
1

DEXA 2022, LNCS 13426
This is a self-archived pre-print version of this article.
The final publication is available at Springer via
https://doi.org/10.1007/978-3-031-12423-5 10.

https://doi.org/10.1007/978-3-031-12423-5_10

Anonymisation of Heterogeneous Graphs with
Multiple Edge Types ⋆

Guillermo Alamán Requena1, Rudolf Mayer1 � , and Andreas Ekelhart1

SBA Research, Vienna, Austria {rmayer,aekelhart}@sba-research.org

Abstract. Anonymisation is a strategy often employed when sharing
and exchanging data that contains personal and sensitive information,
to avoid possible record identification or inference. Besides the actual
attributes contained within a dataset, also certain other aspects might
reveal information on the data subjects. One example of this is the struc-
ture within a graph, i.e. the connection between nodes. These might al-
low to re-identify a specific person, e.g. by knowledge of the number of
connections for some individuals within the dataset.
Thus, anonymisation of the structure is an important aspect of achieving
privacy. In this paper, we therefore present an algorithm that extends
upon the current state of the art by considering multiple types of con-
nections (relations) between nodes.

Keywords: Graph Structure Anonymisation · Multiple Relational Types

1 Introduction

The amount of data collected is ever increasing, and data represented as graphs,
e.g. social networks or processes e.g. in the knowledge work domain [5], are no
exception. Several interesting data analysis tasks utilise such graphs, which rep-
resent connections between individuals, organisations, and other entities. As this
data is highly personal, data protection becomes an important aspect. Histor-
ically, tabular data was among the first types to be addressed, with methods
such as k-anonymity or differential privacy being developed.

In graphs, besides the values within nodes, which could be treated in a
similar manner as tabular data, also the structural information encoded in
the connections (edges) is of concern. Depending on the background knowl-
edge of an attacker, it might be possible to re-identify individuals based on
this structure alone, e.g. especially those individuals that have unusual patterns
of connections [6]. Thus, recent years have also shown an increase in works
addressing structural anonymisation, such as adaptations of the concept of k-
anonymity [2,7], and combinations of node and structure anonymisation, in var-
ious types of graphs [9,1,8].

⋆ SBA Research (SBA-K1) is a COMET Centre within the framework of COMET –
Competence Centers for Excellent Technologies Programme and funded by BMK,
BMDW, and the federal state of Vienna; COMET is managed by FFG.
This work is supported by FFG under Grant No. 871299 (project KnoP-2D).

mailto:rmayer@sba-research.org
https://orcid.org/0000-0003-0424-5999
https://orcid.org/0000-0003-3682-1364
mailto:rmayer@sba-research.org

Anonymisation of Heterogeneous Graphs with Multiple Edge Types 3

In this paper, we specifically expand on previous approaches for achieving
structural anonymity for graphs with multiple types of edge connections. While
most existing works consider homogeneous graphs, i.e. with only one type (e.g.
foaf:knows), in a heterogeneous graph, nodes can be linked by varying types
of connections. Heterogeneity complicates structure anonymisation, as attacks
may take advantage of this addition information. Based on the ideas from [3],
our goal is to develop a method to anonymise heterogeneous Resource Descrip-
tion Framework (RDF)1 graphs. The idea developed in [3] is that the one-hop
neighbourhood of any resource to be anonymised should be indistinguishable
from the one-hop neighbourhood of at least k-1 other resources. For that pur-
pose, they developed a greedy heterogeneous graph modification algorithm for a
simplified RDF graph which includes only 4 types of semantic connections. How-
ever, although the general guidelines of the algorithm are stated in pseudo code,
no implementation is publicly available. Based on their approach, our contribu-
tions in this work consist of (i) an extension to the approach of [3] to increase
flexibility and usability of the anonymisation method, and (ii) an open-source
implementation in Python2.

2 k-RDF-Neighbourhood Anonymisation with Multiple
Edge Types

In this section, we describe our method and extensions of the anonymisation
method [3]. Since the focus of our method is to anonymise heterogeneous RDF
graphs, we first present the formal definition of a heterogeneous graph by [4]:

Definition 1. A heterogeneous graph is defined as a directed graph G = (V , E,
A, ∆) where each node ν ∈ V and each edge ϵ ∈ E are associated with their type
mapping functions θ(ν) : V → A and ω(ϵ) : E → ∆, respectively.

In the following, we describe our method on an example heterogeneous RDF
graph utilising FOAF3, with vertices of type foaf:Person, representing people,
edges of type foaf:knows, representing relations between individuals, and edges of
type foaf:CurrentProject, indicating projects an individual is working on. Other
edges primarily serve to describe properties, such as foaf:Age, or foaf:Name,
while custom:has disease is an example of a custom property outside the FOAF
specification. Following the procedure of [10] and [3], we will demonstrate the
anonymisation on the one-hop neighbourhood of foaf:Person resources 4.

Our method initially gets a list of connection types to consider for structure
anonymisation, all other attributes will be removed5. Edge connections in the

1 https://www.w3.org/RDF/
2 https://github.com/sbaresearch/graph-anonymisation
3 http://www.foaf-project.org/
4 Note that apart from reducing computational complexity, it is logical to target in-
dividuals, since it is the most common setting when facing an anonymisation task

5 Node value anonymisation, if necessary, is a pre-requisite step and not covered by
our structure anonymisation method

https://www.w3.org/RDF/
https://github.com/sbaresearch/graph-anonymisation
http://www.foaf-project.org/

4 Guillermo Alamán Requena , Rudolf Mayer � , and Andreas Ekelhart

one-hop-neighbourhood of any node ν of a target graph can be classified into
three different categories, depending on the type of information they describe:

– Attribute connections: edges connecting a node (e.g. foaf:Person) to a
descriptive characteristic of this individual which is stored as a Literal.

– Unidirectional connections: directed edges connecting a node to other
entities (e.g. foaf:Person to a project via foaf:CurrentProject).

– Bidirectional connections: edges symmetrically connecting nodes (e.g.
foaf:Person via foaf:knows).

Definition 2. A heterogeneous RDF graph is said to be k-anonymous if
there are at least k identical one-hop-neighbourhoods in the target graph for each
node ν ∈ N . We consider that two attributes of the one-hop-neighbourhood of a
pair of nodes x and y, are identical if they are generalised to the same level. We
consider two unidirectional connections of the one-hop-neighbourhood of a pair
of nodes x and y to be identical if they point exactly to the same resources. We
consider the bidirectional connections of the one-hop neighbourhood of a pair of
nodes x and y to be identical if their one-hop-neighbourhoods are isomorphic.

In order to fulfil the anonymisation criteria defined above, we rely on three
different algorithms (similar to [3]):

The Neighbourhood Code Extraction Algorithm compares one-hop-neighbourhoods
of target nodes (e.g. foaf:Person) across the target graph. For this purpose, we
encode the node neighbourhood information into a more efficient data structure
than the raw RDF graph. We chose a hashtable due to its low indexing complex-
ity (O(n)). Depending on the type of edge connection, the information contained
in the one-hop-neighbourhood of a node ν is stored in a different way:

– Attribute connections: the attributes of each individual are stored as key
value pairs (i.e., foaf:Age ”40”).

– Unidirectional connections: the resources to which each unidirectional
connection of an individual points to are stored in a list. The type of con-
nection is the key (i.e., foaf:CurrentProject) and the list of resources is the
value associated with it (i.e., [”Project1”, ”Project3”, ”Project7”]).

– Bidirectional connections: Multiple isomorphic tests have to be con-
ducted for each bidirectional connection. At this time, no polynomial time
algorithm for the general isomorphic problem [10] is known. In our approach,
we utilise the same string representation of the edges as proposed in [3] and
based on [10]. The main idea is to encode the information of each sub-graph
Gbidii created by considering only one type of bidirectional connection across
the one-hop-neighbourhood of a node ν, so that the one-hop-neighbourhood
of two foaf:Person nodes can be considered isomorphic in terms of that type
of bidirectional connections if the generated codes are identical in structure.
The way this encoding is constructed consists of finding the minimum depth-
first search (DFS) tree of each component and concatenating it in a list where
all these minimum trees are stored. We simplify the search of the minimum

mailto:rmayer@sba-research.org
https://orcid.org/0000-0003-0424-5999
https://orcid.org/0000-0003-3682-1364

Anonymisation of Heterogeneous Graphs with Multiple Edge Types 5

DFS tree by dynamically discarding candidate paths. In the worst case sce-
nario in which all the DFS trees in the subgraph fulfil the criteria, one of the
paths is taken randomly and the encoding algorithm becomes O(n!) which is
the same complexity as the original algorithm proposed by [3]. Following the
guidelines of [3], we call the dictionary encoding the one-hop-neighbourhood
of a node ν the Full Neighbourhood Code of ν (FNHCv).

Dissimilarity Computation Algorithm To compute the dissimilarity between each
of the nodes, we use the information stored in the Full Neighbourhood Code
hashtable. The dissimilarity between the one-hop-neighbourhood of two nodes
x and y is the weighted sum of the dissimilarity of each connection in that
neighbourhood:

sim(FNHCx, FNHCy) =

N∑
i=0

αi ∗ simi(FNHCxi
, FNHCyi

) (1)

where N is the set of connection types present in the one-hop-neighbourhood,
αi is the weight of the dissimilarity of attribute i (simi) to the total dissimilarity
between the nodes x and y. There are three types of dissimilarity functions, one
for each type of edge connection described above:

– Dissimilarity of attribute connections is the normalised distance of
two attributes xi and yi given a defined hierarchy tree. It ranges between 0
(identical) and 1 (reached highest level of hierarchy).

– Dissimilarity of unidirectional connections between two nodes x and
y, given a set of Literals to which they point, is defined as the number
of connections of that type to be deleted so that two nodes x and y are
connected to exactly the same Literals or resources.

– Dissimilarity of bidirectional connections between a node x and an-
other node y, given the one-hop-neighbourhood, is determined by the amount
of edges one needs to delete so that one-hop-neighbourhoods of both nodes
are identical (isomorphic).

To compute the complete dissimilarity between two nodes x and y, one needs
to calculate the similarity of each of the connections using the corresponding
methods explained above and apply the weighted sum provided in Equation (1).

The Graph Modification Algorithm is also based on the ideas presented by [3]
with some modifications to improve scalability. The main goal of this algorithm
is to transform the one-hop-neighbourhood of a group of k given nodes, so that
the anonymisation criteria is fulfilled for all of them. We refer to this group of
nodes as anonymised neighbourhoods or equivalent classes.

– For the generalisation of attribute connections, the attributes of each
of the k nodes are generalised to the lowest level’s possible common value in
the hierarchy tree provided.

6 Guillermo Alamán Requena , Rudolf Mayer � , and Andreas Ekelhart

– When generalising unidirectional connections, one should remove the
necessary edges, so that each of the k nodes are connected exactly to the
same Literals and resources via those unidirectional connections. We follow
the idea of only deleting edges to avoid introducing false information (added
edges) in the graph. In addition, as pointed out by [3], the approach of delet-
ing edges fits with the open world assumption which suggests that missing
statements can also be true.

– The generalisation of bidirectional connections is the most complex
one. As for unidirectional connections, it relies on the same type of calcula-
tions used when computing dissimilarity. That means, for each node in the
neighbourhood of size k, one should delete all the necessary edges so that
the one-hop-neighbourhood of each of them is isomorphic in terms of each
of the bidirectional connections. With our method, it is enough to take one
of the nodes as reference and perform a pairwise comparisons to every other
node twice (double-pass). At every comparison, the one-hop-neighbourhood
of the reference node and the other node under comparison are updated via
edge deletion so that they are isomorphic. The idea is that after the first
pass, the reference one-hop-neighbourhood takes the minimum isomorphic
representation and in the second round, this structure is acquired by all the
other nodes.

We would like to point out two of the major challenges that arise when
anonymising bidirectional connections. First, when deleting edges during the de-
scribed double pass, the edges of other one-hop-neighbourhoods may be affected
as well, and this can lead to more edge deletions than necessary and hence,
additional information loss. To avoid this issue, we only store which edges to
delete during the double pass, but they are only deleted when the algorithm has
finished. Edge deletion may still cause some additional edges to be deleted in the
neighbourhood, and therefore, they might not be isomorphic anymore. However,
since the calculation of which edges to delete ensures that they are actually iso-
morphic in the first place, deleting additional edges of the structure of each of
the one-hop-neighbourhoods does not reveal any additional information, and we
can still consider them isomorphic in terms of the anonymisation goal.

Secondly, deleting edges may affect the one-hop-neighbourhood of other nodes
that are not in the same neighbourhood as the k target nodes: (i) The one-hop-
neighbourhood of non-anonymised nodes is affected – then, one needs to simply
update the one-hop-neighbourhood or (ii) this affects the one-hop-neighbourhood
of anonymised nodes, then this is the exact same situation as in 1).

Due to these improvements, our method is able to deal with larger graphs
than the earlier approach by [3]. Furthermore, the consideration of the outlined
challenges leads to reduced information loss.

3 Conclusions

Anonymisation of graph data differs from relational data as also the structure
of graphs can be utilize by an attacker to perform e.g. a re-identification attack.

mailto:rmayer@sba-research.org
https://orcid.org/0000-0003-0424-5999
https://orcid.org/0000-0003-3682-1364

Anonymisation of Heterogeneous Graphs with Multiple Edge Types 7

In this paper, we have thus presented an algorithm for anonymising the
structure of graphs. We extended previous work by allowing on the one hand
heterogeneous graph structures with multiple types of edges, and on the other
hand also scaled up the algorithm.

Future work will focus on evaluating our approach in diverse settings against
benchmark datasets, and measure the effect of the anonymisation on utility.

References

1. Campan, A., Truta, T.M.: Data and Structural k-Anonymity in Social Networks.
In: Privacy, Security, and Trust in KDD. vol. 5456, pp. 33–54. Springer Berlin
Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01718-
6 4

2. Feder, T., Nabar, S.U., Terzi, E.: Anonymizing Graphs (Oct 2008), arXiv:0810.5578
3. Heitmann, B., Hermsen, F., Decker, Stefan: k - RDF-Neighbourhood Anonymity:

Combining Structural and Attribute-based Anonymisation for Linked Data. In:
Workshop on Society, Privacy and the Semantic Web - Policy and Technol-
ogy (PrivOn). Vienna, Austria (2017), http://ceur-ws.org/Vol-1951/PrivOn2017
paper 3.pdf

4. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous Graph Transformer. In: The
Web Conference 2020. pp. 2704–2710. WWW, ACM, Taipei Taiwan (Apr 2020).
https://doi.org/10.1145/3366423.3380027

5. Hübscher, G., Geist, V., Auer, D., Ekelhart, A., Mayer, R., Nadschläger, S.,
Küng, J.: Graph-based managing and mining of processes and data in the do-
main of intellectual property. Information Systems 106, 101844 (May 2022).
https://doi.org/10.1016/j.is.2021.101844

6. Ji, S., Mittal, P., Beyah, R.: Graph Data Anonymization, De-
Anonymization Attacks, and De-Anonymizability Quantification: A Sur-
vey. IEEE Communications Surveys & Tutorials 19(2), 1305–1326 (2017).
https://doi.org/10.1109/COMST.2016.2633620

7. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: ACM SIGMOD
international conference on Management of data. p. 93. SIGMOD, ACM Press,
Vancouver, Canada (2008). https://doi.org/10.1145/1376616.1376629

8. Mohapatra, D., Patra, M.R.: Anonymization of attributed social graph using
anatomy based clustering. Multimedia Tools and Applications 78(18), 25455–25486
(Sep 2019). https://doi.org/10.1007/s11042-019-07745-4

9. Zheleva, E., Getoor, L.: Preserving the Privacy of Sensitive Relationships in Graph
Data. In: Privacy, Security, and Trust in KDD. pp. 153–171. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78478-4 9

10. Zhou, B., Pei, J.: Preserving Privacy in Social Networks Against Neighborhood
Attacks. In: International Conference on Data Engineering. pp. 506–515. ICDE,
IEEE, Cancun, Mexico (Apr 2008). https://doi.org/10.1109/ICDE.2008.4497459

https://doi.org/10.1007/978-3-642-01718-6_4
https://doi.org/10.1007/978-3-642-01718-6_4
http://ceur-ws.org/Vol-1951/PrivOn2017_paper_3.pdf
http://ceur-ws.org/Vol-1951/PrivOn2017_paper_3.pdf
https://doi.org/10.1145/3366423.3380027
https://doi.org/10.1016/j.is.2021.101844
https://doi.org/10.1109/COMST.2016.2633620
https://doi.org/10.1145/1376616.1376629
https://doi.org/10.1007/s11042-019-07745-4
https://doi.org/10.1007/978-3-540-78478-4_9
https://doi.org/10.1109/ICDE.2008.4497459

	 Anonymisation of Heterogeneous Graphs with Multiple Edge Types

