
 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 1 

Real-time Workflow Audit Data Integration into Data 
Warehouse Systems 

Josef Schiefer1, Jun-Jang Jeng1, Robert M. Bruckner2 

1 IBM Watson Research Center 
30 Saw Mill River Rd. 
Hawthorne, NY, 10532 

{josef.schiefer, jjjeng}@us.ibm.com 
 

2 Institute of Software Technology 
Vienna University of Technology 

Favoritenstr. 9-11 /188 
 A-1040 Vienna, Austria 

bruckner@ifs.tuwien.ac.at 

Abstract 

Workflow management systems are being increasingly used by many organizations to 
automate business processes and decrease costs. Audit trails from workflow management 
systems include significant amounts of information that can be used to analyze and monitor 
the performance of business processes in order to improve the efficiency. Traditional 
approaches for using workflow audit trail for decision support purposes are lacking in 
transforming the workflow audit trail in real-time to valuable business information. In this 
paper, we introduce a data warehousing approach for extracting, transforming, and 
evaluating workflow audit trail data with the aim of providing a solid data foundation for 
process-oriented decision support. We introduce an architecture that allows the propagation 
and transformation of audit data from workflow management systems in near real-time to a 
data warehouse system. The architecture takes full advantage of existing J2EE (Java 2 
Platform, Enterprise Edition) technology and uses an ETL container for providing a 
scalable, near real-time ETL environment for workflow audit trails. 

Keywords 

Workflow Management, Continuous Data Integration, Business Activity Monitoring, J2EE 
Containers 

1. Introduction 
Business Process Management Systems (BPMSs) are software solutions that support the 
management of the lifecycle of a business process. This includes the definition, execution and 
monitoring of business processes. For the execution of business processes, many 
organizations are increasingly using Workflow Management Systems (WFMSs) to improve 
the efficiency of their processes and to reduce costs. During the execution of the business 
process, WFMSs record many types of events, including the start and completion time of 
each activity, its input and output data, the assigned resources, and the outcome of the 



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 2 

execution. Major BPMSs and WFMSs provide comprehensive support for the early stages of 
the business process lifecycle but often lack capabilities for providing feedback and 
transparency about the process performance during execution time. Although WFMSs often 
log detailed information during the process execution, many BPMSs and WFMSs have 
difficulties in using this information for monitoring and analysis purposes. One reason for the 
limited capabilities is the lack of a broadly supported (industry) standard for workflow audit 
trail information, which is implemented by major Workflow Management Systems. Although 
there is a standard specification for the workflow audit trail in the reference model of the 
Workflow Management Coalition (1998), it is not support by most workflow management 
products. Therefore, up till recently, it has been very difficult for process analysts to use the 
workflow audit information to get a clear picture regarding the status and performance of 
business processes.  

Most WFMSs and BPMSs offer only very basic monitoring and analysis capabilities, such as 
the retrieval of status information about process instances or summary information about 
cycle times. For a more comprehensive analysis, users have to use reporting tools from third-
party vendors and write queries to retrieve data of interest. While this approach does provide 
basic reporting, it requires considerable configuration effort and assumes the existence of 
comprehensive knowledge of the process analysts to write reasonable queries. 

In order to overcome these limitations, we introduce in this paper a data warehousing 
approach for extracting and transforming workflow audit trail data with the aim of providing 
a solid data foundation for process-oriented decision support. We introduce an architecture 
that allows the propagation and transformation of data from WFMSs in near real-time to a 
data warehouse system.  

For a long time it was assumed that data in the data warehouse can lag at least a day if not a 
week or a month behind the actual operational data. That was based on the assumption that 
business decisions do not require up-to-date information but very rich historical data. 
Existing ETL (Extraction, Transformation, Loading) tools often rely on this assumption and 
achieve high efficiency in loading large amounts of data periodically into the data warehouse 
system. While this still holds true for a wide range of data warehouse applications, the new 
desire for monitoring information about business processes in real-time is breaking the long-
standing rule that data in a data warehouse is static except during the downtime for data 
loading. Workflow audit trail information is a good example for this trend because it provides 
the most value to the users and process analysts if it is available with minimal delays. A 
traditional data warehouse focuses on strategic decision support. A well-developed strategy is 
critical, but the ultimate value to an organization is only as good as its execution. Therefore, 
also tactical decision support is becoming increasingly important. A variety of architectural 
frameworks – such as Active Data Warehousing (Brobst & Ballinger 2000), the Corporate 
Information Factory (Inmon et al. 2001), and Zero-Latency Enterprises (Gartner Group 1998) 
– have emerged recognizing the importance of tactical decision support as an extension of 
traditional data warehouse capabilities.  

In this paper, we introduce an architecture that supports real-time integration of workflow 
audit trail information with the aim of propagating it continuously with minimal delay into a 
data warehouse system. The propagation of workflow audit trail involves several challenges: 

Real-time Data Propagation. Data propagation delays can significantly decrease the value 
of workflow metrics that are calculated from the workflow audit trail. The ultimate goal for 
the dissemination of workflow events should be a zero-latency between the time the moment 
the workflow has been recorded and the moment it is required for monitoring and analytical 



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 3 

purposes. A minimal latency for workflow metrics gives process analysts more accurate and 
detailed information about current business situations and exceptions and allows them to 
respond quicker to inefficiencies in the process. It further enables automated intelligent 
business operations that can use the information from the data warehouse system. 

Correlation of the Artifacts in the Workflow Audit Trail. The workflow audit trail 
includes event information about workitems (including information about resource 
assignments), activity instances and process instances. These runtime artifacts depend on 
each other and must be correlated accordingly during the data propagation when they are 
integrated into the data warehouse system. 

Multiple Aggregation Levels. During the integration of workflow audit trails, business 
metrics like cycle times, costs or other quality metrics are calculated. These workflow metrics 
can have dependencies on other low-level metrics. An example would be costs: the costs of 
workitems can be aggregated to activity costs that can be further aggregated to process costs. 
The ETL process must be able to coordinate the calculations of these metrics that belong to 
various aggregation levels. 

Adding Business Process Context. Every workflow event entails a business process context 
during its creation. When workflow events are propagated from WFMSs to data warehouse 
systems, they often include only key information of the business process context. During the 
calculation of workflow metrics, it is often necessary to enhance the workflow event data 
with additional information from other data sources. The integration process for workflow 
audit trails must be able to merge key information in the workflow audit trail with additional 
information from other data sources. 

Automated Response Mechanisms. The integration process for workflow audit trails can 
also be utilized for instant feedback to operational systems. Notifying the business of 
recommendations or automatically triggering the appropriate business operations based on the 
evaluation of calculated workflow metrics, can change the state of a business process.  

Adaptive Environment. New metrics and an additional business process context can result 
from changes of an existing business process. The data staging environment for workflow 
audit trail must be agile and adaptive to modifications of the operational environment. 

The remainder of this paper is organized as follows. In section 2, we discuss the contribution 
of this paper and related work. In section 3, we present an architecture for integrating 
workflow audit trail into data warehouse systems. In section 4, we introduce an ETL 
subsystem for processing workflow audit trail information. Section 5 discusses in detail the 
ETL container which is the core component for the workflow integration. In section 6, we 
show an ETL processing example for calculating cycle times. Finally, in section 7 we present 
our conclusion and discuss our future work.  

2. Contribution and Related Work  
Workflow controlling and workflow history management for business process monitoring 
have not been extensively studied in the research literature. Some approaches emphasize the 
need for integrating audit trail into data warehouse systems (e.g. the process data warehouse 
in Sayal et al. (2002)), others are limited to a smaller set of workflow history that is managed 
within the WFMS. To our knowledge there has been no work that thoroughly discusses the 
issues of propagating and transforming audit trail in near real-time to a data warehouse 
system to gain valuable business information. 



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 4 

Sayal et al. (2002) present a set of integrated tools that support business and IT users in 
managing process execution quality. These tools are able to understand and process the 
workflow audit trail from HP Process Manager (HPPM), and can load via a loader component 
into the process data warehouse. Sayal et al. provide a high-level architecture and a data 
model for the process data warehouse, but they do not describe the data loader in detail. They 
show the data loader as “black-box” and do not further discuss the issues of aggregating 
workflow data and feeding it into the process data warehouse. 

Zur Muehlen, M. (2002) provides a comprehensive overview about workflow controlling, but 
only discusses briefly the challenges of processing audit trail information. He discusses in 
detail audit trail formats from various workflow management systems, but does not show a 
solution for propagating and transforming these different audit trail formats.   

Bouzeghoub et al. (1999) discuss an approach for modeling the data refreshment processes as 
a workflow. They distinguish three types of data refreshments that are triggered by a timer or 
data conditions in the data warehouse system: 1) client-driven refreshment, when a user 
causes an update of the data warehouse information,  2) source-driven refreshment, when 
changes to the source data trigger a refreshment, and 3) ODS-driven refreshment, which is 
triggered by data changes in the operational data store. They further show a design and an 
implementation for data refreshments from various sources as a workflow. Although they use 
workflow technology for modeling and executing the ETL process, they do not address the 
challenges of processing workflow audit trail. 

An approach for history management of audit trail data from a distributed workflow system is 
discussed in Koksal et al. (1998). The paper describes the structure of the history objects 
determined according to the nature of the data and the processing needs, and the possible 
query processing strategies on these objects. These strategies show how to write queries for 
retrieving audit trail information. Unlike our approach, neither the transformation and 
aggregation of audit trail data nor its propagation into a data warehouse system are 
considered. 

Muth et al. (1999) describe an architecture of a light-weight workflow management system, 
consisting of a small system kernel with extensions for history management. The history 
management consists of two components: a database system for storing the history data and a 
library of sub-workflows handling the access to the history database. History management 
sub-workflows are specified as state and activity charts. The approach resolves aggregations 
of historical data during workflow execution and supports complex queries on this data. The 
workflow history serves simple monitoring as well as business process improvement 
purposes. Unlike our approach, which uses a data warehouse approach, Muth et al. select and 
aggregate historical data at runtime and the system is only designed for a limited amount of 
data. 

Kueng P. (1998) argues that workflow-based controlling is mainly technology-driven. The 
selection of process performance indicators is primarily influenced by the data, which can be 
gathered through the automated or semi-automated execution of activities by a WFMS and is 
therefore lacking the qualitative performance data and performance data about activities that 
are carried out manually. Our architecture addresses this issue and is able to merge audit trail 
data with other data sources, e.g. data from the human resource department, employee 
surveys etc.  

Our contribution in this paper is the introduction of an architecture that allows real-time 
workflow audit trail integration into an existing data warehouse environment. As a solution 



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 5 

for this problem, we are proposing an ETL container for managing Java components that 
provide an efficient way for performing, controlling and monitoring the steps required for the 
integration of a workflow audit trail. We present a detailed discussion about the issues that 
have to be considered for the processing and transforming of audit trail data and how to 
generate workflow metrics. We further introduce an active mechanism that can evaluate 
calculated workflow metrics and can instantly trigger business operations based on the 
evaluation results. To the best of our knowledge, there are no other approaches, which use 
container managed Java components for a continual and real-time workflow data 
propagation. 

3. Architecture – Process Information Factory 
In this section, we present our data warehouse architecture for monitoring and analyzing 
business processes. Please note, that the focus of this paper is the integration of workflow 
audit trail data. Data modeling, application for monitoring, workflow controlling issues are 
out of the scope of this paper and are discussed in other publications (Zur Muehlen, M. 2002, 
List et al. 2000).  

Our approach is based on the process information factory architecture that is shown in  
Figure 1. The main goal of the process information factory is to provide a data foundation for 
a process-driven decision support to monitor and improve the business process continuously. 
The process information factory consist of three major components: 1) the ETL container 
which is used for propagating and transforming workflow audit trail information, 2) the 
process warehouse which is part of the enterprise data warehouse system and is used for 
storing a rich set of historical workflow data for the strategic decision support and 3) the 
process data store, which includes very detailed up-to-date workflow data of currently 
running processes and can be used for tactical and operational decision support.  

 

 

Figure 1. Process Information Factory with ETL Container 

Note that process warehouse and process data store are conceptually equivalent to traditional 
data warehouses and operational data stores (ODSs) with the only difference that they are 
used to store workflow data and any process related information. Therefore, the process 
information factory adds a process perspective to an analytical environment. The process 
information factory has an open architecture that supports various source systems (open back-
ends) and various applications for a process-oriented decision support (open front-ends).  



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 6 

In this paper, we only want to focus our discussion on the ETL container component of the 
process information factory. The ETL container ultimately prepares the workflow audit trail 
for loading it into the data warehouse. A detailed description of the ETL container and the 
components that are managed by the ETL container can be found in section 5. 

4. ETL Subsystem for Workflow Audit Trail 
Figure 2 shows the ETL process for workflow audit trails that is supported by the ETL 
container. The figure shows the extraction, transformation and loading steps. Additionally, 
we included an evaluation step for workflow metrics that allows to evaluate workflow 
metrics immediately after they have been calculated. Based on the result of the evaluation, the 
ETL container can either send out notifications or trigger any kind of business operations.  

 

 

Figure 2. ETL  Process for  Workflow Audit Trail 

For the extraction step, we distinguish two ways of receiving audit trail data from the WFMS: 
1) reading the logs of the WFMS that are available in database tables or log files, or  
2) receiving workflow events that have been sent from the WFMS via messaging software. 
The major difference between the two options is that option 1 is a pull strategy for receiving 
the audit trail data, and option 2 is a push strategy. Sending audit trail data via messaging 
middleware has many advantages and is in our opinion the better option for implementing a 
real-time ETL solution for the workflow audit trail.  

Once the audit trail data is parsed and standardized, it is passed through a number of 
components that store all relevant information about workitems, activity instances and 
process instances, calculate and evaluate workflow metrics, and load it into dimension and 
fact tables of the data warehouse system. For the calculation of workflow metrics, the ETL 
container might also use information from other data sources. For instance, information about 
the customer satisfaction or performance data from business applications that have been 
invoked by the WFMS can significantly increase the business value of workflow metrics. 
Depending on the requirements, there may be additional steps to validate and filter audit trail 
data within the ETL process. 



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 7 

Workflow events (e.g. workitem events, activity events, process events) can require a very 
different kind of ETL processing. The processing of the same event type (e.g. activity events) 
might vary significantly between various processes. For example, a human resource process 
(e.g. hiring process) will include other workflow metrics than a typical order process. 
Therefore, the processing in the ETL layer can vary for the same event type although the 
events might come from the same workflow engine.  

Storing all details of the workflow audit trail in a historical database will result in huge 
databases and execution times for complex queries against this database. Therefore, it is very 
critical that the ETL process includes a selection and consolidation of the key business data 
within the workflow audit trail in order to avoid storing useless data for the monitoring or 
analysis.  

Furthermore, the ETL process must be able to handle complex metric calculations that can 
include aggregations of already calculated workflow metrics or merging the workflow audit 
trail with data from external data sources (e.g. customer survey information for computing the 
customer satisfaction). For instance, the costs of a business case (represented by a workflow 
instance) can be calculated by aggregating all costs that were caused by the activities of this 
business case. When a business case is completed, the ETL container can immediately start 
calculating the workflow metrics for the completed business case. 

Figure 3 shows the processing stages for populating the workflow metrics into the various 
fact tables. Some of the ETL processing steps can receive data from previous processing steps 
to be able to do some aggregations for this data. It is very critical that the ETL environment 
can effectively manage the dependencies of these processing steps.  

 

 

Figure 3. Populating Fact Tables 

In our approach, the ETL container automatically triggers the ETL processing logic via Java 
components, called ETLets, which are dedicated to the processing of a specific type of 
workflow event. The ETL container also ensures that the ETLets can access data from 
previous processing steps.  

During the processing of workflow audit trail, dimensional data will also be resolved or 
populated. All fact tables in Figure 3 are referencing a set of dimension tables. The foreign 
keys for referencing these dimension tables have to be resolved by either creating a reference 
to an existing record in a dimension table or by first populating a dimension record and then 
referencing this record. Which option to use depends on the type of dimension table. 
Dimension tables for resources and business objects often have to be populated during the 
processing of a workflow event. For instance, if a customer dimension table is referenced by a 



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 8 

fact table shown in Figure 3, and a new customer is part of the workflow transactions, a new 
customer record has to be created in the customer dimension table during the processing of 
the workflow event to avoid inconsistencies and non-valid references. Figure 4 shows 
different types of dimension tables that are populated during the workflow audit trail 
processing. Please note that the different types of resolvers can include complex logic to 
correctly reference or populate dimensional data and to maintain the history of this data. A 
detailed discussion about modeling and managing dimensions can be found in Kimball et al. 
(1998). 

 

 

Figure 4. Resolving and Populating Dimensional Data 

A detailed discussion of the schema for fact tables and dimension tables for workflow data is 
out of the scope of this paper. Zur Muehlen, M. (2002) and List et al. (2000) give a 
comprehensive description of data warehouse models for workflow audit trail data. 

5. ETL Container 
The ETL container is a part of a Java application server that provides services for the 
execution and monitoring of the ETL tasks. The ETL container complies Sun’s J2EE (Java 2 
Platform, Enterprise Edition) architecture and provides a robust, scalable and high-
performance ETL environment, which is able to handle a large number of small data extracts 
or events that can require a complex processing logic. Similar to Java technology for web 
applications, where servlets and JSPs took the place of traditional CGI scripts, our approach 
uses Event Adapter, ETLet, and Evaluator components (see Figure 5) that replace traditional 
ETL scripts, which are often hard to maintain, scale, and reuse.   

ETL scripts are not suitable for an event-driven environment where data extracts and data 
transformations are very small and frequent, because the overhead for starting the processes 
and combining the processing steps can dominate the execution time. Because of this 
constraint in the traditional approach, we use the ETL container to manage and optimize the 
ETL processing. The ETL container handles each workflow event by a lightweight Java 
thread, rather than a heavyweight operating system process. This approach also simplifies the 
programming tasks for developers who have to implement the logic for the workflow event 
processing, since the ETL container takes responsibility for various system-level services 
(such as threading, resource management, transactions, caching, persistence, and so on). In 
our approach, we extend this concept by adding new container services, which are useful for 
the audit trail processing and can be leveraged by the developers. An example of a container 
services is the evaluation service, which significantly reduces the effort for evaluating 



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 9 

calculated workflow metrics. This arrangement leaves the developer with a simplified 
development task and allows the implementation details of the system and container services 
to be reconfigured without changing the components. 

 

 

Figure 5. ETL Container for Processing Workflow Events 

Figure 5 shows the core ETL components that are managed by the ETL container: 1) Event 
Adapters, 2) ETLets, and 3) Evaluators. Each of these components must implement a certain 
interface that is used by the ETL container in order to manage the component. The ETL 
container automatically instantiates these components and calls the interface methods during 
the components’ lifetime. Figure 6 shows the component interfaces with some sample 
implementations. 

Every incoming event source requires an Event Adapter, which receives and dequeues the 
messages and dispatches them in a standardized event format for a further ETL processing. 
The purpose of Event Adapters is to unify the different event formats from various WFMSs. 
After the dispatching of the workflow events in the Event Adapter the ETL container assigns 
each event a separate thread for the ETL processing. After assigning the thread, the ETL 
container calls the ETLets that do the ETL processing. For one event type (e.g. activity 
events), there might be several ETLets that are executed. Please note, that for the execution of 
all ETL processing steps no intermediary storage is required. The ETLet components must 
implement the ETLet interface which includes the runETL() method. The ETL developers 
have to implement this method with the ETL processing logic for the workflow events. The 
ETLet processing can include the calculation of workflow metrics and storing these metrics 
in the process data store or the process warehouse. ETLets can also publish the workflow 
metrics to allow the ETL container to pass these metrics to Evaluator components that have 
subscribed to the metric type. The Evaluator components can be either implemented by the 
ETL developers or they forward the evaluation requests to rule engines for more sophisticated 
evaluations. 

 



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 10 

 

Figure 6. Interfaces/Classes of the ETL Components 

Figure 7 shows the internal processing of workflow events. The components shown with 
round boxes are the ETL components that are managed by the ETL container and have to be 
provided by the ETL developers. The components shown with square boxes are internal ETL 
container components that are used to bind all ETL components together. Please note that 
ETL developers never see or have to deal with these internal components. We show these 
internal components only for illustration purposes. 

 

 

Figure 7. Multithreading within the ETL Container 



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 11 

6. ETL Processing Example 
In this section, we show a simple example of an ETL application with an ETLet and an 
Evaluator for calculating and evaluating the cycle time of a process instance. The ETLet in 
our example calculates the cycle times by processing the PROCESS_COMPLETED 
workflow event. The ETLet implementation shown in Figure 8 has a method called runETL() 
that does the processing of workflow events.  

Figure 8.  ETLet Example 

The runETL() method calculates the cycle time by extracting the timestamp of the 
PROCESS_COMPLETED event and determining the time differences between the 
PROCESS_STARTED event of the same process instance. The PROCESS_STARTED event 
is retrieved from a persistent cache that contains all historical events that have been emitted 
from currently running workflow instances. After calculating the cycle time, the ETLet opens 
a pooled database connection, writes the cycle time and some other attributes of the received 

public class CycleTimeETLet extends DBETLetBase { 

  PersistentCache persistentCache = new PersistentCache(); 

  ... 

  // ETL processing for the events PROCESS_STARTED and PROCESS_COMPLETED 

  public void runETL(WorkflowEvent event, MetricPublisher metricPublisher) throws Exception 

  { 

    if(event.getEventID().equals(“PROCESS_STARTED”)) { 

       persistentCache.put(event.getProcessInstanceID(),event); 

    } 

    if(event.getEventID().equals(“PROCESS_COMPLETED”)) { 

      WorkflowEvent startEvent = persistentCache.get(event.getProcessInstanceID()); 

      // Calculate the cycle time in seconds 

      int cycleTime = (event.getTimeCreated().getTime() –  

                      startEvent.getTimeCreated().getTime())/1000; 

      // Store the cycle time in the database 

      Connection con = getDBConnection(); 

      PreparedStatement prepStmt = con.prepareStatement( 

                                   "INSERT INTO fact_table set  cycle_time=?, ..."); 

      prepStmt.setInt(1, cycleTime); 

      prepStmt.executeUpdate(); 

      ... 

      prepStmt.close(); 

      closeDBConnection(); 

 

      // Publish the cycle time metric 

      HashMap metricMetaData = new HashMap(); 

      metricMetaData.put(“PID”,event.getProcessInstanceID()); 

      metricPublisher.publish(“CycleTime”, new Integer(cycleTime), metricMetaData); 

 

      // Cleanup 

      persistentCache.remove(startEvent.getProcessInstanceID()); 

    } 

  } 

  public boolean failed(WorkflowEvent event, Exception exception) { 

      // ETL Container will automatically store events and exceptions in an error table 

      return false;  

  } 

} 



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 12 

event message into the fact table of a data warehouse and then closes the connection. Finally, 
the ETLet publishes the calculated cycle time that allows the ETL container to forward it to 
Evaluator components for a further evaluation. Note that there is no try-catch block in the 
source code. The ETL container manages exception handling, database connection pooling, 
and other administrative tasks automatically. If an exception is thrown during runtime, the 
ETL container will automatically call the failed() method of the same ETLet. If the failed() 
method is not able to handle the exception, it can return false which tells the ETL container to 
store the event and exception information in a separate error table for a manual correction of 
the problem at later time. 

Figure 9.  Evaluator Example 

Figure 9 shows an example of an implementation for an Evaluator in the above scenario. The 
Evaluator compares the cycle time with an upper limit that is specified in the deployment 
descriptor. 

Figure 10 shows the sections in the deployment descriptor for the aforementioned ETLet and 
the Evaluator. The ETLet section carries information about the ETLet name, the 
implementation class, the triggering events, and the published metrics. The Evaluator section 
contains information about the Evaluator name, the implementation class, the upper limit for 
the cycle times and the name of the evaluated metrics. The ETL container uses the 
information from these sections for instantiating and initializing the ETL components. The 
deployment descriptor includes many other parameters that are not shown in Figure 10 (e.g. 
database configuration for the error tables, global parameters, concurrency control parameters 
of workflow events, etc.).  

 

 

public class CycleTimeEvaluator extends MetricEvaluator { 

  int upperLimit; 

  static Logger logger = ETLLogger.getLogger(CycleTimeEvaluator.class); 

 

   // Evaluates the cycle times 

   public void evaluate(String metricName, Object metricValue, Map metricMetaData) { 

      if(metricName.equals(“CycleTime”)) { 

         if(((Integer)metricValue).intValue() > upperLimit) { 

            logger.warn(“Process instance “ + metricMetaData.get(“PID”) +  

                        ” exceeded upper limit.”); 

} 

      } 

    } 

    public void init(MetricEvaluatorConfig config) { 

        super.init(config); 

        upperLimit = Integer.parseInt(config.getInitParameter("CycleTimeUpperLimit")); 

    } 

} 



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 13 

Figure 10.  Deployment Descriptor Example 

7. Conclusion and Future Work 
A near real-time propagation of workflow audit data is very critical, because it allows 
workflow participants and process analysts an early detection of weaknesses and problems in 
the process execution. In this paper, we discussed the challenging issues of integrating 
workflow audit trail data into data warehouse systems. We introduced the concept of an ETL 
container that enables a near real-time data integration and provides services for the 
extraction, parsing and translation of workflow audit trail data. The main advantages of the 
ETL container are summarized as follows:  

1. Clean separation of the extraction logic, transformation logic and evaluation logic,  

2. Event Adapters are used to standardize the workflow events that makes the ETL 
processing logic less complex and more reusable,  

3. Java components (called ETLets) are used for the ETL processing that can include 
complex calculations and aggregations of workflow metrics,  

4. Mechanism for evaluating calculated workflow metrics, and  

5. Usage of lightweight Java threads for the event processing to support the processing of a 
large number of workflow events concurrently in near real-time.  

To the best of our knowledge, we have seen no other approach, which uses container 
managed Java components for a near real-time integration of workflow events. 

... 

<!-- ETLet DD Section --> 

<ETLet> 

  <name>CycleTimeETLet</name> 

  <impl-class>CycleTimeETLet</impl-class> 

  <ETLet-triggers> 

      <event-trigger event-id="PROCESS_STARTED"/> 

      <event-trigger event-id="PROCESS_COMPLETED"/> 

  </ETLet-triggers> 

  <published-metrics> 

     <metric-name>CycleTime</metric-name> 

   </published-metrics> 

</ETLet> 

... 

<!-- Evaluator DD Section --> 

<metric-evaluator> 

  <name>CycleTimeEvaluator</name> 

  <impl-class>CycleTimeEvaluator</impl-class> 

  <init-param> 

     <param-name>CycleTimeUpperLimit</param-name> 

     <param-value>86400</param-value> 

  </init-param> 

  <evaluated-metrics> 

      <metric-name>CycleTime</metric-name> 

  </evaluated-metrics> 

</metric-evaluator> 

... 



 Real-time Workflow Audit Data Integration into Data Warehouse Systems 

Page 14 

There are several future works on this research. We are building a distributed environment for 
ETL containers that allows them to work together in a server farm. We are also developing an 
evaluation framework that allows rule engines to be plugged into the ETL container for more 
dynamic metric calculation and evaluation. Furthermore, we want to add new container 
services, which are useful for ETL developers, such as services for caching, concurrency 
control, and security. 

References 
Bouzeghoub, M., Fabret, E., Matulovic-Broque, M. (1999), ‘Modeling the Data Warehouse 

Refreshment Process as a Workflow Application’, DMDW 99, Heidelberg, Germany. 

Brobst, S. A. and Ballinger, C. (2000), ‘Active Data Warehousing’, Whitepaper EB–1327, 
NCR. 

Gartner Group (1998), ‘Introducing the Zero-Latency Enterprise’, Research Note COM-04-
3770. 

Inmon, W. H, Imhoff, C., Sousa, R., (2001), Corporate Information Factory, Second 
Edition, J.Wiley and Sons, New York. 

Kimball, R., Reeves, L., Ross, M., Thornthwaite, W. (1998), The Data Warehouse Lifecycle 
Toolkit, John Wiley & Sons. 

Koksal, P., Alpinar, S. N., Dogac, A. (1998), ‘Workflow History Management’, ACM 
Sigmod Record 27(1): 67-75. 

Kueng, P. (1998), ‘Supporting BPR through a Process Performance Measurement System’, 
Business Information Technology Management, New Delhi. 

List, B., Schiefer, J., Tjoa A M., Quirchmayr G. (2000), ‘A Generic Data Model for the 
Process Warehouse - An Approach fzor Multidimensional Business Process Analysis’, 
Selected Aspects of Knowledge Discovery for Business Information Systems, Kluwer 
Academic Publishers, Boston, USA. 

Zur Muehlen, M. (2002), ‘Workflow-based Process Controlling’, PhD Thesis, Muenster, 
Germany. 

Muth, P., Weissenfels, J., Gillmann, M., Weikum, G. (1999), ‘Workflow History 
Management in Virutal Enterprises Using a Lightweight Workflow Management 
System’, RIDE99, Sydney, Australia. 

Sayal, M., Casati, F., Dayal, U., Shan M. (2002), ‘Business Process Cockpit’, VLDB 2002, 
Peking. 

Workflow Management Coalition (1998), Audit Data Specification. 


