
An Agent-based Architecture for
Analyzing Business Processes of Real-Time Enterprises

Jun-Jang Jeng , Josef Schiefer, and Henry Chang

IBM T.J. Watson Research Center

{jjjeng,josef.schiefer,hychang}@us.ibm.com

Abstract

As the desire for business intelligence capabilities for
e-business processes expands, existing workflow
management systems and decision support systems are
not able to provide continuous, real-time analytics for
decision makers. Business intelligence requirements may
appear to be different across the various industries, but
the underlying requirements are similar – information
that is integrated, current, detailed, and immediately
accessible. In this paper we introduce an agent-based
architecture that supports a complete business
intelligence process to sense, interpret, predict, automate
and respond to business processes and aims to decrease
the time it takes to make the business decisions. In fact,
there should be almost zero-latency between the cause
and effect of a business decision. Our architecture
enables analysis across corporate business processes
notifies the business of actionable recommendations or
automatically triggers business operations, effectively
closing the gap between business intelligence systems and
business processes.

1. Introduction

The emergence of e-business has dramatically changed
the context in which decision-making takes place. While
the fundamental human and organizational processes that
take place remain largely unaffected, e-business places
new constraints and demands on the decision maker to
provide better service to the customers. Because of the
increased rate of change possible in e-business, decisions
must be made more quickly than in the past. Process
participants must have instant access to information which
is relevant for the current business context. All these
factors imply that the traditional decision support
solutions that are focused simply on the provision of
information and analysis tools are no longer sufficient.
Traditional data warehouses, report generators, OLAP and
data mining tools typically do not allow a monitoring of
business activities on a continuous real-time basis. To be
effective, decision support must take a broader view of the

whole process of decision-making that is embedded in
business processes. One of the key weaknesses of the
current generation of workflow management systems and
decision support systems is their lack of integration.

Decision makers typically use exception-based analysis
on published metrics to identify opportunities, then dig
deeper into the data to understand the causes of those
opportunities. From there, they model the business
situation so that they have a framework against which to
evaluate different decision alternatives. After selecting an
alternative the user acts accordingly to the decision made.

Figure 1. BAM Decision Cycle

Figure 1 shows such a decision cycle. The BAM
(Business Activity Management) decision cycle involves 5
sub processes for the decision making: sense, detect,
analyze, decide, and effect. The sense process monitors
and collects desired data (based upon the intents) from the
business environment. The output from the sense process
is in the form of metrics or key performance indicators,
which provide a virtualized environment for the other
processes: detection, analysis and decisions. After
integrating events from various source systems, a BAM
system will start the detect process based on the business
intents and constraints. The detection phase usually
generates new business situations that are further explored
by an analyze process. The analyze process helps to
predict the performance and assess the risks of the
available options for responding to the business
environment. The analyze processes facilitate determining

the root causes of the identified business situations. Key
for the determination of causal factors is the ability to
identify inherent relationships and dependencies between
variables that drive the situational or exceptional
performance. The outputs of the analyze process are
alternatives to improve the current business situation and
the guidance for the decision makers to select the best
alternative. The decide process selects the best option and
also determines the most appropriate action for a response
to the business environment. The effect process executes
appropriate business actions based on the decision that has
been made. This response will either change the state of
the business environment or notify other agents (humans
or programs) who may be interested in the outcome and
result of the decision making.

The sense and effect processes need to interact with the
target business environment in order to obtain
data/metrics and to trigger actions, respectively. Hence, a
BAM system needs to have the knowledge of the
interfaces and protocols of interacting with the target
business environment. A BAM system manages and
enforces the policies that are configured and deployed by
business experts who know the strategies and rules for
managing the business activities and the underlying
systems. A BAM system also needs to retain the
information of the target environment, it is interacting
with. Examples of such information include the status of
the environment, the business context models, and
resource models.

In this paper, we propose a framework for business
activity management (BAM), which supports the decision
cycle shown in Figure 1 and allows these steps to be
accomplished in near real-time.

The BAM framework aims to:

− Provide decision makers and process analysts
comprehensive information about the status and
performance of business processes independent from
the type of systems that are used to execute or support
the business process.

− Help users to proactively identify situations and
exceptions by analyzing the current process business
context to focus on the opportunities offering the best
business return and those deserving the most attention.

− Determine the root causes of the identified situations or
exceptions. Key for the determination of causal factors
is the ability to identify reliable relationships and
interactions between variables that drive the situational
or exceptional performance.

− Generate alternatives to improve the current business
situation and help the decision-maker to select the best
alternative.

− Triggering the appropriate business actions based on
the decision made. This response can change the state
of the business process or notify parties who may be
interested in the outcome and result of the decision
making.

The remainder of this paper is organized as follows. In
section 2, we discuss the contribution of this paper and
related work. In section 3, we present our agent-based
BAM architecture that supports real-time analytics.
Sections 4 – 7 describe the components of our proposed
BAM architecture. These sections include a detailed
description of our agent framework for the analytical
processing and also the introduction of a container-based
approach for the event processing that enables a near real-
time event data integration. In section 8, we present a
supply chain use case for our proposed architecture.
Finally, in section 9 we present our conclusion and discuss
our future work.

2. Contribution and related work

Although monitoring and analysis are considered as
important tasks of the workflow management system
(e.g.[9]), and the Workflow Management Coalition has
already drafted a standard for workflow logs [17], little
work has been done in integrating and analyzing the
workflow audit trail information.

Some approaches emphasize the need for integrating
audit trail into data warehouse systems (e.g. the process
data warehouse in [15]), others are limited to a smaller set
of workflow history that is managed within a workflow
management system. To our knowledge there has been no
work that thoroughly discusses an end-to-end solution for
propagating, transforming and analyzing large amounts of
workflow events in near real-time.

Sayal et al. present in [15] a set of integrated tools that
support business and IT users in managing process
execution quality. These tools are able to understand and
process the workflow audit trail from HP Process
Manager (HPPM), and can load via a loader component
into the process data warehouse. Sayal et al. provide a
high-level architecture and a data model for the process
data warehouse, but they do not address the problem of
integrating and analyzing the workflow audit trail in near
real-time. An approach for history management of audit
trail data from a distributed workflow system is also
discussed in [13]. The paper describes the structure of the
history objects determined according to the nature of the
data and the processing needs, and the possible query
processing strategies on these objects. These strategies
show how to write queries for retrieving audit trail
information. Unlike our approach, neither the

transformation and aggregation of audit trail data, nor the
analytical processing of this data are considered.

Geppert and Tombros introduce in [5] an approach for
the logging and post-mortem analysis of workflow
executions that uses activate database technology. The
post-mortem analysis is accomplished through querying
the event history which is stored in an active database
system which supports Event-Condition-Action (ECA)
rules. Various types of events (e.g., database transitions,
time events, and external signals) can trigger in the event
history the evaluation of a condition and if the condition
evaluates to true, the action is executed.

ADEPT (Advanced Decision Environment for Process
Tasks) is an approach which uses an agent-based
infrastructure for managing business processes [11]. The
agents include modules for routing messages between the
agent and its agency and between peer agents, for
provisioning services through negotiation, and for
assessing and monitoring the agent’s ability to meet
service levels. The key advance of the ADEPT system is
that the responsibility for enacting various components of
the business process is delegated to a number of
autonomous problem solving agents. These agents
typically interact and negotiate with other agents in order
to coordinate their actions. The Agent Enhanced
Workflow (AEW) system [12] uses an agent system to
overcome inability of many WFMS that are monolithic in
structure and cannot be used in a distributed environment.
In AEW, a community of intelligent, distributed, and
autonomous software agents is used to improve the
management of business process under the control of a
workflow management system. These improvements are
achieved by allowing the software agents to negotiate with
each other to establish contracts that govern the
distribution of work across a number of processing
centers. We also use an agent-infrastructure for
performing the analytics for a business process.
Distinguishing aspects of our work, not emphasized in
other works, is the support of real-time processing
capabilities and the introduction of management layers for
the business intelligence agents.

Most of the existing WFMSs and BAMs offer only
very basic monitoring and analysis capabilities, such as
the retrieval status information about process instances or
summary information about cycle times. Commercial
systems (e.g. Staffware) usually provide rudimentary
logging information in the form of an audit trail which is
dumped to a file, where as others such as MQ Series
Workflow store log records in a relational database. For a
more comprehensive analysis, users have to use reporting
tools from third-party vendors and write queries to
retrieve data of interest. While this approach does provide
basic reporting, it requires considerable configuration

effort and assumes the existence of comprehensive
knowledge of the process analysts to write correct queries.

In order to overcome these limitations, we introduce in
this paper an architecture which addresses the following
issues:

1. We use separate tiers for the data integration and the
analytical processing in order to distribute the
processing.

2. For the integration of business process events we use a
container-based approach which allows to transform
the incoming process events into business metrics in
near real-time,

3. For the analytical processing of process audit data we
use software agents,

4. We use a policy-driven approach for evaluating
business process metrics,

5. The architecture allows a straight-through processing
of process events that stream into the system which
enables the BAM system to perform the analytical
processing with minimal latency and to respond to the
business environment in near real-time.

3. An architectural framework for real-time
Business Activity Management

Traditional data warehouses, business report
generators, OLAP and data mining solutions typically do
not monitor business processes on a continuous real-time
basis. These solutions are not designed for continuously
integrating data from various operational sources and are
not optimal for minimizing the average latency from when
a fact is first captured in an electronic format somewhere
within an organization until it is available for the
knowledge worker who needs it.

Real-time analytics enables organizations to better
monitor the health of critical business processes and
operations, providing mechanisms to instantly respond to
business problems or to notify the business of actionable
recommendations, effectively closing the gap between
business intelligence systems and business processes.
Figure 2 shows an agent-based architecture for real-time
analytics providing real-time access to critical business
performance indicators to improve the speed and
effectiveness of business operations.

The architecture includes 5 major components: 1)
Business Intelligence agents for the analytical processing,
2) the event processing container (EPC) for the real-time
transformation of process events, 3) a Process Information
Factory for storing business process metrics, 4) a policy
management system, and 5) a dashboard for the
visualization of business process metrics and analytical

results. In the following sections, we will discuss these architectural components in detail.

Figure 2. BAM architectural framework

4. Business intelligence agents for analytical
processing

Business Intelligence (BI) agents are able to perceive
the situations occurring in the business process execution
environment (e.g. WFMSs) and respond in a timely

fashion to changes. BI agents are able to exhibit policy-
governed behavior by following pre-defined rules or
taking the initiatives in order to satisfy the imposed
management goals. The approach of policy-based
management in this framework will be discussed in later
section. BI agents are capable of interacting with other

agents and humans in order to satisfy the management
goals. Hence, BI agents are self-aware objects that are
able to reflect on the gap between current situations and
desired management goals, and to change their own
management behavior accordingly. In summary, the BI
agents aim to fulfill three areas of management
functionality: reactivity, deliberation and reflectivity.

Given the requirements that BI agents can be capable
of reactive, deliberative, and proactive behavior, an
obvious decomposition involves creating separate
subsystems to deal with different types of management
behaviors. (1) Reactive management layer responds to
situations and exceptions in a business environment. The
response mechanism is driven by a set of situation-action
rules, like the behavior in Brook’s subsumption
architecture [3]. (2) Deliberate management layer
performs managerial tasks that require more reasoning and
more complicated computation. It is not uncommon that
BAM needs to provide decision support capability so that
more intelligent management directives can be derived
towards managed resources [7][14]. (3) Reflective
management layer enables BAM to maintain information
about itself and use this information to remain extensible
and adaptable [4]. Reflective management layer performs
meta-management directives unto the lower management
layers and managed entities. through reflective
management mechanism, BAM achieves the goals of both
2nd order management and autonomic computing [8].

The agent architecture is illustrated in
Figure 3. As the figure shows, the BI agent layer consists
of three management layers. Each layer continually
produces business situations for what actions the agents
should perform. The sensing subsystem monitors and
captures the situations produced in the environment, i.e.,
the workflow management systems, and other BAM
component such as dashboard, and EPC. The response
subsystem generates action outputs unto the business
environment by following the directives delivered from
the agent layers. Note that each layer is connected to the
sensing inputs and response outputs. In effect, each layer
acts like an agent or a group of agents, producing actions
as to what behavior to manifest. The sensing and response
functions are governed by management policies, which
will be described shortly. The governance is enforced by
the policy management subsystem. While the direct
connection between agent layers and sensing/response
subsystems implies simplicity, the coherence of the whole
system may not be preserved since agents in different
layers can compete on the performing tasks and obtaining
resources. To reduce such risk, a mediation subsystem is
introduced into the agent layer. This subsystem makes
decision about which layer has the control of the whole
system at any given time. In BAM, the mediation
subsystem is implemented in an asynchronous event bus,

where the control ‘token’ is carried by event bus from one
layer to another based upon predefined pub/sub policies.

Figure 3. BAM layered agent architecture

Hence, the coordination among agents is centralized at
design time and distributed at run time. One of the
consequences from a design point of view is that the
designer needs to consider all possible interaction patterns
among agents. Fortunately, BAM is flexible in regard to
the connection between agent layers and other subsystems.
If desired, the reactive layer can serve the single point of
sensing situations that are generated from the
environment. The dotted lines in the figure depict the
situation and control flows among agent layers. The
advantages of vertical decomposition are its simplicity
and the similarity between this idea and how organizations
work, with information flowing up to the higher
management levels of the organization, and directives
then flowing down. The disadvantage is that each layer
can be a bottleneck of the whole system. Failures in any
layer are likely to have severe consequences to the agent
performance.

Agent implementation

The agent layer aims to provide an adaptive platform
for realizing BAM functionality. It is dynamic in the sense
that management applications can be built to recognize the
addition and removal of management components and
resources without the system administrator’s explicit
intervention. The BAM infrastructure can be logically
categorized into several tiers: managed resources,
management probes, management beans, management
commitments, BI agents, and management adaptors.

• Managed Resources & Management Probes. In
BAM, managed resources within the environment can

Reflective Layer

Deliberative Layer

Reactive Layer

Sensing
Subsystem

Response
Subsystem

Event Processing Container (EPC)

Dashboard

Workflow Management Systems

Policy Management Subsystem

be any artifacts to be monitored, measured,
configured and controlled. Managed resources are
often managed through control points, a set of
management APIs that acquire or change the behavior
of the managed resources. The states of managed
resources can be captured either by polling from
management beans or events emitted by managed
resources.

• Management Beans. BAM uses the industrial
standard of manageability to instrument managed
resources and manufacturing processes [2][16].
Management standards provide homogeneous
interfaces of touch points to managed resources, esp.
legacy business systems. Management beans expose
the manageable properties of the underlying managed
resources to the privileged managing agents. At run
time, the managed resources will be connected to
some management bean so that management data and
functions can be delegated between BI agents and
managed resources.

• BI Agents. The tier of BI agents consists of agents
and utilities that can be assembled, composed and
committed to provide management functions. Each
agent addresses specific needs and problems. BI
agents obtain (by pulling or pushing) data from the
tier of management beans and act on that data based
upon management commitments. The composition of
services and components into a purposeful set of
functions contained in BI agents are enabled by the
configuration agent.

• Management Adaptors. Management adaptors expose
the management services of BI agents to external
clients. In BAM, management connectors adhere to
industrial standards such as J2EE/JMX [16] and Web
services [6]. The design of management beans, BI
agents, and managed resources does not depend in
any way on the protocol an agent uses for
communicating with external applications. The
provided management adaptors rely on the standard
APIs and do not expose any communication details.
Web services provide a means for different parties to
connect their BI agents with one another to conduct
dynamic management services across a network, no
matter what their application, design or run-time
environment.

• Management Commitments. BAM embraces the style
of commitment-based management in that BAM
exploits management commitments as the vehicle to
drive management scenarios on managed resources
and manufacturing processes. The management
commitments involved in BAM can be multifarious,
for example, the pre-defined demand boundaries, the
inventory level thresholds, system performance, and
so on. Abstractly, management commitments define

the constraints that would follow certain courses of
actions, or to hold certain agreed and trusted
situations manifested by the entities in the BAM
substrates, also called expectations. A commitment
concerns either acting in a certain way, or it can be a
commitment to hold a certain expectation.
Commitments can be about the past or the future,
where the former are called retrospective
commitments and the latter are called prospective
commitments. A commitment consists of the
following entities:

− Actions that it will perform and resources
(data) required;

− Resources that are governed by the
commitment;

− Expectations that the commitment hold to and
each expectation is composed of situations;

− Reponses that bind actions with expectations;

− Triggers that will initiate the evaluation of
expectations.

A commitment consists of triggers, resources, actions,
expectations, and responses. An XML-based
language, called Management Commitment Language
(MCL), has been developed for describing the
management policies that govern the behavior of
BAM components [10].

5. Event processing container

The event processing container (EPC) provides a
robust, scalable environment for integrating workflow
events and covers all steps that are required to transform
the these events into valuable business information. The
container approach allows the handling of a large number
of events that can require a complex processing logic.

Similar to Java technology for web applications, where
servlets and JSPs took the place of traditional CGI scripts,
our approach uses Event Adapter, ETLet, and Evaluator
(see Figure 4) components that replace traditional ETL
(Extraction, Transformation, Loading) solutions which
very often use scripts that are hard to maintain, scale, and
reuse.

Figure 4. Event processing container (EPC) –
architecture

ETL scripts are not suitable for an event-driven
environment where data extracts and data transformations
are very small and frequent, because the overhead for
starting the processes and combining the processing steps
can dominate the execution time. Another limitation of
ETL scripts is that they are written for a specific task in a
self-sustaining manner, and don’t provide any kind of
interfaces for data inputs and outputs. Because of this
constraint in the traditional approach, we use a container
to manage and optimize the event processing.

The EPC handles each workflow event with a
lightweight Java thread, rather than a heavyweight
operating system process. Figure 5 shows the internal
processing of workflow events. The components shown
with round boxes are components that are managed by the
EPC. The components shown with square boxes are
internal EPC components that are used to bind all
managed EPC components together. Please note that the
developers never see or have to deal with the internal
components. We show these internal components for
illustration purposes only.

This approach also simplifies the programming tasks
for developers who have to implement the logic for the
event processing, since the EPC takes responsibility for
various system-level services (such as threading, resource
management, transactions, caching, persistence, and so
on). In our approach, we extend this concept by adding
new container services, which are useful for the event
processing and can be leveraged by the developers. An
example of a container service is the evaluation service,
which significantly reduces the effort for evaluating
calculated process metrics. This arrangement leaves the
developer with a simplified development task and allows
the implementation details of the system and container
services to be reconfigured without changing the
components.

Figure 5. Multithreading within the event processing
container (EPC)

Figure 5 also shows the core components (shown as
round boxes) that are managed by the EPC: 1) Event
Adapters, 2) ETLets, and 3) Evaluators. Each of these
components must implement a certain interface that is
used by the EPC in order to manage the component’s
lifecycle. The EPC automatically instantiates these
components and calls the interface methods during the
components’ lifetime. Furthermore, each component has
its own deployment descriptor for the configuration
parameters. The EPC controls and monitors the event
processing by optimizing these configuration settings.

6. Process information factory

The main purpose of the process information factory is
to provide a data foundation for a process-driven decision
support system to monitor and improve the business
process continuously. It is a global process information
repository, which enables BI agents and process analysts
to access comprehensive information on business
processes very quickly, at different aggregation levels,
from different and multidimensional points of view, over a
long period of time, using a huge historic data basis
prepared for analyzing purposes to effectively support the
management of business processes. Figure 6 shows the
process information factory as part of an existing data
warehouse environment. The arrows in Figure 6 indicate a
flow of data or control among these components. Red
components and arrows highlight the extensions to a
conventional (passive) data warehouse environment. The
event processing container (EPC) ultimately transforms
on-the-fly workflow events into metrics that are stored in
the process data store or process warehouse. Furthermore,
the EPC also publishes information to the BI Agent Layer
for the analytical processing.

Figure 6. Process information factory as part of an
existing data warehouse environment

The process information factory consist of two
repositories: 1) the process warehouse which is part of the
enterprise data warehouse system and which is used for
storing a rich set of historical process data for the strategic
decision support and 2) the process data store, which
includes very detailed up-to-date process data of current
running processes and also allows real-time access for the
business intelligence agents. Note that process warehouse
and process data store are conceptually equivalent to
traditional data warehouses and operational data stores
(ODSs), respectively, with the only difference being that
they are used to store process- oriented and workflow
data. Thereby, the process information factory adds a
process perspective to an analytical environment.

7. Policy management system

The goal of the policy management system is to
monitor and track all the management agents that are
running within BAM. The idea is to have management
agents serve as sensors that monitor and deliver events to
policy management agents that are particularly interested
in the events related to policies. BAM situations are
captured by a policy management system and are
undertaken through evaluation. In most cases, policies are
modeled as situation-action pairs. As some situation
occurs, corresponding actions will be triggered. The
second functionality of a policy management system is to
maintain the management polices deployed to
management agents and other entities in BAM. For this
perspective, the policy management system will be

interested in such events as policy expiration and policy
update. The corresponding actions can be to re-deploy
management policies to management agents due to the
fact that the policies are changed. The third functionality
of the policy management system is to provide policy
details to interested agents via policy agents. A policy
agent is an agent that has access to the policy management
systems, and is able to collate and manipulate the policy
data obtained from policy management systems in order to
answer queries posed by users or management agents.

Figure 7. Policy lifecycle

The policy lifecycle for BAM consists of six basic life-
stages as shown in Figure 7. The basic stages are: policy
definition, policy activation, policy passivation, policy
deployment and configuration, policy enforcement and
policy termination.

1. Policy definition is the phase that a policy is created,
browsed and validated. Corresponding definitional
tools such as editor, browsers and policy verifiers can
be used by business analysts to input the different
policies that are to be active in the BAM system.

2. Policy deployment and configuration deploys a policy
into the policy target and configures the system
correspondingly. A set of automated configuration
utilities will simplify the tasks to be performed in this
phase, e.g., deployment scripts and configuration
management tools.

3. Policy enforcement is the stage when a policy is being
used to govern and constrain the behavior of target
BAM systems. Monitoring and reporting tools will
make policy makers to understand how the status of
policy enforcement and whether the policy has been
defined reasonably.

4. Policy activation is the phase when a policy is loaded
into BAM system waiting for further execution such
as deployment and enforcement. In this phase,
policies are active in the memory but have not been
committed to any activities yet.

5. Policy passivation is the phase when a policy is put to
persistent storage without any active activity. For

BAM, a policy repository is usually required as the
placeholder for passivated policies.

6. Policy termination is the phase when a policy ceases
to exist in the system.

Potentially, a policy can be bound to BAM at two
points of its lifecycle: (1) policy deployment &
configuration: it is called early binding between policy
and mechanism (BAM) since it is realized at the build
time; and (2) policy enforcement: it is called late binding
between policy and mechanism (BAM) since this binding
is realized at the run time of policy targets. A deployed
(configured) policy can be un-deployed (un-configured)
and rolled back to the policy activation phase. By the
same token, an enforced policy can be de-enforced and
transitions back to the policy activation phase. As
mentioned above, a business analyst can use management
tools to monitor the status of policy enforcement in the
policy target. If she thinks the policy does not meet her
business goals, she may stop the execution and transition
the policy into the policy definition phase in order to
modify that problematic policy.

With policy lifecycle in mind, we developed the high-
level policy architecture that is to be used to define
detailed policy components and services in later parts of
this paper. The policy architecture for BAM is built upon
the policy frameworks defined by both IETF [19] and
DMTF [20]. BAM Policy Framework consists of seven
basic elements as shown in Figure 8.

The basic elements are: the policy management tools,
the policy repository, the policy enforcement points, the
policy decision point, the policy execution instances, the
policy decision points and BAM Model Repository. The
policy management tool is used by a business analyst to
input the different BAM policies that are to be active in
BAM systems. The locations that can apply and execute
the different policies are known as the policy enforcement
points. The preferred way for the management tool and
policy targets to communicate is through a policy
repository. Instead of communicating directly with the
repository, a policy enforcement point can also use an
intermediary known as the policy decision point. The
policy repository is used to store the policies generated by
the management tools. The policy decision point is
responsible for interpreting the policies stored in the
repository and communicating them to the policy
enforcement point.

Figure 8. Policy architecture

8. Use case: supply chain management for
microelectronics manufacturing

In this section we give an example of a supply chain
management (SCM) system for microelectronic
manufacturing that uses the proposed BAM framework for
monitoring the supply chain operations. SCM decisions in
the semiconductor industry typically fall into one of four
decision tiers: strategic, tactical, operational, and
response (dispatch). The categories are based on the
planning horizon, the apparent time window for
opportunities, and the level of precision required in
delivering supply chain performance information.

1. The first decision tier, strategic scheduling, is driven by
the time frame or lead time required for the business
plan, the resource acquisition, and new product
introductions. In this tier, decision makers are
concerned with a set of problems that are three months
to several years in the future.

2. The second tier, tactical scheduling, deals with
problems the enterprise encounters in a week to three
months time period. Issues considered are made of
yields, cycle times, and binning percentages, delivery
dates estimated for firm orders, available ”outs" by
time buckets estimated for bulk products, and daily
going rates for schedule driven products are set.

3. The third tier, operational scheduling, deals with the
execution and achievement of plans for the current
week such as shipments or measured serviceability
levels. Tools typically used for supporting daily
activities are for material resource planning or
scheduling of production runs.

4. The fourth tier, real-time response, addresses the
problems of the next minute to a few hours by

responding to conditions as they emerge in real time
and accommodate variances from availability assumed
by systems in the plan creation and commitment
phases. Usually, analytics modules are used to generate
responses based on commitments, business policies,
and business rules. A real-time response could be
triggered due to a significant drop of revenue caused by
the cancellation of a large order.

In the following we describe a typical use case for
continuous demand-driven build plan and inventory
optimization in the domain of microelectronic
manufacturing. End-of-quarter revenue targets (per
module family) are released/updated after the meetings
among business line managers and executives. A business
line manager (BLM) has a pre-determined set of module
families for which he has financial responsibility and,
therefore, whose actual (accumulated) revenue and
revenue outlook (for remaining weeks in the current
quarter) (s)he is interested in tracking against the revenue
target of the current quarter. Whether the progression of
the accrued revenue is normal or below target is
determined by the system using a wineglass model [18].

Figure 9. Event processing container for processing
supply chain events

Figure 9 shows the EPC processing supply chain
events that are needed for the calculation of supply chain
metrics. The EPC includes various Event Adapters for
receiving messages from various business process (e.g.
order process, shipment process, planning process). The
Event Adapters unify these incoming supply chain events
into a standardized event format that will be used by the
ETLets to calculate the key performance indicators.

The EPC shown in Figure 9 calculates metrics about
inventory levels (Inventory ETLet), on-time delivery
(OTD ETLet), demand forecast (MDBia ETLet), and
revenue (Wineglass ETLet). The EventDataWriter ETLet
is used to store all incoming event data in the database.
All other ETLets focus on calculating the supply chain
metrics which are also stored in the database. In the
illustrated scenario, we use only agents for evaluating the

metrics and detecting business situations. Therefore, we
use an evaluator component as proxy for forwarding the
calculated metrics to the BI agents.

Figure 10. An example of a network of commitments

Based upon the aforementioned scenario, Figure 10
depicts a network of commitments to govern the
relationships among agents in BAM. The Sales Agent
detects the exceptional situations and notifies its
committed agent, i.e., Demand Agent, which will
consequently notify Recommendation Agent and Risk
Assessment Agent in sequence to obtain recommended
build plan(s) and necessary assessment such as inventory
cost, manufacturing cost and SLA measurement. Note that
commitment relationship may imply either event/situation
flows or data flows between commitment-related agents,
and the actions to be taken really depend on the definition
of the involved commitments, i.e., on the expectations,
actions and responses that are delineated in the
committed Agents.

The BAM management portal in Figure 11 presents
the unified view for the BAM user for monitoring all the
manufacturing processes and activities, manufacturing
exceptions, links to perform OLAP analysis, presents
recommended actions to manufacturing exceptions etc.

Figure 11. BAM management portal

Management clients can be in many forms -
management console, manufacturing portal, planning
system client, OLAP client, business process dashboard
and so on. Between the dashboard and the agent layer (see
Figure 2), there is a dashboard façade with the following
components: (1) Management Widgets that are
customized for specific domains; (2) User Bean Layer:
User beans are data containers and functional components
that are also specialized for specific domain. Examples are
charting controller, personal alert controller and event
controllers, tag libraries. Use beans are reusable
components that aid in building quick dashboards for each
domain; and (3) Service Bean Layer: Service beans are
connected to the agent layers and used to serve the
requests from dashboard users. This layer consists of
adaptors that connect to BAM components and convert all
requests to XML, which is then processed on by the user
beans and management widgets.

9. Conclusion and Future Work

In large organizations, huge amounts of data are
generated and consumed by business processes. Business
managers need up-to-date information to make timely and
sound business decisions. Conventional workflow
management systems and decision support systems do not
provide the low latencies needed for the decision making
in e-business environments. This paper described an
agent-based architecture with the aim of providing
continuous, real-time analytics for business processes. For
the analytical processing we introduced an agent
framework that is able to detect situations and exceptions
in a business environment, perform complex analytical
tasks and reflect on the gap between current situations and
desired management goals. We introduced the concept of
the event processing container which provides a robust,
scalable and high-performance event processing

environment and which is able to handle a large number
of workflow events in near real-time.

The work presented in this paper is part of a larger,
long-term research effort aiming to develop a Business
Process Intelligence platform for WFMSs. We are
building a distributed environment for EPCs that allows
them to work together in a server farm. We are also
developing an evaluation framework that allows existing
rule engines to be plugged into our architecture.

References

[1] Bouzeghoub, M., Fabret, E., Matulovic-Broque, M.
Modeling the Data Warehouse Refreshment Process
as a Workflow Application, DMDW 99, Heidelberg,
Germany, 1999.

[2] Bumpus, W., Sweitzer, J.W., Thompson, P.,
Westerinen, A.R., Williams, R.C., Common
Information Model: Implementing the Object Model
for Enterprise Management, John Wiley & Sons,
Dec. 1999.

[3] Brooks, R.A., A robust control system for a mobile
robot. IEEE Journal of Robotics and Automation,
2(1), 14-23, 1986.

[4] Buchmann, F., Meunier, R., Rohnerr, H.,
Sommerlad, P., and Stal, M., “A System of Patterns:
Pattern-Oriented Software Architecture,” New York:
Wiley, 1996.

[5] Geppert, A. and Tombros, D., Logging and Post-
Mortem Analysis of Workflow Executions based on
Event Histories. Proc. 3rd Intl. Conf. on Rules in
Database Systems (RIDS), LNCS 1312, Springer
Verlag, Heidelberg, Germany, pages 67-82, 1997.

[6] Graham, S. et al, Building Web Services with Java,
SAMS Publishing Co., 2002.

[7] Haeckel, S.H., and Slywotzky, A.J. Adaptive
Enterprise: Creating and Leading Sense-and-
Respond Organizations, Harvard Business School
Publisher, August, 1999.

[8] Autonomic Computing: IBM’s Perspective on the
State of Information Technology, IBM Research
External Web Site,
http://www.research.ibm.com/autonomic, 2002.

[9] Jablonski, S., Bussler, C., Workflow Management.
Modeling Concepts, Architecture, and
Implementation. Intl. Thomson Computer Press,
London, 1996.

[10] Jeng, J.J., Buckley, S., Chang, H., Chung J.Y.,
Kapoor, S., Kearney, J., Li, H., and Schiefer J.,

BAM: An Adaptive Platform for Managing Business
Process Solutions. Fifth International Conference on
Electronic Commerce Research (ICECR-5),
Montreal, Canada, 2002.

[11] Jennings, N. R., Faratin, P., Johnson, M. J., O'Brien,
P. and Wiegand, M. E. Using intelligent agents to
manage business processes, in Proceedings of the
First International Conference on The Practical
Application of Intelligent Agents and Multi-Agent
Technology (PAAM96), pp. 345-360. London, UK,
1996.

[12] Judge, D.W., Odgers B.R., Shepherdson J.W., Cui
Z., Agent Enhanced Workflow, BT Technical
Journal, 16:3, pp 79-85, 1998.

[13] Koksal, P., Alpinar, S. N., Dogac, A. Workflow
History Management, ACM Sigmod Record 27(1):
67-75, 1998.

[14] Lin, G. et al., The New Frontier: Sense and Respond
System for Global Value Chain Optimization, To be
published in OR/MS Today, May 2002.

[15] Sayal, M., Casati, F., Dayal, U., Shan M., Business
Process Cockpit, VLDB 2002, Peking, 2002.

[16] Sun Microsystems Inc. Java Management
Extensions Instrumentation and Agent Specification
(JSR77), July, 2000.

[17] Workflow Management Coalition Audit Data
Specification, Document Number WFMC-TC-1015,
1998.

[18] Wu, L. S.-Y., Hosking, J.R.M., Doll, J., Business
planning under uncertainty: Will we attain our goal?,
International J. of Forecasting, Vol. 8, 545-557,
1992.

[19] Distributed Management Task Force Policy
Working Group, Charter available at URL
http://www.dmtf.org/about/working/sla.php.

[20] Snir, Y, Ramberg, Y., Strassner, J., Cohen, R,
Moore, B., Policy QoS Information Model, IETF
Internet Draft, November, 2001.

