ACM CODASPY 2022

This is a self-archived pre-print version of this article.
The final publication is available at ACM via
https://doi.org/10.1145/3508398.3519363.



https://doi.org/10.1145/3508398.3519363

Poisoning Attacks against Feature-Based Image Classification”

Robin Mayerhofer
mayerhofer1998@gmail.com
Vienna University of Technology
Vienna, Austria

ABSTRACT

Adversarial machine learning and the robustness of machine learn-
ing is gaining attention, especially in image classification. Attacks
based on data poisoning, with the aim to lower the integrity or
availability of a model, showed high success rates, while barely re-
ducing the classifiers accuracy — particularly against Deep Learning
approaches such as Convolutional Neural Networks (CNNs). While
Deep Learning has become the most prominent technique for many
pattern recognition tasks, feature-extraction based systems still
have their applications — and there is surprisingly little research
dedicated to the vulnerability of those approaches.

We address this gap and show preliminary results in evaluating
poisoning attacks against feature-extraction based systems, and
compare them to CNNS, on a traffic sign classification dataset. Our
findings show that feature-extraction based ML systems require
higher poisoning percentages to achieve similar backdoor success,
and also need a consistent (static) backdoor position to work.
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1 INTRODUCTION AND RELATED WORK

Robustness and security in Machine Learning (ML) is critical due to
the rapid growth and increased deployment of Machine Learning
applications in real-life. Attacks can often be categorised to address
the confidentiality, integrity, or availability, and performed either
during the training or prediction phase of the process[2]. Research
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on attacks and defences primarily focused on deep learning. For
example, [3] has shown that only small percentages of poisoned
data are needed to embed backdoors successfully into Convolutional
Neural Networks (CNNs), and thus attack its integrity or availability.
Poisoned data contains a specific pattern added to inputs, such as a
pixel combination superimposed on an image — a certain type of
sunglasses on a face, or stickers on traffic signs. These are used in
combination with purposefully labelling the samples wrongly, so
that the model learns a wrong association. This backdoor can then
be exploited to manipulate the prediction of ML based systems, e.g.
to be recognised as a specific person when wearing the sunglasses.
This is an imminent threat, due to the growing popularity of ML-
based systems, e.g. in self-driving vehicles, or face recognition.

One assumption as to why poisoning attacks on CNNs are suc-
cessful is that CNNs tend to overfit, and thus easily memorise the
pattern and its intended association to a specific class. While it has
been shown that the shape and colour of the patterns play a role in
the success rate of the attack (e.g. [6]), in general, these attacks are
very effective against CNNGs.

The vulnerability of shallow learning was investigated in [1],
where samples are manipulated to change the decision boundary of
Support Vector Machines (SVMs). However, rather little attention
has been put on the vulnerability of feature-based image classifica-
tion, coupled with shallow learning approaches such as Random
Forests or SVMs. It thus remains open whether this approach is
similarly vulnerable as CNNs, or whether feature extraction already
reduces the prominence of the backdoor pattern, and the shallow
classifiers subsequently do not learn the backdoor association.

In this paper, we thus empirically compare the success of back-
doors in feature extraction based machine learning pipelines to
deep-learning ones, on traffic sign classification. Our experiments
show that a consistent (static) position of the backdoor trigger is
vital for these approaches, contrarily to CNNs (e.g. [3]).

2 DATASET AND EXPERIMENT SETUP

For our experiments, we utilise the German Traffic Sign Recognition
Benchmark (GTSRB) [7], which consists of ~50,000 photos of 43
traffic signs types. The images are distributed very unevenly among
the classes, from ~200 to more than 2,000 samples per class. The
signs differ in size and aspect ratio. In line with [7], which also
provides HoG features, we thus resize the images to the same 40 X
40 dimension before applying any feature extraction. Due to the
fact that we also need HoG features of the poisoned images, we did
not directly use the computed HoG features but computed them
ourselves. The best found HoG configuration used a window size of
(20, 20), block size of (10, 10), cell size of (5, 5) and signed gradients;
we use nine bins, from 0° to 160° with a step size of 20°.

The backdoor trigger is a sticker of fixed size and colour that
is placed on traffic signs; we use 0.5% and 1% of the image size
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Figure 1: Mean of metrics of all classifier/feature extraction/pattern type combinations (positioned with small variations)

as trigger size for a green colour backdoor, and also investigate a
1% sized black pattern, as in [4]. We use poisoning percentages of
1/2/5/10/33 and 50%.

Following the terminology of [3], we implemented the one-to-
one (OTO) backdoor, which focuses on backdooring one class (the
"source” class) to another (the "target" class)'. We first analysed the
semantic meaning of the traffic signs, and selected target classes
that lead to adverse effects if the misclassification actually happens.
Therefore, we evaluated among others the following one-to-one
backdoors: (i) from "speed limit" to "the highest speed limit" (120)
(ii) from "speed limit" to "end of the speed limit" (iii) from "curve
left" to "curve right" (iv) from "stop” to various other ones (speed
limit 20/50/80, deer crossing, traffic light, right of way).

3 RESULTS

For the baseline traffic sign classification task, we achieve results
comparable to the state-of-the-art: [8] reports an accuracy of 96.14%
with HoG Features and Random Forests; we obtain a slightly higher
96.18% with SVM, and a slightly lower 95.94% with Random Forests.

For the poisoning attack, we report four metrics: (i) overall accu-
racy of the classifier (ii) recall of the source class (iii) precision in
the target class (iv) success rate of the backdoor (i.e. percentage of
poisoned samples classified to their intended target class).

Figure 1 summarises the results, by providing averages from all
OTO backdoor combinations when placing the backdoor-trigger
randomly in an area around the centre of the image, with a 5%
potential shift in the exact position. All three backdoor triggers
result in barely any impact regarding our measured metrics, as
shown in Figure 1. This happens for both tested feature extraction
methods (HoG and PCA), as well as for both classifiers (SVMs and
Random Forests). In detail, we can see that the mean accuracy (left
plot) does not decrease, as it would be expected when training on
partially poisoned data. This is also confirmed when inspecting in
detail the impact on the source and target class, which would be
affected the most. For the source class recall, the decrease does not
exceed 1.5%, and similarly, the effect on the target class precision is
dropping just by 1.7% (not depicted). Most relevant for the attacker,

In contrast, an all-to-all backdoor tries to backdoor all classes at once, but due to
computational limitations, this was infeasible with the 43 classes of GTSRB

the backdoor success (right plot in Figure 1) does not even reach
2.3%. This is in contrast to reference results when attacking a CNN,
which reaches near-perfect attack success, e.g. [4, 5].

The poor results for all three backdoor triggers seem to be due to
the (semi-)random position around the centre. In combination with
the feature extraction methods and chosen classifiers, this seems to
prevent a backdoor from being embedded into the resulting model.
For CNN, it has been observed that the pattern position does not
exert a significant influence (e.g. [3]).

We thus also perform an attack with a static trigger position.
Figure 2 shows again the results, averaged over the different OTO
combinations. They confirm the assumption that the exact position
of the backdoor is relevant for our classification pipelines. Here,
the expected trend in backdoor success manifests - the success is
growing with the increase of poisoning percentage. Further, poison-
ing has also a noticeable impact on overall accuracy, and especially
on the source and target class performance, where the source class
recall and the target class precision drop more than 10% at the
highest poisoning percentage.

In detail, the mean accuracy change (cf. Figure 2a) is larger than
for the random positioned pattern — but still in line with expected
results. RFs work better than SVMs at poisoning percentages up to
33%, staying below a 0.2% drop. In terms of the feature extraction
method, there is not one that is the clearly better one. Mean source
class recall (cf. Figure 2c) drops less than 5% for up to 10% poisoning,
but exceeds this level above. At 50%, for all tried configurations of
classifier types and feature extraction method, the drop is between
11 and 17%, except for RFs using PCA, which drop more than 35%.

In case of the mean target class precision (cf. Figure 2d), we
observe that the drops correlate, but are much larger than for the
overall accuracy. All combinations, except the RFs using PCA, drop
by approximately the same amount as the source class recall, +3%.
The outlier case from the source class recall, RFs using PCA, drops
less, namely 24% in mean target class precision compared to more
than 35% drop in mean source class recall.

The mean backdoor success (top right of Figure 2) is best for
SVMs in terms of classifier type, and best for HoG features in terms
of feature representation. At 1% poisoned data, it already exceeds
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Figure 2: Mean of metrics of all classifier/feature extraction/pattern type combinations (static pattern position)

30% for SVMs using HoG features. The classifiers using the HoG
features exceed a 90% backdoor success at 50% poisoning.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated the success of poisoning attacks on
feature-based image classification systems on an image categorisa-
tion task. We found that SVM and Random Forest are also vulnerable
to these attacks when using HoG features and PCA as represen-
tation. However, triggering the backdoor behaviour is not as easy
as for CNNs. Furthermore, we found that the backdoor trigger
position is important for our experiments and must be static, i.e.
consistently placed on the same position. We believe that this is
due to the feature extraction, e.g., for HoG features, the feature vec-
tor is influenced at different positions depending on the backdoor
trigger position. Future work may evaluate whether backdoors
moving across cells of the HoG feature extraction are the issue.
To this end, also further evaluation on different datasets needs to
be performed. We will moreover investigate whether dataset and
feature-extraction dependent triggers, where the attacker tries to
optimise the change in the feature vector, i.e., gradient histograms,
work better from an attacker’s perspective. If our assumption holds,
then attacks on HoG feature extraction needs to be more sophisti-
cated than backdoor attacks on CNNs — which in turn could enable
new defences. For example, ensembles of classifiers using different

HoG feature extraction hyperparameters may further reduce the
impact of a non-100% statically placed backdoor trigger.
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