectural styles and the design of network-based software
architectures, Dissertation, University of California, Irvine (2000).

[41] A. Deepak, J. Crupi, D. Malks, Core J2ee Patterns: Best Practices and Design Strategies, Prentice
Hall Computer, 2003.

[42] F. Mannhardt, A. Koschmider, N. Baracaldo, M. Weidlich, J. Michael, Privacy-preserving process
mining, Business & Information Systems Engineering 61 (5) (2019) 595–614.

[43] L. Sweeney, K-anonymity: A model for protecting privacy, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 10 (5) (2002) 557–570.

[44] C. Dwork, Differential privacy, in: Proceedings of the 33rd International Colloquium on Automata,
Languages and Programming ICALP, Vol. 4052 of Lecture Notes in Computer Science, Springer,
2006, pp. 1–12.

[45] B.-C. Chen, D. Kifer, K. LeFevre, A. Machanavajjhala, Privacy-preserving data publishing, Foun-
dations and Trends in Databases 2 (1-2) (2009) 1–167.

[46] B. C. M. Fung, K. Wang, R. Chen, P. S. Yu, Privacy-preserving data publishing: A survey of recent
developments, ACM Computing Surveys 42 (4) (2010) 14:1–14:53.

[47] L. Backstrom, C. Dwork, J. Kleinberg, Wherefore art thou r3579x? anonymized social networks,
hidden patterns, and structural steganography, in: Proceedings of the 16th International Conference
on World Wide Web, WWW ’07, Association for Computing Machinery, 2007, p. 181–190.

[48] M. Hay, G. Miklau, D. Jensen, D. Towsley, P. Weis, Resisting structural re-identification in
anonymized social networks, Proc. VLDB Endow. 1 (1) (2008) 102–114.

[49] B. Zhou, J. Pei, Preserving privacy in social networks against neighborhood attacks, in: 2008 IEEE
24th International Conference on Data Engineering, 2008, pp. 506–515.

[50] T. Feder, S. U. Nabar, E. Terzi, Anonymizing graphs (2008). arXiv:0810.5578.
[51] K. Liu, E. Terzi, Towards identity anonymization on graphs, in: Proceedings of the 2008 ACM SIG-

MOD International Conference on Management of Data, SIGMOD ’08, Association for Computing
Machinery, 2008, p. 93–106.

[52] S. Bhagat, G. Cormode, B. Krishnamurthy, D. Srivastava, Class-based graph anonymization for
social network data, Proc. VLDB Endow. 2 (1) (2009) 766–777.

[53] R. Mortazavi, S. Erfani, GRAM: An efficient (k, l) graph anonymization method, Expert Systems
with Applications 153 (2020) 113454.

[54] C. C. Aggarwal, Y. Li, P. S. Yu, On the hardness of graph anonymization, in: 2011 IEEE 11th
International Conference on Data Mining, 2011, pp. 1002–1007.

[55] S. Ji, P. Mittal, R. Beyah, Graph data anonymization, de-anonymization attacks, and de-
anonymizability quantification: A survey, IEEE Communications Surveys Tutorials 19 (2) (2017)
1305–1326.

[56] A. Zhang, C. Gunter, X. Xie, J. Han, K. Chang, X. Wang, Privacy risk in anonymized heterogeneous
information networks, in: V. Leroy, V. Christophides, V. Christophides, S. Idreos, A. Kementsiet-
sidis, M. Garofalakis, S. Amer-Yahia (Eds.), Advances in Database Technology - EDBT 2014: 17th
International Conference on Extending Database Technology, Proceedings, OpenProceedings.org,
2014, pp. 595–606.

[57] L.-E. Wang, X. Li, A graph-based multifold model for anonymizing data with attributes of multiple
types, Computers & Security 72 (2018) 122–135.

[58] Y. A. A. S. Aldeen, M. Salleh, M. A. Razzaque, A comprehensive review on privacy preserving data
mining, SpringerPlus 4 (1) (2015) 694.

[59] F. Mannhardt, S. A. Petersen, M. F. Oliveira, Privacy challenges for process mining in human-
centered industrial environments, in: 2018 14th International Conference on Intelligent Environ-
ments (IE), 2018, pp. 64–71.

[60] W. Van Der Aalst, A. Adriansyah, A. K. A. De Medeiros, F. Arcieri, T. Baier, T. Blickle, J. C.
Bose, P. Van Den Brand, R. Brandtjen, J. Buijs, et al., Process mining manifesto, in: International
Conference on Business Process Management, Springer, 2011, pp. 169–194.

[61] W. Van Der Aalst, Data science in action, in: Process mining, Springer, 2016, pp. 3–23.
[62] M. De Leoni, W. M. van der Aalst, Data-aware process mining: discovering decisions in processes

35

http://arxiv.org/abs/0810.5578

using alignments, in: Proceedings of the 28th annual ACM Symposium on Applied Computing,
2013, pp. 1454–1461.

[63] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. van der Aalst, Data-driven process discovery-
revealing conditional infrequent behavior from event logs, in: International Conference on Advanced
Information Systems Engineering, Springer, 2017, pp. 545–560.

[64] F. Mannhardt, M. De Leoni, H. A. Reijers, The multi-perspective process explorer, BPM (Demos)
1418 (2015) 130–134.

[65] M. de Leoni, J. Munoz-Gama, J. Carmona, W. M. van der Aalst, Decomposing alignment-based
conformance checking of data-aware process models, in: OTM Confederated International Confer-
ences “On the Move to Meaningful Internet Systems”, Springer, 2014, pp. 3–20.

[66] F. Mannhardt, M. De Leoni, H. A. Reijers, W. M. van der Aalst, Balanced multi-perspective
checking of process conformance, Computing 98 (4) (2016) 407–437.

[67] F. M. Maggi, A. J. Mooij, W. M. van der Aalst, User-guided discovery of declarative process models,
in: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2011,
pp. 192–199.

[68] F. M. Maggi, M. Dumas, L. Garćıa-Bañuelos, M. Montali, Discovering data-aware declarative pro-
cess models from event logs, in: Business Process Management, Springer, 2013, pp. 81–96.

[69] D. Bayomie, I. M. Helal, A. Awad, E. Ezat, A. ElBastawissi, Deducing case IDs for unlabeled event
logs, in: International Conference on Business Process Management, Springer, 2016, pp. 242–254.

[70] D. R. Ferreira, D. Gillblad, Discovering process models from unlabelled event logs, in: International
Conference on Business Process Management, Springer, 2009, pp. 143–158.

[71] M. Walicki, D. R. Ferreira, Mining sequences for patterns with non-repeating symbols, in: IEEE
Congress on Evolutionary Computation, IEEE, 2010, pp. 1–8.

[72] S. Pourmirza, R. Dijkman, P. Grefen, Correlation mining: mining process orchestrations without
case identifiers, in: International Conference on Service-Oriented Computing, Springer, 2015, pp.
237–252.

[73] A. A. Andaloussi, A. Burattin, B. Weber, Toward an automated labeling of event log attributes,
in: Enterprise, Business-Process and Information Systems Modeling, Springer, 2018, pp. 82–96.

[74] A. E. Márquez-Chamorro, M. Resinas, A. Ruiz-Cortes, Predictive monitoring of business processes:
a survey, IEEE Transactions on Services Computing 11 (6) (2017) 962–977.

[75] D. Breuker, M. Matzner, P. Delfmann, J. Becker, Comprehensible predictive models for business
processes., MIS Q. 40 (4) (2016) 1009–1034.

[76] J. Evermann, J.-R. Rehse, P. Fettke, Predicting process behaviour using deep learning, Decision
Support Systems 100 (2017) 129–140.

[77] N. Tax, I. Verenich, M. La Rosa, M. Dumas, Predictive business process monitoring with LSTM neu-
ral networks, in: International Conference on Advanced Information Systems Engineering, Springer,
2017, pp. 477–492.

[78] B. F. van Dongen, W. M. Van der Aalst, Multi-phase process mining: Aggregating instance graphs
into EPCs and Petri nets, in: PNCWB 2005 workshop, Citeseer, 2005, pp. 35–58.

[79] B. F. Van Dongen, W. M. Van der Aalst, Multi-phase process mining: Building instance graphs,
in: International Conference on Conceptual Modeling, Springer, 2004, pp. 362–376.

[80] C. W. Günther, W. M. Van Der Aalst, Fuzzy mining–adaptive process simplification based on multi-
perspective metrics, in: International Conference on Business Process Management, Springer, 2007,
pp. 328–343.

[81] M. Atzmueller, S. Bloemheuvel, B. Kloepper, A framework for human-centered exploration of com-
plex event log graphs, in: International Conference on Discovery Science, Springer, 2019, pp. 335–
350.

[82] A. A. Mitsyuk, I. S. Shugurov, A. A. Kalenkova, W. M. van der Aalst, Generating event logs for
high-level process models, Simulation Modelling Practice and Theory 74 (2017) 1 – 16.

[83] T. Jouck, B. Depaire, Generating artificial event logs with sufficient discriminatory power to com-
pare process discovery techniques, CEUR Workshop Proceedings (2014).

[84] A. Burattin, PLG2: multiperspective process randomization with online and offline simulations,
in: L. Azevedo, C. Cabanillas (Eds.), Proceedings of the BPM Demo Track 2016 co-located with
the 14th International Conference on Business Process Management (BPM), Vol. 1789 of CEUR
Workshop Proceedings, CEUR-WS.org, 2016, pp. 1–6.

[85] I. S. Shugurov, A. A. Mitsyuk, Generation of a set of event logs with noise, in: Proceedings of
the 8th Spring/Summer Young Researchers Colloquium on Software Engineering (SYRCoSE 2014),
2014, pp. 88–95.

[86] G. Hübscher, V. Geist, D. Auer, N. Hübscher, J. Küng, Integration of knowledge and task manage-

36

ment in an evolving, communication-intensive environment, in: The 22nd International Conference
on Information Integration and Web-based Applications & Services (iiWAS ’20), ACM, 2020, pp.
407–416.

[87] W. M. van der Aalst, Object-centric process mining: Dealing with divergence and convergence in
event data, in: International Conference on Software Engineering and Formal Methods, Springer,
2019, pp. 3–25.

[88] W. M. van der Aalst, A. Berti, Discovering object-centric Petri nets, Fundamenta Informaticae
175 (1-4) (2020) 1–40.

37

Check for
Conflict of Interest

Perform
search

Process
Office Action

Setup

Receive
request

Process
Official Search Report

Create
Application Draft

Invoice Certificate
of registration

Report
Application

Create List of
Goods and Services

Process
Order

Invoice
Application

Process Certificate
of registration

Process
Application Confirmation

Comment and submit
search results

File
Application

Invoice
search

Figure 11: Visualised graph mining result according to Fig. 10, considering only type data dependencies
with a probability of more than 5 %.

38

(a) Directly follows graph
obtained from traces.

Check for
Conflict of Interest

Perform
search

Process
Office Action

Process
Application Confirmation

Process Official
Search Report

Report
Application

Invoice
Application

Process Certificate
of registration

Receive
request

Create
Application Draft

Comment and
submit search results

Create List of
Goods and Services

Process
Order

File
Application

Invoice Certificate
of registration

Invoice
search

(b) Visualized graph mining result according to Fig. 10, considering only
type data dependencies to data object types displayed by the user and at
the same time having a probability of more than 5 %.

Figure 12: Final mining results

39

	Introduction
	Research Methodology
	Related Work
	The TEAM Model
	Three Layers Architecture
	Real-world Scenario
	Data View
	Task View
	Data-dependent Task Sequences
	Backend and User Interface Prototype

	Privacy
	Privacy Protecting Methods
	Privacy in Process Mining

	Mining and Learning in the TEAM Model
	Background
	Data Dependency-based Mining
	Model Elements for Data Dependency-based Mining
	Data Dependency Paths
	Issues of the Data-driven Approach
	Data Dependency-based Mining on Type Level

	Test Data Generation
	Determining the Ground Truth using Traditional Process Mining

	Results
	TEAM Model (RQ1)
	Privacy (RQ2)
	Process and Data Dependency-based Mining (RQ3)

	Conclusion

