
IEEE Big Data 2022
This is a self-archived pre-print version of this article.
The final publication is available at IEEE via
http://dx.doi.org/10.1109/BigData55660.2022.10020936.

http://dx.doi.org/10.1109/BigData55660.2022.10020936

Efficient Bayesian Network Construction
for Increased Privacy on Synthetic Data
Markus Hittmeir

SBA Research, Vienna, Austria
mhittmeir@sba-research.org

Rudolf Mayer
SBA Research, Vienna, Austria

rmayer@sba-research.org

Andreas Ekelhart
SBA Research, Vienna, Austria

aekelhart@sba-research.org

Abstract—The use of synthetic data is a widely acknowledged
privacy-preserving measure that reduces identity and attribute
disclosure risks in micro-data. The idea is to learn the statistical
properties of an original dataset, store this information in a
model, and then use this model to generate artificial samples
and build a synthetic dataset that resembles the original. One of
the many different approaches of synthetization tools relies on
describing the original dataset by using a Bayesian network. This
method is implemented in the open-source tool DataSynthesizer
and has proven particularly suitable for datasets with a small to
moderate number of attributes. In this paper, we will substitute
the greedy algorithm used for learning the Bayesian network
by a substantially faster genetic algorithm. In addition, our
goal is to protect particularly sensitive attributes by decreasing
specific correlations in the synthetic data that may reveal personal
information. We will thus show how to customize the network
structures for specific machine learning tasks. Our experiments
demonstrate that this technique allows to further decrease the
disclosure risks and, hence, add to the applicability of synthetic
data as technique for privacy preservation.

Index Terms—Synthetic Data, Machine Learning, Genetic
Algorithms, Privacy, Disclosure Control

I. INTRODUCTION

Micro-data, i.e. data that contains information about individ-
uals, is collected in domains such as health care, employment,
or social media. Advances in data analysis and an increasing
interest in accessing and mining micro-data constitute a threat
to the privacy of the affected individuals. Several regula-
tions, such as the EU’s General Directive on Data Protection
(GDPR), put restrictions on how data can be collected and
shared. Traditional approaches to comply with data protection
and privacy aspects often include anonymization of data before
publishing or processing, such as in the approaches of k-
anonymity [1] or differential privacy [2].

An increasingly well-studied addition to traditional privacy-
preserving techniques is the generation of synthetic data. Here,
the idea is to learn the global properties of an original dataset
(that cannot easily be shared), and generate a synthetic dataset
thereof. The aim is to preserve the distributions and correla-
tions between the attributes while simultaneously avoiding to
reveal the individuals described by the data. The synthetic data

This work was partially funded by the Austrian Research Promotion Agency
FFG under grant 877173 (GASTRIC). SBA Research (SBA-K1) is a COMET
Centre within the framework of COMET – Competence Centers for Excel-
lent Technologies Programme and funded by BMK, BMDW, and the federal
state of Vienna. The COMET Programme is managed by FFG.
978-1-6654-8045-1/22/$31.00 ©2022 IEEE

can then be shared with considerably reduced privacy risks and
holds the promise to allow data analysis with similar results.
One of the earliest usages of synthetic data was in the partial
synthetic data approach by Rubin [3], where certain columns
are generated synthetically. An overview on more than 20 fully
and partially synthetic data approaches is given in [4].

In this paper, we will focus on fully synthetic data, meaning
that all columns of the original dataset are synthesized. Nowa-
days, there is a large variety of commercial and open-source
tools (e.g., [5], [6], [7]). The different approaches include
fitting Gaussian Copulas or training Generative Adversarial
Networks (GANs). Another possibility is the construction of
Bayesian networks, which is used in the DataSynthesizer (DS)
([5])1. This approach is based on the earlier work PrivBayes
[8] for learning the correlations between attributes on the
original dataset. A greedy algorithm is employed to construct a
Bayesian network as part of the description of the global prop-
erties of the original dataset. While the approach has shown a
high suitability for small to medium-sized datasets, the runtime
complexity of the greedy algorithm increases drastically with
the dimensions of the dataset. The first contribution of this
paper is thus an efficient implementation suited for Big Data,
with the substitution of the greedy algorithm by a genetic
algorithm2. Our experiments in Section V-A show that our
adaptation yields a substantial improvement in efficiency.

In the case of micro-data, two risks of disclosure of sensitive
information are widely considered. Identity disclosure happens
when an adversary is able to conclude that a certain record
in the dataset belongs to a certain individual. Due to the
nature of fully synthetic data generation approaches, there
is no 1-to-1 link between real individuals and synthetic data
samples. As a result, identity disclosure in the defined sense is
not possible. Previous publications about privacy risks on fully
synthetic data ([9], [10]) have thus focused on the notion of
attribute disclosure, which refers to the risk that, on structured
tabular datasets, an adversary might learn the victim’s value
of a sensitive attribute. It has been concluded that attribute
disclosure can happen without identity disclosure, and that
there remains a risk for attribute disclosure on synthetic data.
While the original implementation of the DataSynthesizer al-
lows to construct differentially private synthetic data, previous

1Source code: https://github.com/DataResponsibly/DataSynthesizer
2Implementation: https://github.com/sbaresearch/EnhancedDataSynthesizer

https://github.com/DataResponsibly/DataSynthesizer
https://github.com/sbaresearch/EnhancedDataSynthesizer

evaluations ([11], [12], [13]) have shown a noticeable drop in
the utility when differential privacy is enabled compared to the
performance when it is disabled. The second contribution of
this paper is thus a novel approach for decreasing disclosure
risk, namely customized Bayesian networks. The main idea
is to conceal particular correlations in the synthetic data to
prevent the adversary from learning reliable information about
sensitive attributes. Our experiments demonstrate that this can
be achieved without a substantial loss in utility of the data for
machine learning. As a result, customized Bayesian networks
may be a suitable addition to the toolkit of measures for
statistical disclosure control.

The remainder of this paper is structured as follows: Sec-
tion II contains a more detailed discussion of the related work.
In Section III, we present our genetic algorithm for the con-
struction of Bayesian networks. Section IV describes our idea
for reducing attribute disclosure risks via customized Bayesian
networks. Our experiments can be found in Section V, and
Section VI contains conclusions and discusses future work.

II. RELATED WORK

The process of data synthetization generally consists of two
steps: (1) Learn the properties of the original dataset, i.e. the
distribution of its attributes and the correlations between them,
and store them in a model. (2) Use the model to generate
synthetic samples, e.g. by drawing random values from the
learned distributions. The first step is commonly referred to
as ‘data description’, while the second step is referred to as
‘data generation’.

In this paper, we are particularly interested in using
Bayesian networks [14] for describing correlations between
attributes of the original dataset. A Bayesian network on a
dataset D is a directed, acyclic graph that compactly describes
the high dimensional probability distributions on the input
data. The attributes are represented as nodes in the graph,
and a conditional dependence between any two attributes is
represented as an edge between the respective nodes. The
construction of a Bayesian network that best describes the
dependencies on the input data is a difficult task and has been
shown to be NP-complete [15]. In [8], a greedy algorithm
(GreedyBayes) has been presented that is also used in the
DataSynthesizer [5]. While the returned networks may be used
to generate synthetic data with high utility, the procedure
is still too slow for datasets with higher dimensions. As
our first contribution, we solve this task efficiently using a
genetic algorithm [16]. In general, genetic algorithms solve
an optimization problem by representing the search space
by a number of individuals (the “population”) that represent
possible solutions. Each individual is represented by so-called
“chromosomes” that reflect its properties. The best individuals
(with regard to some fitness function) are selected as parents
for the next generation, which is obtained by applying certain
changes (the “crossovers” and “mutations”) to the chromo-
somes. It has been shown that genetic algorithms can be used
to construct Bayesian networks (e.g., [17], [18]). Section III
contains a complete description of our own algorithm.

The second contribution of this paper is related to decreas-
ing disclosure risks on synthetic data; as discussed above, we
focus on attribute disclosure risks. The concept of Correct
Attribution Probability (CAP) has been introduced in [19] and
elaborated on in [9] and [10], where it has been generalized to
GCAP. For assessing attribute disclosure risk, GCAP assumes
that the attacker knows the values of a set of attributes (the
‘quasi-identifiers’, forming a specific ‘key’) of an individual in
the original dataset, and wants to learn the respective value of
some sensitive attribute. Such a scenario has also been studied
in [20] (although, based on another definition, the authors
speak of identity instead of attribute disclosure). Consider a
dataset consisting of micro-data with n records representing
individuals and a number of attributes. For j ∈ {1, . . . , n}, let
KO,j be the vector representing the values of the key attributes
of the j-th record in the original dataset O, and let TO,j be
the corresponding value of the sensitive attribute. Similarly, we
define KS,j and TS,j for the synthetic dataset S. The basic idea
is that the attacker is assumed to search for all records in S that
match the key attribute values known by them. We call this
subset of data points the equivalence class of KO,j in S. Inside
this class, they then calculate the distribution of the occurring
values of the sensitive attribute. GCAPS,j then corresponds
to the proportion of the actual sensitive value TO,j in this
equivalence class. In this sense, GCAPS,j measures the risk of
disclosure of this information about the individual represented
by the j-th record in the original data. The difference between
GCAP and the original notion CAP is the handling of cases
where the vector KO,j does not occur in the synthetic dataset.
While the original notion is undefined, GCAP then considers
vectors KS,j that match at least some of the values of the
known key.

For a distance metric3 ∆, the GCAP score for record j in
the original dataset is the empirical probability of its sensitive
value given its key attribute values, that is

GCAPS,j :=

∑n
i=1[TS,i = TO,j ∧∆(KS,i,KO,j) = ρ]∑n

i=1[∆(KS,i,KO,j) = ρ]
(1)

where ρ := min {r | ∃i ∈ {1, . . . , n} : ∆(KS,i,KO,j) = r}
and [·] is the Iverson bracket. The purpose of ρ is to check
for records in the synthetic dataset that match at least some
values of KO,j in cases where no complete match exists.4

A central idea of [10] is to consider the situation of
the attacker as classification problem. Given the synthetic
dataset and some background knowledge in form of values
of key attributes of an individual in the original data, obtain
a prediction for said individual’s sensitive attribute. Using
majority voting, the GCAP approach may be turned into a
classifier that is closely related to the fixed-radius nearest
neighbor algorithm, and the average score of GCAPS,j over
all individuals j yields its accuracy. In our experiments in
Section V, we will use GCAP together with a number of other
classification algorithms to evaluate the attribute disclosure
risk on the considered synthetic datasets.

3For categorical data, we can use the Hamming distance.
4The original notion CAP is equal to GCAP with fixed ρ = 0.

Finally, it is worth noting that the attacker model of GCAP
is closely related to that of traditional privacy concepts such
as k-anonymity and l-diversity (see [1], [21]). A dataset has
the k-anonymity property if, for every combination of quasi-
identifiers occurring in the data, the corresponding equivalence
class consists of at least k elements. A dataset has the l-
diversity property if, in every equivalence class, the sensitive
variable takes on at least l distinct values. The techniques
related to these notions try to reduce an attacker’s abilities
to deduce the value of a sensitive attribute on the original
dataset. In Section IV, we will present an approach to do the
same on a synthetic dataset.

III. A GENETIC ALGORITHM FOR BAYESIAN NETWORKS

In the original implementation of PrivBayes [8] and subse-
quently also the DataSynthesizer [5], a greedy algorithm is em-
ployed to learn a Bayesian network on the input dataset. First,
a random attribute f1 is chosen as root of the network. The
next attribute f2 is chosen based on the goal of maximizing the
mutual information between f1 and f2. We then keep adding
attributes to the network in this manner, always considering all
possible combinations of already added attributes as parents in
order to maximize mutual information. The preset parameter k
defines the maximum number of parents for each node. Thus,
the number of possible parent combinations for attribute fi we
have to consider is given by the binomial coefficient

(
i−1
k

)
.

Summing over all iterations i and possible choices for fi in
each of them, the total number of considered combinations
may be bounded by d

(
d+1
k+1

)
, where d is the number of

attributes in the dataset. In addition, the number of samples
influences the computational cost for computing mutual infor-
mation between child nodes and the joint distribution of its
parents. For increasing k or large dimensions of the dataset,
the computational cost thus quickly becomes substantial. In
Section II, we discussed the difficulty of constructing high
quality Bayesian networks on datasets with a large number of
attributes. If the input dataset has hundreds to thousands of
attributes, it may make more sense to use other synthesizers
with different approaches, e.g. the Synthetic Data Vault [6]. On
the other hand, the DataSynthesizer with its Bayesian network
approach has performed almost always better in evaluations on
datasets with a small to moderate number of attributes ([11],
[12]). To improve the efficiency of the data description step
on high-dimensional datasets, we consider an alternative to the
greedy approach in the form of a genetic algorithm.

The individuals of our population each correspond to a pos-
sible Bayesian network. We will measure the utility of these
networks by focusing on pairwise mutual information, and
select the best members of each generation for the application
of crossovers and mutations. In previous publications on using
genetic algorithms for the construction of Bayesian networks
(e.g., [18]), it has been demonstrated that the performance can
be improved by representing each individual of the population
by two chromosomes, the “ordering” and the “connectivity”
chromosome. The ordering chromosome encodes the order by
which the attributes of the dataset are added to the Bayesian

network. The connectivity chromosome encodes the parent
nodes for each of these attributes. In [18], the connectivity
chromosome is a binary-coded upper triangular matrix. One of
the main problems is that only those nodes can be selected as
parents of a certain attribute that appear prior to said attribute
in the ordering chromosome. Therefore, after applying muta-
tions and crossovers to the ordering chromosome, the authors
also changed the connectivity chromosome accordingly to
make sure that the individual still represents a valid Bayesian
network structure.

While we will use the same dual chromosome approach as
discussed above, the main difference between our algorithm
and the method in [18] is that our connectivity chromosome is
not a binary-encoded matrix, but a list of sets of the selected
parents for each attribute. In our experiments in Section V,
we will see that this straight-forward approach is well-suited
for the synthetization of the considered datasets. Compared
to the performance of the greedy algorithm, it constitutes a
substantial improvement in efficiency.

Again, let k be the maximum number of parents for each
node in the network. The genome of each individual consists
of the following two chromosomes:

• The ordering chromosome O: A permutation of the
attributes f1, . . . , fd of the input dataset

• The connectivity chromosome C: A list of d sets, where
the i-th set corresponds to the attribute fi. Each set
contains exactly k attributes and represents the possible
parents of fi in the network.

We point out that, in contrast to [18], the connectivity
chromosome and the ordering chromosome are notationally
independent. The i-th set in the connectivity chromosome
always refers to fi, no matter the place of fi in the ordering
chromosome. In addition, our algorithm has four parameters:

• The population size P : The number of individuals in each
generation, set to 200 by default

• The selection pressure S: The number of individuals with
the highest fitness that are selected for creating the next
generation, set to 10 by default

• The mutation rate r: A number in [0, 1], set to 1/d by
default

• The iterations e: The number of overall generations
We then run the procedure Initialization to initialize the

first generation of P individuals.
The next step is to evaluate the individuals and rank

them based on the suitability of the corresponding Bayesian
network. We determine the fitness of each individual by
computing the total sum of all pairwise mutual information
scores5 of all nodes and their valid parents in the network6.
The most efficient way to determine these sums during the
procedure is to precompute the pairwise mutual information

5We used sklearn’s function “mutual info score” (https://scikit-learn.org/
stable/modules/generated/sklearn.metrics.mutual info score.html)

6In the conversion of the chromosomes to a Bayesian network, we have to
make sure that we obtain a valid network structure. If an attribute in Cj does
not precede fj in O, we simply ignore it and do not add it as parent of fj .

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html

Initialization
1: for individual i from 1 to P do
2: Generate a random permutation O of f1, . . . , fd
3: Let O be the ordering chromosome of individual i
4: for j = 1, . . . , d do
5: Let F be the set of attributes that appear prior to

fj in O
6: If |F | ≥ k, let Cj be a set of k distinct random

elements of F
7: If |F | < k, let Cj contain all elements of F and

k − |F | distinct random attributes not in F

8: Let C = [C1, . . . , Cd] be the connectivity chromo-
some of individual i

9: Save the individual i = (O, C)

scores for all possible pairs of attributes and store them.7

Subsequently, we find the S individuals with the highest fitness
and apply the following mutation and crossover operations to
them. We first consider the operation for the crossover between
two distinct individuals i1 = (O1, C1) and i2 = (O2, C2).

Crossover(i1, i2)

1: Generate a random integer j in [0, d]
2: Return i = (O1, C), where C contains the first j sets of
C1 and the last d− j sets of C2

In contrast to [18], our crossover operation mostly concerns
the connectivity chromosome and not the ordering chromo-
somes O1 and O2. We found it sufficient to reach a suitable
ordering of the attributes by standard mutations. Hence, our
first mutation is a flip in the permutation of the ordering
chromosome O of an individual i = (O, C).

Order Flip(i)
1: for f in O do
2: Generate a random number x in [0, 1]
3: if x < r then
4: Generate a random integer j in [1, d]
5: Flip f with fj in O
6: Return i with updated ordering chromosome O

The second mutation is applied to the elements of the
sets in the connectivity chromosome C = [C1, . . . , Cd] of an
individual i = (O, C). It will be the last operation applied after
Crossover and Order Flip in the construction of elements of
the following generation. Besides the standard random swaps
of elements in the list of parents of each node (see Steps 7
to 12 in Swap), we will also repair possible invalid network
structures that may have resulted from changes to the ordering
chromosome. In the Steps 2 to 6, we swap elements in the sets
of parents that do not precede the corresponding attribute in
O against random elements that do.

7The precomputation of these scores is the only part where our technique
interacts with the input dataset.

Swap(i)
1: for j = 1, . . . , d do
2: Let G be the set of attributes in Cj that appear later

than fj in O
3: for g in G do
4: Let F be the set of attributes that appear prior to

fj in O and are not already in Cj

5: if F ̸= ∅ then
6: Swap g with a random element in F

7: for c in Cj do
8: Generate a random number x in [0, 1]
9: if x < r then

10: Let F be the set of attributes that appear prior
to fj in O and are not already in Cj

11: if F ̸= ∅ then
12: Swap c with a random element in F

13: Return i with updated connectivity chromosome C

In order to create the next generations G of P individuals,
we perform the procedure Next Generation, where we start
by adding the S individuals with the highest fitness from
the previous generation to G without altering them (often
called “elitism”). After completion of the procedure, we again

Next Generation
1: Let E be the set of the S fittest individuals from the

previous generation, and let G = E .
2: while |G| < P do
3: Choose a random individual i in E
4: Generate a random number x in [0, 1]
5: if x < r then
6: Choose a random individual i′ in E
7: i←Crossover(i, i′)
8: i←Order Flip(i)
9: i←Swap(i)

10: Add i to G

evaluate and rank the individuals in G to find the S fittest
ones for obtaining the next generation. We repeat this process e
times. In the last generation, we choose the best network (with
the highest fitness) as the output. The results of comparing this
algorithm to the greedy approach are presented in Section V-A.

IV. CUSTOM BAYESIAN NETWORKS FOR SPECIFIC TASKS

While the main purpose of the method presented in Sec-
tion III is to improve the efficiency of synthetization based on
Bayesian networks, our second contribution is an adaptation
to further reduce the privacy risk on synthetic data. Data
synthesizers are often intended to generate datasets for general
purposes, and do not assume a particular order or quality of
attributes. For this reason, they deal with them in an arbitrary
or random order. As an example, the original algorithm of
PrivBayes, as implemented in the DataSynthesizer, builds the

(a) Original data (b) DS with genetic algorithm (c) Custom DS with genetic algorithm

Fig. 1: Heatmaps showing the Pearson correlation coefficients on Adult Census. In Figure 1c, the sensitive attribute is ‘relationship’ (rel) and
the target attribute is ‘income’ (inc). The correlations between ‘relationship’ and other attributes besides ‘income’ are considerably decreased.

model by taking a random attribute as root of a Bayesian
network and adding parents in a greedy manner to maximize
mutual information. In contrast to the concept of k-anonymity
and the identification of quasi-identifiers, data synthesizers
usually do not require any information about the attributes,
their privacy implications and their relation to each other.

Imagine a table with a column consisting of the target
attribute of a particular machine learning task, and various
other columns for the predictors (i.e., input variables to the
model), including potentially sensitive data. If we know which
attributes are more sensitive before employing data synthetiza-
tion, we may modify the procedure to optimize the generation
of synthetic data. The goal is to provide a method for keeping
the utility of the data for the training of classifiers as high
as possible, while simultaneously reducing the disclosure risk
(e.g. GCAP, cf. Section II) of particularly sensitive attributes
among the predictors. The proposed approach consists of two
steps. The first step is to divide the attributes into three
subsets: the nonsensitive predictors, a sensitive predictor and
the target attribute. In the second step, we use the synthesizer
to generate synthetic records respecting certain restrictions
for the groups of attributes. The sensitive attribute should
be sampled based on its own distribution and the conditional
probabilities to the target attribute. In the group of nonsensitive
predictors (to which the quasi-identifiers belong), we may
take all correlations into account except those to the sensitive
attribute. Finally, the target attribute may be sampled without
any restrictions. By doing so, we pursue two goals. First, we
want to detach the sensitive attribute from the nonsensitive
attributes by generating it without the corresponding corre-
lations. Second, we want to keep the dependency between
the sensitive and the target attribute such that the relation
between them can still be learned and analyzed. The key
for achieving these goals is to find the right structure of the
Bayesian network used for the data generation step. We start
by adding the target attribute as root to the network, and adding
the sensitive attribute as the second node. As a result, the target
attribute will be the only parent node of the sensitive attribute.
Subsequently, we add all other attributes (i.e., nonsensitive

Fig. 2: Proposed custom Bayesian network structure

predictors) in the usual manner to the network, with one
important restriction: the sensitive attribute is not allowed as
parent for any of these other attributes. We thereby simulate
a conditional independence between the sensitive and other
predictors. The general structure of the resulting network is
displayed in Figure 2.

We may easily modify the genetic algorithm introduced in
Section III to achieve this behavior8. We just fix the target
attribute as the first and the sensitive attribute as the second
component in the ordering chromosome O. In addition, we add
a restriction that the sensitive attribute is not a permissible
parent to any of the nonsensitive attributes, similar to the
restriction we already have for attributes that appear later in
the ordering chromosome. Besides that, we run the genetic
algorithm as explained. The resulting network then looks like
discussed above. In order to get a better understanding of the
consequences, let us take a look at Figure 1, which shows pair-
wise correlation coefficients for the attributes from the Adult
Census dataset (one of the datasets used in our experiments,
see Table I). Figure 1b shows the correlation coefficients of
the synthetic dataset without any custom modifications. One
observes that the heatmap looks very similar to Figure 1a,
which shows the correlations on the original data. We then
generated synthetic data based on a custom Bayesian network
with the target attribute ‘income’ and the sensitive attribute

8Similar modifications may be applied to the original (greedy) implemen-
tation of the DataSynthesizer.

‘relationship’. The resulting heatmap is shown in Figure 1c. It
again looks similar to the original, but all correlations between
‘relationship’ and the nonsensitive predictors are consider-
ably decreased. Simultaneously, the negative correlation to
‘income’ is preserved, as we desired.

In our experiment in Section V-B, we evaluate both the
resulting decrease in privacy risks, as well as the influence on
the utility of the data for machine learning.

V. EVALUATION

Section V-A presents the results on comparing the runtime
complexity between the genetic and the greedy algorithm
for constructing Bayesian networks, which was introduced
in Section III. We also consider the utility of the networks
resulting from both techniques, measured by the effectiveness
of machine learning classifiers. Section V-B evaluates the
custom Bayesian networks described in Section IV.

TABLE I: Dataset Characteristics

Dataset # Features # Instances # Classes

Contraceptive Method Choice9 9 1,437 3
Adult10 (Census Income11) 15 48,842 2
Credit Card Fraud12 31 284,807 2

We conduct our experiments on three publicly available
datasets. To study and compare the scalability of the ap-
proaches for constructing Bayesian networks in Section V-A,
we selected datasets of different sizes and dimensions. In
addition, we will use the classification tasks on the three
datasets for our utility assessments in both Sections V-A
and V-B. We apply five machine learning algorithms, namely
Naı̈ve Bayes, Support Vector Machines, k-Nearest Neighbors,
Random Forests and Logistic Regression. All classifiers are
implemented in the Python sklearn package13, and we used
standard parameters. Our goal was not to reach maximum per-
formance for the considered tasks, but to achieve comparability
between models trained on original data and models trained
on synthetic data.

A. Genetic and Greedy Algorithm for Bayesian Networks

Let us now consider the performance of the two approaches
for constructing Bayesian networks, and how they affect the
utility of the resulting synthetic dataset for machine learning.
For each dataset in Table I and fixed choices of the Bayesian
network degree k ∈ {1, 2, 3, 4} (maximum number of parents
of each node), we performed the following procedure:

1) We deleted particular columns (as part of standard
feature cleaning), and generated a random split of the
dataset into training (80%) and test data (20%). For the
Adult Census dataset, we used the pre-defined split.

9https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
10https://archive.ics.uci.edu/ml/datasets/Adult
11https://archive.ics.uci.edu/ml/datasets/census+income
12https://www.kaggle.com/mlg-ulb/creditcardfraud
13https://scikit-learn.org/stable

2) We applied the original implementation (greedy algo-
rithm) and our adaptation (genetic algorithm14) of the
DataSynthesizer15 to the original training dataset to
generate synthetic training data.

3) On all training datasets and the test dataset, we applied
label encoding and, if necessary, one-hot encoding. We
then used sklearn’s StandardScaler for feature scaling.

4) We fitted the machine learning models to the training
datasets and predicted the results on the test dataset.

We first compare the runtimes16 of generating the Bayesian
networks in Step 2. For each dataset, we show a table with
the runtime (in seconds) of both the data description and the
data generation step. In addition, the results are visualized in
a bar chart, where the light-colored part of the bars represents
the data description and the dark-colored part represents the
data generation step.

Let us start by considering the Contraceptive Method Choice
dataset (Table II). Despite the fact that the dimensions of this
dataset are comparably small, we already observe a substan-
tially improved efficiency of the genetic algorithm compared
to the greedy algorithm. Interestingly, the application of the
technique in Section III does not only improve the runtime
of the data description step (where the Bayesian network is
created), but also of the data generation step of the synthesizer.
These differences are even more pronounced for the Adult
Census dataset (Table III). The structure of the Bayesian
network seems to have a profound influence on the runtime
of data generation.17 In general, however, the complexity of
this part of the procedure grows exponentially with regards
to the values of k. For k = 4, the data generation step is
much more expensive than the data description step for both
methods. The Credit Card Fraud dataset (Table IV) with its
31 attributes and almost 300,000 samples is the largest of the
considered datasets and allows us to evaluate the scalability
of both approaches to larger instances. On this dataset, we
may thus observe the largest differences between the methods.
Due to time issues in the computation of the case k = 4, we
have only considered the values k = 1, 2, 3. Considering the
case k = 3, the genetic algorithm constructs the Bayesian
network in less than 10 minutes, while the greedy algorithm
takes almost 12 hours. Still, the data generation step takes
almost 1.5 hours for both methods.

To summarize, the genetic algorithm appears to perform
well for increasing data dimensions. In particular, it shows
only a linear increase in the runtime complexity of the data

14We applied it with the standard choices of the parameters P, S and r.
On the Credit Card Fraud dataset, we used e = 2000 to make sure that the
solution converges. On the other two datasets, we used e = 400.

15The DS allows to set a differential privacy parameter ε. As mentioned in
the introduction, we ran our experiments without differential privacy.

16All computations have been conducted on a standard laptop with AMD
Ryzen 7 5800H processor (8-core 3.2 GHz) and 16GB RAM.

17The algorithm samples from the conditional distributions by looping
through all combinations of unique values of the parent attributes for each
node. On categorical data, the genetic algorithm tends to include parents with
a lower number of unique values than the greedy approach, leading to faster
completion of the loop. On the predominantly continuous attributes of the
Credit Card Fraud, there appears to be no significant difference (see Table IV).

https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/census+income
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://scikit-learn.org/stable

TABLE II: Contraceptive Method Choice. Runtime (in seconds)
shown as: Runtime Data Description + Runtime Data Generation

k=1 k=2 k=3 k=4

DS 31.92 + 0.06 33.94 + 0.62 35.41 + 3.29 39.03 + 15.18
DS GA 5.62 + 0.06 7.81 + 0.38 9.51 + 1.73 12.78 + 6.13

TABLE III: Adult Census. Runtime

k=1 k=2 k=3 k=4

DS 73.62 + 0.62 89.21 + 7.01 139.57 + 190.46 303.90 + 2610.69
DS GA 14.17 + 0.63 17.01 + 4.32 23.12 + 58.69 86.36 + 1219.53

description step for increasing values of k, whereas the exper-
iment on Credit Card Fraud demonstrated that the runtime of
the greedy algorithm is quite sensitive to this parameter.

While improving the runtime complexity was our main goal,
it is also crucial to test if the resulting Bayesian networks
are of satisfying quality. We thus evaluated utility scores of
the classification machine learning tasks on the considered
datasets. On the Contraceptive Method Choice dataset, we
ran the Steps 1-4 ten times with different random splits to
compare the performance of the machine learning classifiers.
On the Adult Census dataset, we used the pre-defined split.
On the Credit Card Fraud dataset, we considered one random
split. As we use four different values of k for each of the two
methods for generating synthetic data, and we also evaluate
the original data as baseline, we learn our models on a total of
nine different training sets (seven on the Credit Card Fraud,
since we skipped k = 4).

TABLE IV: Credit Card Fraud. Runtime

k=1 k=2 k=3

DS 3335.86 + 16.54 8296.80 + 170.55 42976.82 + 4463.27
DS GA 456.21 + 16.67 500.10 + 167.37 577.05 + 4423.71

TABLE V: Contraceptive Method Choice. ML Utility shown as:
Mean Accuracy Scores ± Standard Deviation (Ten random splits)

NB SV KN RF LR Avg

Original 44.9±2.7 54.6±2.4 48.2±2.8 50.6±2.6 50.7±1.7 49.8

1: DS 45.9±3.2 46.3±4.5 39.8±2.8 40.8±2.8 42.2±1.4 43.0
1: DS GA 42.7±3.4 46.5±2.8 41.8±3.0 43.3±2.7 41.8±4.9 43.2

2: DS 48.5±2.7 51.7±3.6 42.7±1.7 47.5±2.4 49.6±3.4 48.0
2: DS GA 47.5±2.6 53.9±2.7 45.6±2.4 49.0±2.9 50.3±2.5 49.3

3: DS 47.2±2.0 54.2±2.3 47.7±2.5 51.8±3.5 52.5±2.7 50.7
3: DS GA 47.1±2.5 54.0±3.3 46.3±3.2 49.3±1.3 51.8±1.6 49.7

4: DS 45.5±1.9 53.8±2.2 45.6±2.8 50.4±2.5 51.4±1.8 49.3
4: DS GA 45.6±3.0 55.1±2.6 46.6±1.7 51.0±1.5 51.2±2.2 49.9

Let us start with the Contraceptive Method Choice dataset
shown in Table V. We report the mean accuracy scores (in
percent) of the five classification algorithms for predicting the
correct value of the target attribute (Contraception method:
No-use, Long-term, Short-term) over the ten random splits of
the dataset together with the standard deviation. In addition,
we report the average of the mean accuracy scores in the
last column of the table. This value is also visualized in
a plot below the table. The original implementation of the

DataSynthesizer shows a high performance for k = 3 and
even exceeds the scores on the original dataset by a substantial
margin. However, our adaptation achieves higher average
scores for k = 1, 2, 4. For k = 2, 3, 4, the DataSynthesizer
applied with a genetic algorithm shows an average accuracy
score that is very close to the one obtained on the original
dataset. In any case, we may conclude that the application of
the genetic algorithm is very much suitable for this particular
task.

TABLE VI: Adult Census. ML Utility (Public split)

NB SV KN RF LR Avg

Original 79.7 83.2 81.5 82.2 82.3 81.8

1: DS 80.2 80.8 77.9 79.0 80.5 79.7
1: DS GA 80.2 80.8 78.6 79.3 80.7 79.9

2: DS 80.8 82.4 80.3 80.2 81.8 81.1
2: DS GA 80.1 80.9 77.4 79.5 80.6 79.7

3: DS 80.4 81.0 77.9 78.0 80.1 79.5
3: DS GA 80.2 83.1 80.5 81.0 82.0 81.4

4: DS 80.0 81.3 78.1 79.8 80.4 79.9
4: DS GA 79.8 83.2 81.3 81.1 81.8 81.4

On the Adult Census dataset (Table VI), the task is to predict
whether the yearly income of a person is below or above $50k.
We can see that the genetic algorithm again achieves a higher
average accuracy score on three of four values of k. In general,
both synthesizers are not as close to the original performance
as they have been on the Contraceptive Method Choice dataset.
However, our adaptation comes quite close for k = 3 and
k = 4. Compared to the greedy algorithm, we again conclude
that the performance is more than satisfactory.

Finally, let us consider the Credit Card Fraud dataset (Ta-
ble VII). The task is to detect frauds, and the target attribute is
highly imbalanced. We report the results as confusion matrices
of the form [

TN FP
FN TP

]
,

where TP means true positive, FP means false positive, TN
means true negative and FN means false negative. Precision
is defined as the ratio of true positives (correctly identified

TABLE VII: Credit Card Fraud. ML Utility via Confusion Matrices
(One random split)

NB SV KN RF LR Avg F2

Original 55626 1224
26 86

56840 10
33 79

56845 5
25 87

56848 2
32 80

56836 14
26 86

66.5

1: DS 55218 1632
16 96

56846 4
58 54

56846 4
55 57

56828 22
64 48

56783 67
29 83

49.4

1: DS GA 55132 1718
17 95

56846 4
51 61

56845 5
53 59

56830 20
43 69

56784 66
29 83

54.4

2: DS 55298 1552
20 92

56841 9
42 70

56842 8
39 73

56842 8
37 75

56803 47
30 82

59.8

2: DS GA 55368 1482
24 88

56844 6
50 62

56842 8
34 78

56836 14
33 79

56770 80
27 85

59.4

3: DS 55205 1645
23 89

56850 0
112 0

56837 13
43 69

56833 17
58 54

56774 76
32 80

40.7

3: DS GA 55376 1474
25 87

56846 4
48 64

56842 8
43 69

56838 12
42 70

56821 29
32 80

57.4

frauds) to all data points predicted as frauds, i.e. how many of
the cases the model has predicted to be frauds are actually
such. Recall indicates how many of the frauds have been
identified by the model, given as the ratio of the true positives
to all cases that have been labeled as fraud. Each of these
measures alone is not representative, as it is rather easy to
optimize one of them, but difficult to have both take high
values at the same time. As summarizing measure, the last
column of the tables thus presents the average F2 score (in
percent), a weighted harmonic mean of precision and recall
that weighs recall higher than precision. It appeared suitable
in our application, where it is likely more important to identify
most of the frauds, and a certain amount of false positives
can be tolerated. While dealing with imbalanced datasets is
usually more difficult for data synthesizers (due to the focus
on global, not local properties), the results are again not too
far from those algorithms trained on original data. Considering
the average F2 scores, the genetic algorithm improves upon
the greedy algorithm for k = 1 and k = 3, while the greedy
algorithm shows a slightly better performance on k = 2.

Overall, our adaptation using the genetic algorithm gener-
ates synthetic data with high utility for machine learning on
the considered datasets. The performance for higher values of
k seems to be more stable than on the greedy algorithm, which
has shown a rather large drop of its scores for either k = 3
or k = 4 on each of the three datasets. Together with the
reduction of the runtime complexity, in particular for higher k

and for larger datasets, we conclude that the generation of the
Bayesian network with a genetic instead of a greedy algorithm
may be preferable in many practical scenarios.

B. Disclosure Risks and Utility on Custom Bayesian Networks

Our evaluation of the approach discussed in Section IV
considers two aspects. The first is to verify if the attribute
disclosure risk is indeed reduced by decreasing particular
pairwise correlations. For this, we will conduct similar ex-
periments as those in [10]. The second is to repeat the utility
experiments conducted in Section V-A on the custom Bayesian
networks to evaluate possible performance losses.

Let us first take a look at the experiments on the attribute
disclosure risks. In Section II, we have discussed the GCAP
measure and the attacker’s classification problem. We define
an attack scenario as a set of quasi-identifiers QI together with
a sensitive attribute. Our assumption is that an attacker knows
at least some of their victim’s values of the QI (the ‘key’), and
tries to find the value of the sensitive attribute in the original
dataset by studying the synthetic dataset. On the Contraceptive
Method Choice and the Adult Census dataset, we analyze one
scenario each.

TABLE VIII: Disclosure Risk Scenarios

Quasi Identifiers Sensitive Attr.
1) Contraceptive
Method

age, education, number of children,
religion, now working?

education of
husband

2) Adult Census age, workclass, occupation, race, sex relationship

The idea behind the scenario on the Contraceptive Method
dataset is to investigate the possibility of gaining information
about the husbands’ education (1=low, 2, 3, 4=high) based
solely on knowledge about the wives18. In the scenario for
Adult Census, we assume that the adversary wants to learn the
relationship status (Wife, Own-child, Husband, Not-in-family,
Other-relative, Unmarried) of a person.

Let O be the original table (of either dataset). For both
Scenarios 1) and 2) and a certain key length ℓ, we performed
the following procedure.

1) Generate two synthesized versions of O of equal length:
• DataSynthesizer19 with ordinary Bayesian network
• DataSynthesizer with custom Bayesian network

sensitive attribute: as in the scenario
target attribute: ‘method’ for 1), ‘income’ for 2) (as
in the utility evaluation in Section V-A)

2) Compute all ℓ-element subsets of the quasi identifiers
QI of the respective scenario. Each subset corresponds
to an attribute key used in the following step.

3) For each synthetic dataset S, for each attribute key K
and the sensitive attribute T of the scenario:

• Train GCAP and other ML models on O
∣∣
K,T

and
S
∣∣
K,T

, the datasets that results from omitting all
attributes but T and those in the key K.

18This scenario has also been studied in the original publication [10].
19We used the genetic algorithm (Section III) with standard choices for

P, S, r and e = 400. Also, we set k = 4 as degree for the network.

TABLE IX: Contraceptive Method Choice. Attribute Disclosure
Risk for Scenario 1 (Keylength 4)

GCAP NB SV KN RF LR Avg

Original 77.8±7.0 64.2±1.7 65.0±1.5 69.4±3.5 77.0±6.6 64.4±1.6 69.6
DS 65.6±4.0 63.9±1.6 64.0±1.4 64.2±4.7 65.7±4.2 64.4±1.5 64.6
DSc 55.0±3.4 61.2±0.2 61.0±0.0 54.4±1.7 54.9±3.2 61.0±0.0 57.9

TABLE X: Adult Census. Attribute Disclosure Risk for Scenario 2
(Keylength 5)

GCAP NB SV KN RF LR Avg

Original 60.1 45.4 59.8 56.8 60.1 59.3 56.9
DS 59.7 45.4 59.5 54.4 59.7 59.3 56.3
DSc 42.6 43.5 41.3 42.2 42.5 41.3 42.2

• Compute a prediction for the sensitive attribute of all
original records (meaning that O

∣∣
K,T

is the dataset
on which all models are “tested”).

• Compute the overall accuracy score on O
∣∣
K,T

.

For Scenario 1) (Table IX), we consider a set of five QIs and
assume that the attacker knows at least four of them (ℓ = 4),
as it was also considered in [10]. For Scenario 2) (Table X),
we have |QI| = 5 and assume that an attacker knows all of
them (ℓ = 5). We applied the same classification algorithms
that we have already used in Section V-A. In addition, we
computed the GCAP score (eq. (1)). In each cell of Table IX,
we display the mean accuracy scores over all assumed attribute
keys, i.e., the five 4-element subsets of QI. The cells of Table X
just show the results of the complete attribute key of length
5. The last column of the tables present the average score
of the mean accuracies in the respective row20. These scores
are also visualized in the figures below the tables. Here, O
denotes the score of the original dataset, DS the score of the
DataSynthesizer with ordinary Bayesian network and DSc the
score of our customization. In addition, we have added the
score B to the figure, which denotes the prediction baseline
for the sensitive attribute that is obtained by just applying a
dummy (“zero-rule”) classifier that always predicts the most
common value. For the attribute ‘education of husband’ in the
first scenario, this value is 61.0%. For ‘relationship’ in the
second scenario, it is 40.5%.

On the original dataset, an attacker would be able to use
their knowledge of the quasi-identifying values in both sce-
narios to make accurate predictions for the sensitive attribute.

20It is also interesting to consider the maximum accuracy scores as some
sort of upper bound for the disclosure risk. However, an attacker is unlikely
to know which classifier works best on the dataset they are analyzing, so we
are reporting the average performance of several distinct algorithms.

TABLE XI: Contraceptive Method Choice. ML Utility on
customized synthetic data

NB SV KN RF LR Avg

DS 45.6±3.0 55.1±2.6 46.6±1.7 51.0±1.5 51.2±2.2 49.9
DSc 46.0±2.7 54.0±1.9 47.2±2.0 51.0±3.0 50.8±2.2 49.8

TABLE XII: Adult Census. ML Utility on customized synthetic data

NB SV KN RF LR Avg

DS 79.8 83.2 81.3 81.1 81.8 81.4
DSc 79.7 83.1 80.4 80.2 80.8 80.8

The GCAP score and the performance of Random Forest
are particularly high. If the attacker has only access to the
synthetic dataset DS, their abilities to predict the correct
value are already reduced (albeit insignificantly in the second
scenario). In any case, they may still use their knowledge about
the QI to exceed the accuracy of the zero-rule baseline score by
a substantial margin. From a privacy-preserving point of view,
this means that a certain risk for attribute disclosure remains
on the synthetic datasets of the two scenarios. Considering
our customized version DSc, however, we can see that this
risk is almost reduced to the baseline B. No classification
algorithm performs substantially better than the zero-rule
classifier, meaning that the attacker is barely able to leverage
their knowledge about the QI-values of their victim. As a
result, the original values of the sensitive attributes appear to
be well protected against these kind of attacks.

Let us now consider the second aspect, namely the utility
of the customized synthetic datasets for the main machine
learning task, i.e., predicting the value of the target attributes.
For this evaluation, we extended the experiments described in
Section V-A to our customized versions of the DataSynthesizer
for each of the two scenarios. The first rows of Tables XI
and XII repeat the scores we obtained in Tables V and VI
for k = 4. Comparing these scores to the ones for the
custom Bayesian network, we observe a slight drop in the
average accuracy, but no substantial loss of effectiveness. For
the considered datasets and scenarios, we conclude that the
customized synthetization decreases disclosure risks without
causing a large effect on the utility for machine learning.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we described two new techniques. The first
is a genetic algorithm for speeding up the construction of
Bayesian networks in data synthetization tools such as the
DataSynthesizer and making them suitable for Big Data. The
second is an approach for constructing Bayesian networks in
a way such that the risk of disclosure of particularly sensitive
attributes is reduced. We evaluated both techniques and our
experiments confirm the suitability for implementing them in
practical scenarios.

For future work, we will study modifications of the cus-
tomized Bayesian networks, e.g. for the protection of two
or more sensitive attributes or for choosing particular quasi-

identifiers as those attributes that are ignored in the sampling.
We will also consider the implementation of the method in
other data synthetization tools such as synthpop21 ([7]).

REFERENCES

[1] L. Sweeney, “K-anonymity: A model for protecting privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 5, 2002.

[2] C. Dwork, “Differential privacy,” in International Colloquium on Au-
tomata, Languages and Programming (ICALP). Venice, Italy: Springer,
2006.

[3] D. B. Rubin, Ed., Multiple Imputation for Nonresponse in Surveys. John
Wiley & Sons, Inc., Hoboken, NJ, USA, 1987.

[4] H. Surendra and H. S. Mohan, “A review of synthetic data generation
methods for privacy preserving data publishing,” International Journal
of Scientific & Technology Research, vol. 6, no. 3, 2017.

[5] H. Ping, J. Stoyanovich, and B. Howe, “Datasynthesizer: Privacy-
preserving synthetic datasets,” in International Conference on Scientific
and Statistical Database Management, Chicago, IL, USA, 2017.

[6] N. Patki, R. Wedge, and K. Veeramachaneni, “The synthetic data
vault,” in IEEE International Conference on Data Science and Advanced
Analytics (DSAA), Montreal, QC, Canada, 2016.

[7] B. Nowok, G. Raab, and C. Dibben, “synthpop: Bespoke creation of
synthetic data in R,” Journal of Statistical Software, Articles, vol. 74,
no. 11, 2016.

[8] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao,
“Privbayes: Private data release via bayesian networks,” ACM Transac-
tions on Database Systems, vol. 42, no. 4, 2017.

[9] J. Taub, M. Elliot, M. Pampaka, and D. Smith, “Differential Correct
Attribution Probability for Synthetic Data: An Exploration,” in Privacy
in Statistical Databases. Valencia, Spain: Springer International
Publishing, 2018.

[10] M. Hittmeir, R. Mayer, and A. Ekelhart, “A Baseline for Attribute
Disclosure Risk in Synthetic Data,” in ACM Conference on Data and
Application Security and Privacy (CODASPY). New Orleans, LA, USA:
ACM, 2020.

[11] M. Hittmeir, A. Ekelhart, and R. Mayer, “On the Utility of Synthetic
Data: An Empirical Evaluation on Machine Learning Tasks,” in Inter-
national Conference on Availability, Reliability and Security (ARES).
Canterbury, United Kingdom: ACM Press, 2019.

[12] ——, “Utility and privacy assessments of synthetic data for regression
tasks,” in IEEE International Conference on Big Data (Big Data). Los
Angeles, CA, USA: IEEE, 2019.

[13] R. Mayer, M. Hittmeir, and A. Ekelhart, “Privacy-preserving anomaly
detection using synthetic data,” in Data and Applications Security and
Privacy (DBSec). Regensburg, Germany: Springer, June 2020.

[14] J. Pearl, “Bayesian networks: A model of self-activated memory for
evidential reasoning,” in Proceedings of Cognitive Science Society, 1985.

[15] D. M. Chickering, Learning Bayesian Networks is NP-Complete. New
York, NY: Springer New York, 1996.

[16] D. Goldberg and J. Holland, “Genetic algorithms and machine learning.”
Machine Learning, vol. 3, 1988.

[17] P. Larranaga, M. Poza, Y. Yurramendi, R. Murga, and C. Kuijpers,
“Structure learning of bayesian networks by genetic algorithms: a
performance analysis of control parameters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 18, no. 9, 1996.

[18] J. Lee, W. Chung, and E. Kim, “Structure Learning of Bayesian
Networks Using Dual Genetic Algorithm,” IEICE Transactions on
Information and Systems, vol. 91, no. 1, Jan. 2010.

[19] M. Elliot, “Final Report on the Disclosure Risk Associated with
the Synthetic Data Produced by the SYLLS Team,” University of
Manchester, Tech. Rep., 2014. [Online]. Available: http://hummedia.
manchester.ac.uk/institutes/cmist/archive-publications/reports

[20] K. El Emam, L. Mosquera, and J. Bass, “Evaluating identity disclosure
risk in fully synthetic health data: Model development and validation,”
Journal of Medical Internet Research, vol. 22, no. 11, 2020.

[21] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam,
“L-diversity: privacy beyond k-anonymity,” in International Conference
on Data Engineering (ICDE). IEEE, 2006.

21This tool allows the user to define a so-called “predictor matrix”, which
for each attribute determines the set of all other attributes that are considered
in the conditional sampling of its values.

http://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/reports
http://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/reports

	Introduction
	Related Work
	A genetic algorithm for Bayesian Networks
	Custom Bayesian networks for specific tasks
	Evaluation
	Genetic and Greedy Algorithm for Bayesian Networks
	Disclosure Risks and Utility on Custom Bayesian Networks

	Conclusions and Future Work
	References

