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ABSTRACT

An approach is presented to automatically build a search
engine for large-scale music collections that can be queried
through natural language. While existing approaches de-
pend on explicit manual annotations and meta-data assigned
to the individual audio pieces, we automatically derive de-
scriptions by making use of methods from Web Retrieval
and Music Information Retrieval. Based on the ID3 tags of
a collection of mp3 files, we retrieve relevant Web pages via
Google queries and use the contents of these pages to charac-
terize the music pieces and represent them by term vectors.
By incorporating complementary information about acous-
tic similarity we are able to both reduce the dimensionality
of the vector space and improve the performance of retrieval,
i.e. the quality of the results. Furthermore, the usage of
audio similarity allows us to also characterize audio pieces
when there is no associated information found on the Web.

Categories and Subject Descriptors:
H.3.3 [Information Systems]: Information Storage and
Retrieval; H.5.5 [Information Systems]: Information In-
terfaces and Presentation – Sound and Music Computing

General Terms: Algorithms

Keywords: Music search engine, Music Information Re-
trieval, music similarity, context-based retrieval, cross-media
retrieval

1. INTRODUCTION
Over the past years, using text-based search engines has

become the “natural” way to find and access all types of
multimedia content. While there exist approaches to auto-
matically derive and assign semantic, natural language de-
scriptors for images, videos, and – of course – text, the broad
field of (popular) music has not drawn that much of atten-
tion. Basically all existing music search systems, e.g. those
offered by commercial music resellers, make use of manu-
ally assigned subjective meta-information like genre or style
(in addition to objective meta-data like artist, album name,
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track name, or year) to index the underlying music collec-
tion. Thus, the person issuing the query (i.e. the potential
customer) must already have a very precise conception of
the expected result set. The intrinsic problem of these sys-
tems is the limitation to a rather small set of meta-data,
whereas the musical, or more general, the cultural context
of music pieces is not captured.

However, as digital catalogs rapidly become larger and
more inconvenient and inefficient to access, the need for
more sophisticated methods that enable intuitive searching
inside large music collections increases. For example, in-
stead of just finding tracks that are labeled as rock, it would
be valuable to be able to formulate a query like “rock with
great riffs” to emphazise the importance of energetic gui-
tar phrases. Another query could be “relaxing music” that
should return relaxing pieces regardless of which “genre”
they are assigned to. Clearly, music resellers with very large
music databases or music information systems could benefit
from such an engine, as it provides access to their catalog in
the most common and most accepted manner.

Recent developments in music information systems re-
spond to the fact that new and possibly unconventional ap-
proaches are necessary to support the user in finding de-
sired music. Most of them make use of content-based anal-
ysis of the audio files (e.g. [12, 6]) or use collaborative rec-
ommendations to point the users to music they might like
(e.g. [9], Last.fm1, or on-line retailers like Amazon). Also,
there are techniques that incorporate information from dif-
ferent sources to build interactive interfaces [15, 21].

In this paper, we present first steps toward the challeng-
ing task of automatically building a search system that is
capable of finding music that satisfies arbitrary natural lan-
guage queries. For each track in a collection of mp3 files,
we retrieve a set of relevant Web pages via Google. This
enables us to represent music pieces in a traditional term
vector space. Additionally, we make use of a state-of-the-
art audio similarity measure. Thus, we combine information
about the context of music with information about the con-
tent. With the integration of acoustic similarity, we are able
to (a) reduce the dimensionality of the feature space, (b)
describe music pieces with no (or little) related information
present on the Web, and (c) improve the quality of the re-
trieval results. The evaluation carried out on a collection
consisting of more than 12,000 music pieces gives strong in-
dication that a natural language search engine for music
collections is in reach.

1http://www.last.fm



2. RELATED WORK
Several methods to retrieve music from large databases

have been proposed. Most of these approaches are based
on query-by-example methods (e.g. [17]). Thus, the query
must consist of a piece of information that has the same
representation as the records in the database. For exam-
ple, in Query-by-Humming/Singing (QBHS) systems [11]
the user has to sing or hum a part of the searched piece
into a microphone. In most cases, these systems operate
on a symbolic representation of music (i.e. MIDI). Other
query-by-example systems use a small, low quality recorded
portion of a music piece as input, identify the piece, and re-
turn the associated meta-data (artist, title, etc.). Typically,
such services are accessible via cellular phone (e.g. from the
commercial service Shazam2).

An even more challenging task is to design systems that
enable cross-media retrieval. In our case, systems that al-
low queries consisting of arbitrary natural language text, e.g.
descriptions of sound, mood, or cultural events, and return
music pieces that are semantically related to this query, are
of interest. Unfortunately, the number of systems enabling
its users to perform such queries is very little. The most
elaborate approach so far has been presented by Baumann
et al. [5]. Their system is supported by a semantic ontol-
ogy which integrates information about artist, genre, year,
lyrics, and automatically extracted acoustic properties like
loudness, tempo, and instrumentation and defines relations
between these concepts. Beside the correct extraction of the
features, also the mapping of the query to the concepts in
the ontology has to be accomplished. In the end, the sys-
tem allows for semantic queries like “something fast from...”
or “something new from...”. Also phonetic misspellings are
corrected automatically.

In [8], Celma et al. present the music search engine Search
Sounds3. The system uses a special crawler that focuses on
a set of manually defined “audio blogs”, which can be ac-
cessed via RSS links. In these blogs, the authors explain and
describe music pieces and make them available for download
(whether legally or illegally depends on the blog). Hence,
the available textual information that refers to the music, to-
gether with the meta-data of the files, can be used to match
text queries to actual music pieces. Furthermore, for all re-
turned pieces, acoustically similar pieces can be discovered
by means of content-based audio similarity.

Another system that opts to enhance music search with
additional semantic information is Squiggle [7]. In this frame-
work, queries are matched against meta-data and also fur-
ther evaluated by a word sense disambiguation component
that proposes related queries. For example, a query for
“rhcp” results in zero hits, but suggests to search for the
band “Red Hot Chili Peppers”; searching for “Rock DJ”
proposes the song by “Robbie Williams”, the genre “Rock”,
as well as other artists (all “DJs”). The underlying se-
mantic relations are taken from the freely available com-
munity databases MusicMoz4 and MusicBrainz5. However,
although semantic relations are integrated, the system de-
pends on explicit knowledge which is in fact a more extensive
set of manually annotated meta-data.

2http://www.shazam.com
3http://www.searchsounds.net
4http://www.musicmoz.org
5http://www.musicbrainz.org

A system that is not restricted to a pre-defined set of
meta-data is Last.fm. Last.fm integrates into music player
software and keeps track of each user’s listening habits. Based
on the collected data, similar artists or tracks can be recom-
mended. Additionally, users can assign tags to the tracks
in their collection. These tags provide a valuable source of
information on how people perceive and describe music. A
drawback of the system is that most tags are highly incon-
sistent and noisy. We discuss this issue in more detail in
Section 4 where we use part of the Last.fm data to evaluate
our own approach.

Beside music information systems that deal solely with
popular music, there exist a number of search engines that
use specialized (focused) crawlers to find all types of sounds
on the Web. The traced audio files are indexed using con-
textual information extracted from the text surrounding the
links to the files. Examples of such search engines are Arooo-
ga [16] and FindSounds6.

Finally, we briefly review approaches that aim to bridge
the semantic gap for music by extracting information from
the pure audio signal and assigning some sort of meta-data.
In [15], music landscapes created from audio similarity infor-
mation are labeled with music related terms extracted from
the Web. [21] uses similar techniques to arrange a music
collection around a circle for easy access. In [24], low-level
characteristics of audio signals are mapped to semantic con-
cepts to learn the “meaning” of certain acoustic properties.

In contrast, in this paper, we directly derive culturally as-
sociated descriptors for audio files by extracting the desired
information from related Web pages. Additionally, we make
use of audio-based similarity to improve this technique. As
a result, we obtain a representation of each music piece in
a term vector space. To search for music pieces, queries are
also transformed to this vector space where distances to all
music pieces can be calculated.

3. TECHNICAL REALIZATION
In this section, we describe our technique to build a natu-

ral language search engine for music. After a preprocessing
step, related Web pages for each track are retrieved. Sec-
ond, we compute acoustic similarity directly from the audio
files which we use in the following steps to reduce the di-
mensionality of the used vector space and modify the vector
representations toward acoustically similar pieces. Finally,
we describe how queries are processed in order to find the
most adequate pieces in the collection.

3.1 Preprocessing the Collection
To obtain descriptors for the tracks in an mp3 collection,

we make use of the information found in the ID3 tags of
the files. More precisely, we extract the values of the fields
“artist”, “album”, and “title”. Very commonly, additional
information is included in these tags, e.g. tracks that are a
collaboration of two artists often contain the second artist
in the title (indicated by feat., and, with, etc.) or both
artists are mentioned in the artist field. Also other meta-
information (e.g. to indicate live versions or remixes) can
be found. To avoid too constrained queries in the next step,
this extra information is removed. One drawback of this
preprocessing step is that it affects also artists like “Ike &
Tina Turner”, who are afterward represented only by “Ike”.

6http://www.findsounds.com



artist album title

mean 5,042,732 39,891 15,844
lower quartile 50,900 0 14
median 386,000 12 167
upper quartile 1,260,000 461 845

total number 1,200 2,073 12,601
|count = 0| 8 (0.7%) 860 (41%) 2,430 (19%)
|count ≤ 100| 22 (1.8%) 1,360 (65%) 5,533 (44%)

Table 1: Statistics of estimated page counts from
Google for our evaluation collection.

Based on the meta-tags, also pieces that are likely to con-
tain only speech are ignored (e.g. in Rap music this is often
indicated by the word Skit) as well as all tracks named Intro
or Outro and tracks with a duration below 1 minute. Fur-
thermore, all duplicates of tracks are excluded from the next
steps to avoid unnecessary similarity computations and re-
dundancies (different versions of tracks could be displayed,
for example, as alternatives in the retrieval results). Among
all duplicates, the version containing no meta-information
like live or remix is chosen for further processing. In future
work, we will also elaborate methods to deal with remixes,
i.e. the fact that for remixes in general the remixing artist
is more important than the original artist.

3.2 Web-based Features
The primary source of information for our approach is the

Web. Previous work that uses Web data for Music Informa-
tion Retrieval [25, 14] operates only on the artist level. The
main argument for this limitation is the claim that there is
not enough specific information present on the Web for each
individual track. Table 1 shows some statistics on the esti-
mated numbers of available Web pages returned by Google.
It can be seen that the number of available pages decreases
drastically when searching for album or title instead of artist
alone. (Please note that the collection contains many tracks
from samplers and compilations, which explains the low page
counts for album related queries.) For our task, the number
of queries that return zero or below 100 pages are of particu-
lar interest. We can see that very low page counts occur only
sporadically when searching for artist related pages (around
1%). On the track level for 19% no information is found
at all. Thus, to gather as much track specific information
as possible while preserving a high number of available web
pages, we decided to combine the results of three queries
issued to Google for each track in the collection:

1. “artist” music

2. “artist” “album” music review

3. “artist” “title” music review -lyrics

The first query is intended to provide a stable basis of re-
lated documents. With the second query, we try to find re-
views of the album on which the track was published, cf. [25].
The third query targets very specific pages and aims at pre-
venting lyrics to be included. We plan to address song lyrics
separately in future work. For each query, at most 100 of the
top-ranked Web pages are retrieved and joined into a single

set.7 All retrieved pages are cleaned from HTML tags and
stop words in six languages.8

For each music piece m and each term t appearing in
the retrieved pages, we count the number of occurrences
tftm (term frequency) of term t in documents related to m.
Additionally, we count dftm the number of pages related to
m the term occurred in (document frequency). All terms
with dftm ≤ 2 are removed from m’s term set. Finally, we
count mpft the number of music pieces that contain term t in
their set (music piece frequency). For pragmatic reasons, we
further remove all terms that co-occur with less than 0.1%
of all music pieces, resulting in a vector space having about
78,000 dimensions. To calculate the weight w(t, m) of a term
t for music piece m, we use a straight forward modification
of the well-established term frequency × inverse document
frequency (tf × idf) function [23]:

w(t, m) =

{

(1 + log2 tftm) log2
N

mpft
if tftm > 0

0 otherwise
(1)

where N is the number of music pieces in the collection. As
can be seen, we treat all Web pages related to a music piece
as one large document. The resulting term weight vectors
are normalized such that the length of the vector equals 1
(Cosine normalization). This removes the influence of the
length of the retrieved Web pages as well as the different
numbers of retrieved pages per track.

3.3 Audio-based Similarity
To complement the extracted Web-based features with

perceived acoustical similarity of the associated music, we
follow a well-established procedure, e.g. [20]: For each au-
dio track, Mel Frequency Cepstral Coefficients (MFCCs) are
computed on short-time audio segments (called frames) to
describe the spectral envelope of each frame and model thus
timbral properties. We use the definition given in [2]:

cn =
1

2π
×

ω=+π
∫

ω=−π

log
(

S
(

ejω
))

· ejω·ndω (2)

As proposed, we calculate 19 MFCCs on each frame. Ignor-
ing the temporal order of frames, each song is then going to
be represented as a Gaussian Mixture Model (GMM) of the
distribution of MFCCs [3]. According to Mandel and El-
lis [18], a Single Gaussian Model with full covariance matrix
is sufficient for representation, which facilitates computation
and comparison of the models. Instead of estimating simi-
larity of GMMs via Monte Carlo sampling, a symmetrised
Kullback-Leibler divergence can be calculated on the means
and covariance matrices [18].

However, as described in [1, 22], the Kullback-Leibler di-
vergence has some undesirable properties. For example, it
can be observed that some particular pieces, so called hubs,
are frequently “similar” (i.e. have a small distance) to many
other pieces in the collection without sounding similar. On
the other side, some pieces are never similar to others. Fur-
thermore, the Kullback-Leibler divergence does not fulfill
the triangle inequality.

7For evaluation, pages from Last.fm are kept out of this set,
as we use information from Last.fm/Audioscrobbler later to
measure the quality of our approach.
8English, German, Spanish, French, Italian, and Portuguese



To cope with these issues imposed by a distance measure
that is no metric, we developed a simple rank-based correc-
tion called Proximity Verification [22]. As a consequence,
all further steps presented here will be based on the ranking
information of the audio similarity measure only, i.e. it will
only be of interest whether a piece is most similar, second
similar, third similar, etc. to a piece under consideration and
not to which numerical extent the two pieces are considered
to be similar.

3.4 Dimensionality Reduction
To reduce the number of terms and remove irrelevant di-

mensions from the term vector model, we use the χ2 test
which is a standard term selection approach in text classifi-
cation, e.g. [26]. Usually, the χ2 test needs some information
on class assignments to measure the independence of a term
t from a class c. In our case, no class information (e.g.
genre) is available. Hence, we make use of the derived audio
similarity. For each track, we define a 2-class term selec-
tion problem and use the χ2 test to find those terms that
discriminate s, the group of the most similar tracks (which
we assume to be homogeneous according to the audio sim-
ilarity measure), from d, the group of the most dissimilar
tracks (which is not necessarily homogeneous). We define s
and d to comprise 100 tracks each, to have a solid number
of documents for the χ2 test. For each track, we calculate

χ2(t, s) =
N(AD − BC)2

(A + B)(A + C)(B + D)(C + D)
(3)

where A is the number of documents in s which contain
t, B the number of documents in d which contain t, C the
number of documents in s without t, D the number of docu-
ments in d without t, and N is the total number of examined
documents. The number of documents refers to the docu-
ment frequency from Section 3.2. The n terms with highest
χ2(t, s) values that occur more frequently in s than in d are
selected because they are least independent from s and are
thus best suited to discriminate the most similar tracks from
the most dissimilar. The selected terms for each track are
then joined into a global list. Throughout the experiments
we use n ∈ 50, 100, 150 resulting in reduced features spaces
with dimensionality of 4,679, 6, 975, and 8, 866, respectively.

The applicability of other methods for dimensionality re-
duction, in particular techniques like probabilistic Latent Se-
mantic Indexing [13], will be assessed in future work. Con-
sidering the size of the evaluation collection and the dimen-
sionality of the unpruned term vector space, for now, we
decided to design and implement a method involving only
moderate computational expenses, i.e. linear complexity in
the number of tracks.

3.5 Vector Adaptation
To further exploit the additional information of the au-

dio similarity measure, we use acoustically similar pieces to
adapt the term vector representations of pieces. This is par-
ticularly necessary for tracks where no related information
could be retrieved from the Web. For all other tracks, the
intention is to enforce those characteristics, i.e. those dimen-
sions, that are typical among acoustically similar tracks. To
accomplish this, we perform a simple smoothing of the term
vector weights depending on the similarity rank. The first
vector adaptation approach uses a Gauss weighting. Modi-
fied weights of term t for music piece m are defined as

gaussn(t, m) =
n

∑

i=0

1√
2π

e−
(i/2)2

2 · w(t, simi(m)), (4)

where simi(m) is the ith most similar track to m accord-
ing to audio similarity and sim0(m) is m itself. The second
vector adaptation we examine is a simple linear weighting:

linearn(t, m) =
n

∑

i=0

(1 − i

n
) · w(t, simi(m)), (5)

After adapting the term weights, vectors are again Cosine
normalized. In Section 4, we will study the impact of re-
weighting vectors based on the 5 and 10 nearest neighbors
on the retrieval process.

3.6 Querying the Music Search Engine
After constructing a term vector representation for each

piece in the music collection, we need a method to find those
tracks that are most similar to a natural language query.
The most simple approach would be to map the terms from
the query to the respective dimensions and to calculate a
score for each track over all query terms. While this could
be performed very quickly, the problem is that the possible
query terms would be restricted to the vocabulary of the fea-
ture space. Hence, to obtain a vector space representation
also for queries that consist of terms not in the vocabulary,
we extend queries to the music search engine by the word
music and send them to Google.9 For reasons of efficiency
and performance, only the 10 top-most Web pages are down-
loaded. Using these pages, a query vector is constructed in
the feature space that can now be compared to the music
pieces in the collection by calculating Euclidean distances
on the Cosine normalized vectors. Based on the distances, a
relevance ranking can be obtained which forms the response
to the query.

However, while this approach allows for a virtually unlim-
ited number of queries, it is again dependent on the avail-
ability of Google, i.e. to query a local database, the Internet
must be accessible. Moreover, the response time of the sys-
tem increases by the time necessary to perform the on-line
retrieval. Furthermore, it is questionable whether only 10
pages are sufficient for proper query expansion. We will
address these issues in future work, for which we plan to
build an index of all Web documents retrieved during the
Web-feature extraction. Query vectors could then be con-
structed quickly based on this off-line index. Additionally,
the comparison of the query vector to all feature vectors in
the collection is very inefficient. This could be improved by
implementing more sophisticated indexing and search algo-
rithms, e.g. [10].

4. EVALUATION
In this section, the performance of our music search engine

approach is evaluated. For testing, we compiled a large mu-
sic collection of mp3 files from the personal collections of the
authors. We also added about 1,000 tracks from the on-line
music reseller Magnatune10 – which are freely available for
non-commercial use – to include tracks from not that well-
known artists. In total, the complete collection consists of
9During evaluation, we also add the constraint -site:last.fm.

10http://www.magnatune.com



14,342 mp3 files from which 12,601 remain after the prepro-
cessing step (Section 3.1). The test set comprises tracks by
1,200 artists and 2,073 albums (with samplers and compila-
tions counted as different albums for each artist). Thus, to
obtain Web-based features for this collection, 15,874 differ-
ent queries to Google are necessary.

4.1 Audioscrobbler Ground Truth
Evaluating the quality of a retrieval system for music is a

non-trivial task. The most common approach is to evaluate
the results against genre information. Beside the labor in-
tensive task of manually defining genres for a collection of
more than 12,000 pieces, this method has several drawbacks,
cf. [19]: First, in most cases musical pieces can not be as-
signed to just one genre. Second, judgments whether a piece
belongs to a genre or not are highly subjective. Finally, and
most important, it is unclear how to match arbitrary queries
to genre information. Since it is our goal to develop a natu-
ral language search engine for music, we have to evaluate it
on “real-world” queries. Hence, we need a source for phrases
which are used by people to describe music and which are
likely to be used when searching for music. As mentioned be-
fore, we utilize the track specific tag information provided by
Last.fm for evaluation. For convenience, Audioscrobbler11

provides Web Services to access Last.fm data in a standard-
ized manner. From our collection of 12,601 tracks, we find
7,148 to have Audioscrobbler tags assigned (56.7%). For
4,903 of the remaining tracks, tag information about the
corresponding artist is available. Thus, in sum we can use
12,051 tracks for performance measurement. The remaining
550 tracks are ignored during the evaluation. Taking a look
at the associated tags reveals that they are highly inconsis-
tent and noisy. Many users use personalized identifiers to
track their music collection, e.g. by using their nickname
as tags for tracks they own. Frequently, tags contain typos,
are redundant (e.g. HipHop - Hip Hop, or Hardrock - Hard
Rock - Harder Rock), or simply not useful for our purpose
(“favorite artist”, “mistagged” etc.). However, for lack of
a real golden standard, using Last.fm tags is still the best
choice. In total, we could observe 43,472 different tags for
our collection. Performing evaluation on this complete set is
neither reasonable nor feasible. Instead, we make use of the
available list of top tags for tracks12 which contains the 249
most frequently used tags to describe tracks. From this list
we remove useless entries like “music”, “misc”, “albums i
own”, “test1” etc., entries starting with “my” or “favorite”,
and one entry that never occurs in our collection. The re-
maining 227 tags are used as test queries for our system.
All music pieces labeled with the query tag are considered
relevant wrt. the query. Table 2 shows the most and least
frequent tags in our collection.

4.2 Performance Evaluation
Using the Audioscrobbler ground truth, we evaluate the

performance of the system with different parameters. Our
goal is to study the impacts of the dimensionality of the
feature space (cf. Section 3.4) and the vector modifications
based on the audio similarity (cf. Section 3.5) on the re-
trieval quality. In the following, we use the notation χ2/n
to describe the strategy of selecting n most discriminating

11http://www.audioscrobbler.net
12http://ws.audioscrobbler.com/1.0/tag/toptags.xml

label tracks labeled

rock 8,723 (73%)
alternative 8,166 (68%)
seen live 8,067 (67%)
pop 7,953 (66%)
indie 7,517 (63%)
electronic 6,463 (54%)
...
game music 29 (0.2%)
icelandic 29 (0.2%)
post hardcore 21 (0.2%)
korean 8 (0.1%)

no top tag label 200 (1.7%)

Table 2: Most and least frequent Audioscrobbler top
tags in our collection.
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Figure 1: Precision at 11 standard recall levels (av-
erage over all 227 test queries) for different term
selection settings on Web features without audio-
based adaptations.

terms per track in the term selection step. In the experi-
ments we use n = 50, 100, 150, resulting in reduced features
spaces of dimensionality 4,679, 6, 975, and 8, 866, respec-
tively. Furthermore, the impact of gauss and linear weight-
ing is examined (for both weightings, we evaluate usage of
5 and 10 neighbors).

To measure the quality of the obtained rankings, we cal-
culate standard evaluation measures for retrieval systems,
cf. [4]. Figure 1 shows the Precision at 11 standard recall
levels for the modified tf × idf vectors according to Equa-
tion 1 (without audio-based re-weighting) for the different
χ2/n settings. This measure is useful to observe precision
over the course of a ranking. Since we evaluate the system
using a set of 227 queries, we calculate the average of the
precision values at each recall level after interpolating to the
11 standard values. It can be seen that audio-based term
selection has a very positive impact on the retrieval. The



Recall level 0 10 20 30 40 50 60 70 80 90 100

tf × idf 60.21 38.47 32.97 29.05 25.97 23.24 21.34 19.43 17.86 16.38 13.75
gauss, n = 5 61.96 38.49 33.29 29.01 25.13 22.51 20.60 18.99 17.38 15.89 13.83
gauss, n = 10 62.15 38.47 33.31 29.08 25.15 22.52 20.60 18.98 17.39 15.89 13.83
linear, n = 5 60.49 37.58 32.40 28.33 24.79 22.16 20.24 18.74 17.21 15.81 13.81
linear, n = 10 58.09 37.38 32.41 28.34 24.74 22.25 20.22 18.67 17.21 15.82 13.86

Table 3: Precision at 11 standard recall levels for χ2/50 in percent (average over all 227 test queries).

setting χ2/50 yields best results, while term vectors without
dimensionality reduction perform worst. In Figure 1, one
can also see the baseline of all experiments, which has been
empirically determined by repeated evaluation of random
permutations of the music collection. All results obtained
with our approach are far above the baseline.

To give stronger evidence for the effects of the vector space
pruning, we also perform statistical significance tests. Since
the precision values obtained for the different queries are
not normally distributed, we have to apply a non-parametric
test. To compare all different settings “simultaneously”, we
use Friedman’s test (pairwise significance tests would drasti-
cally increase the probability of an alpha-error). For lack of
a test that takes the development of precision values over the
different recall levels into account, we perform a Friedman
test at each separate recall level (with attached post-hoc
tests; significance level = 0.05). At recall levels 0.0 to 0.4,
the χ2/50 setting is significantly better than both χ2/150
and no χ2, at recall levels 0.1 to 0.3, χ2/50 is even signif-
icantly better than χ2/100. For the remaining recall levels
(0.5 to 1.0), no reasonable significant difference between the
settings can be found.

While audio similarity-based term selection has an evident
positive impact on the retrieval quality, the impact of audio-
based vector re-weighting is only marginal. For reasons of
lucidity, the precision values at 11 standard recall levels for
tf × idf , gauss, and linear vectors (all χ2/50) are shown in
Table 3 instead of a graph (the curves would be too similar to
gain insights). At the 0.0 recall level we can (theoretically)
expect precision values around 0.6, at the 0.1 level, precision
drops to about 0.4. A deeper look into the results of individ-
ual queries reveals that especially sparsely distributed tags
perform bad (cf. Table 2). The fact that queries with terms
like “korean” result in very low precision is no surprise, since
in reality there are no korean music pieces in the collection
(although the Audioscrobbler tags suggest this).

Again, we perform Friedman tests to check for significant
differences between the various re-weighting strategies. The
mean values in Table 3 conceal the relations of the underly-
ing distributions to some extent. Using the Friedman test,
it can be seen that tf × idf performs significantly worse than
gaussn=5, gaussn=10, and linearn=5 at the 0.0 recall level.
At the 0.1 and 0.3 level, the tf × idf values are significantly
below gaussn=5, gaussn=10, and linearn=10, at 0.2, tf × idf
is below all others. Between recall levels 0.4 and 0.8 there
is no significant difference between tf × idf and the gauss
weighted approaches. In general, we can observe a positive
impact of vector re-weighting on the precision at lower recall
levels (which are more relevant in practice). However, the
achieved improvements are rather small.

Furthermore, we average single value summaries over all
queries. Although single value summaries are more mean-

ingful for the individual queries, as pointed out in [4], we
still include the results to document the general tendencies.
The average precision at seen relevant documents indicates
the ability of the different settings to retrieve relevant doc-
uments quickly (Table 4). The respective values are calcu-
lated by averaging the current precision values at each ob-
served relevant document. A similar measure is R-precision
(Table 5). It corresponds to the precision at the Rth po-
sition in the ranking, where R is the number of relevant
documents for the query. Finally, we calculate the precision
after 10 documents. Since returning 10 results is the default
for nearly all search engines, we think it is valuable to ex-
amine how many relevant music pieces can be expected “at
first sight” (Table 6). As can be seen for the best settings, in
average, every second piece among the first ten is relevant.

feature space χ2/50 χ2/100 χ2/150 no χ2

tf × idf 25.63 24.52 23.93 22.66
gauss, n = 5 25.28 24.24 23.67 22.33
gauss, n = 10 25.29 24.25 23.68 22.33
linear, n = 5 24.78 23.77 23.24 21.91
linear, n = 10 24.74 23.72 23.22 21.79

Table 4: Average precision at seen relevant docu-

ments for different settings in percent (average over
all 227 test queries).

feature space χ2/50 χ2/100 χ2/150 no χ2

tf × idf 26.07 25.16 24.66 23.93
gauss, n = 5 26.40 25.50 24.94 23.78
gauss, n = 10 26.41 25.51 24.95 23.77
linear, n = 5 25.99 25.19 24.67 23.37
linear, n = 10 26.07 25.20 24.72 23.16

Table 5: R-precision for different settings in percent
(average over all 227 test queries).

feature space χ2/50 χ2/100 χ2/150 no χ2

tf × idf 49.69 45.46 44.19 40.09
gauss, n = 5 49.60 46.12 45.37 38.55
gauss, n = 10 49.56 46.08 44.98 38.77
linear, n = 5 47.67 44.71 43.66 36.70
linear, n = 10 47.00 44.23 42.33 36.04

Table 6: Precision after 10 documents for differ-
ent settings in percent (average over all 227 test
queries).



4.3 Examples
Finally, we want to present some search results from our

test collection. Table 7 shows the top 10 music pieces for
the queries “rock with great riffs”, “punk”, and “relaxing
music”. For “rock with great riffs”, all relevant music pieces
are from the same artist (other artists with great riffs fol-
low in the ranking). “Easy” queries with relatively clearly
defined musical styles like “punk” work very well. A query
like “relaxing music” is difficult to judge because it is in
fact very subjective. However, the majority of the returned
pieces is the “opposite of exciting” and would probably be
considered to be “relaxing” by many people. Interestingly,
9 out of 10 results are published by the label Magnatune.

Beside finding adequate music for descriptive queries, the
system offers some simple but useful features for free. Based
on the related Web pages, “semantic relations” are often im-
plicitly available for queries. For example, the query “Da-
mon Albarn” returns tracks from the band “blur”, as well
as from the band “Gorillaz” (both bands of Damon Al-
barn). Similarly, searching for “George Harrison” returns
also tracks from “The Beatles”.

Search results for ’rock with great riffs’
1. Wolfmother – Vagabond
2. Wolfmother – Colossal
3. Wolfmother – Tales
4. Wolfmother – Love train
5. Wolfmother – Woman
6. Wolfmother – White unicorn
7. Clap your hands say yeah – Heavy metal
8. Wolfmother – Mind’s eye
9. The Chemical Brothers – Let forever be

10. Wolfmother – Witchcraft

Search results for ’punk’
1. Buzzcocks – Breakdown
2. New York Dolls – Seven day weekend
3. Sham 69 – Angels with dirty faces
4. New York Dolls – Subway train
5. Sham 69 – Hersham boys
6. Buzzcocks – Orgasm addict
7. New York Dolls – Looking for a kiss
8. Screeching Weasel – Someday
9. Buzzcocks – Love battery

10. Electric Frankenstein – Home of the brave

Search results for ’relaxing music’
1. Jamie Janover – Innerlude
2. Jamie Janover – Two plus blue
3. Michael Masley – Six white horses
4. Jamie Janover – Twice versa
5. Jamie Janover – Ragasutra
6. Psychetropic – Frozen garden
7. Aerobic Jonquil – Click full pussy
8. Jean-Michel Jarre – Magnetic fields 1
9. Cargo Cult – Ambriel

10. Solace – Circle

Table 7: Retrieval results for three queries. Bold
entries indicate relevant music pieces.

5. CONCLUSIONS AND FUTURE WORK
We presented a first attempt to create a search engine

for large music collections that can be queried via natural
language text input. One of the central challenges of our
method is to assign semantically related information to in-
dividual music pieces. We opt to accomplish this by find-
ing relevant information on the Web. The extracted text
based information is complemented by audio-based similar-
ity, which allows us to improve the results of the retrieval
by reducing the dimensionality of the feature space. In-
formation about the acoustic similarity is also mandatory
to describe music pieces for which no related pages can be
found on the Web.

Estimating the quality of the presented approach is diffi-
cult since there exists no related approach that could serve
as reference. Nevertheless, compared to the baseline, the
results we obtained during evaluation were very promising.
Considering the fact that the used ground truth has severe
drawbacks, results can be interpreted as a “conservative”
estimation of the real performance. However, there is ample
space for improvements. In future work, we will elaborate
methods to construct Web-based feature vectors more effi-
ciently. Furthermore, we believe that there is much more
potential in integrating audio-based similarity, especially if
improved audio similarity measures become available. Fu-
ture enhancements will also comprise special treatment of
terms appearing in the meta-tags of the mp3 files and the
search for phrases in lyrics. Finally, we can state that we
are confident that these first steps point into the right di-
rection and that a natural language search engine for music
is feasible.
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