
Building Standard-Based
Business Processes
with Web Services

Josef Schiefer

Vienna, November 2004

2

Agenda

Block 1
» Motivation/Introduction
» Orchestration vs Choreography
» BPEL4WS - Basic Constructs

› Partner Links
› Main Flow Constructs
› Message Correlation
› Compensation Handlers
› Fault Handlers
› Event Handlers

» Q&A

Block 2
» Details to all BPEL4WS Constructs
» Demo with Oracle BPEL Process Manager
» Conclusion + Future Trends
» Business Process Monitoring

with Senactive InTime
» Q&A

» “Diplomarbeitsthemen” in the area of
business process management & monitoring

3

Please interrupt me if you have questions!!

4

Integration…

5

Coordination…

6

Motivation/IntroductionMotivation/Introduction

7

Web Services Meet Business Processes

Web
Service 1

Web
Service 2

Web
Service 3

Web
Service 4

Web
Service 5

Web
Service n

8

eXtendBank – The OLD Loan Application System

Customer eXtendBank

Loan Officer

1. Fill in Loan
Application at Loan
Department

2. Loan Officer enters
loan information
(3270 emulator)

CICS

3. Requests FAX
Credit Report

5. Makes a decision
on Loan Application

4. Makes decision as
to whether this Loan
application needs
approval.

6. Loan Officer
reserves Funds

7.Sends email to Assess
Business Risk –
(Government Watch List)

8. Notifies customer

Business Analyst
(Rules change frequently)

Developer

Loan Officer

Loan Officer Loan Officer Loan Officer Loan OfficerBank Manager

Application
Server

9

eXtendBank: The new QuickLoan Process

Pre-
Approved?

YES

NO

Reserve
Funds

Loan
Officer

Approval

Assess
Loan
Risk

Approved?
Send

Confirmation
Email

YES

NO

Too
Risky?

YES

NO

Send
Risk Rejection

Email
End

Service (CICS)

Service (Web)

Service (J2EE) Service (Web)

Service (JavaMail)

Service (JavaMail)

Service
(Human Interaction)

Create
Loan
App

Start

Credit
Check Next

Send
Rejection

Email
End Create Loan

Account

Service (WBI Adapter)

10

Business Process Challenges

» Coordinate asynchronous communication between services
» Correlate message exchanges between parties
» Implement parallel processing of activities
» Manipulate/transform data between partner interactions
» Support for long running business transactions and activities
» Provide consistent exception handling
» …

11

Recent History of Business Process Standards

2000/05

XLang
(Microsoft)

2001/03

BPML
(Intallio et al)

2001/05

WSFL
(IBM)

2001/06

BPSS
(ebXML)

2002/03

BPEL4WS 1.0
(IBM, Microsoft)

BPEL4WS 1.1
(OASIS)

2002/06 2003/01

WS-Choreography
(W3C)

2003/04

WSCI
(Sun et al)

WSCL
(HP)

2002/08

12

Business Process Execution Language for Web Services (BPEL4WS)

Version 1.0 released by IBM, Microsoft and BEA in August 2002
• Accompanied by WS-Coordination, WS-Transaction

Version 1.1 submitted to OASIS April 2003
• BPEL4WS � WS-BPEL

XML language for describing business processes based on Web services
• Convergence of XLANG (Microsoft) and WSFL (IBM)

Unprecedented industry consensus
• IBM, Microsoft, Oracle, Sun, BEA, SAP, Siebel …

13

Interplay of BPEL4WS, Web Service, UDDI, WSDL, SOAP

14

Web Service Stack

BPEL4WSProcess/Collaboration
Modeling Definitions

Web Services
Choreography Definitions

Current Web Services
Stack

WSCI, W3C Web Services
Choreography

WSDL, SOAP, Messaging,
Discovery, etc.

BPEL4WS is on Top of the Web Service Stack

15

Das BPEL4WS Prozessmodell basiert auf dem Service-Modell von WSDL 1.1

WSDL specifies a hierarchy for describing Web Services characteristics in an abstract form:

Operations eg: Purchase Order Status Query

Port Type
(“Interface” in 2.0) eg: Purchase Order Interface

Messages
eg: Submit Purchase Order

Number, Receive Status

Parts eg: Purchase Order Number, Status

16

Standards Building Blocks of BPEL

Description

HTTP,IIOP, JMS, SMTP Transport

XML
Message

SOAP

WSDL

UDDI Discovery

Transactions

CoordinationWS-SecurityWS-Reliability Quality of
Service

Choreography – WSCI

Business
Processes

Context

DescriptionM
an

ag
em

en
t

Orchestration – BPEL4WS

17

Value Proposition

Portable business processes
» Built on top of an interoperable

infrastructure of Web Services

Industry wide language for business
processes

» Common skill set and language for
developers

Choice of process engines
» Standards lead to competitive offerings

BPEL4WS will replace proprietary Workflow Models
will become the preferred choice for process automation

18

Orchestration vs
Choreography

Orchestration vs
Choreography

19

Orchestration vs Choreography

Orchestration
» An executable business process describing a flow from the perspective and under control

of a single endpoint (commonly: Workflow)

Choreography
» The observable public exchange of messages, rules of interaction and agreements

between two or more business process endpoints

20

Sample Business Process: Purchase Order

Sample Purchase Order

Purchase Order Request

Purchase Order Acknowledgement

Purchase Order Response

Business
“A”

Business
“B”

21

From a Choreography Perspective

PO Request
Send
PO

Receive PO
Ack

Receive PO
Response

Receive
PO

Send
PO Ack

Send PO
Response

PO Acknowledgement

PO Response

Choreography – The observable public exchange of messages

Public Process

Business A Business B

22

From an Orchestration Perspective

Send
PO

Receive PO
Ack

Receive PO
Response

Transform

Transform

From ERP

To ERP

PO Request

PO Acknowledgement

PO Response

Orchestration – A private executable business process

Private Process
Business A BPEL Workflow

23

BPEL4WS
Basic Constructs

BPEL4WS
Basic Constructs

24

BPEL Process
Meta Model

25

BPEL4WS Overall Structure

26

BPEL Scenario Structure

<process>
<!– Definition and roles of process participants -->
<partnerLinks> ... </partnerLinks>
<!- Data/state used within the process -->
<variables> ... </variables>
<!- Properties that enable conversations -->
<correlationSets> ... </correlationSets>
<!- Exception handling -->
<faultHandlers> ... </faultHandlers>
<!- Error recovery – undoing actions -->
<compensationHandlers> ... </compensationHandlers>
<!- Concurrent events with process itself -->
<eventHandlers> ... </eventHandlers>
<!- Business process flow -->
(activities)*

</process>

27

BPEL Activity
Meta Model

Switch

28

Generate a fault from inside the
business process

Immediately terminate the behavior of
a business process instance

Wait for a given time period or until a
certain time has passed

Insert a "no-op" instruction into a
business process

BPEL4WS Basic Activities

Do a blocking wait for a matching
message to arrive

Send a message in reply to a
message that was received through a
Receive

Invoke a one-way or request-
response operation on a portType
offered by a partner

Update the values of variables or
partner links with new data

29

Block and wait for a suitable message to
arrive or for a time-out alarm to go off

Specify one or more activities to be
performed concurrently

Define a nested activity with its own
associated variables, fault handlers, and
compensation handler

BPEL4WS Structured Activities

Collection of activities to be
performed sequentially in lexical
order

Select exactly one branch of
activity from a set of choices

Indicate that an activity is to be
repeated until a certain success
criteria has been met

30

BPEL4WS is capable of modeling complex business processes

The following is a BPEL4WS process for handling a purchase order:

“Production
Scheduling”

portType

“Shipping
Services”
portType

“Invoice
Services”
portType“Purchase

Order”
portType operation

operation

message

<portType name=“schedulingPT”
<operation name=“requestProductionScheduling”>

<input message=“pos:POMessage”/>
</operation>
<operation name=“sendShippingSchedule”>

<input message=“pos:scheduleMessage”/>
</operation>

</portType>

“Initiate
Production

Scheduling”
operation

“Complete
Production

Scheduling”
operation

31

Partner LinksPartner Links

32

Partner, Partner Links, Partner Link Types, Endpoint References

»Model peer-to-peer conversational relationships with partners
»Define interaction channels between partners
»Partner Link Types: Characterize relationships between two services

by defining the „roles“ played by each of the services and specifying the
portType provided by each service

»Partner Links: Are used to represent interactions between a service
and each of the parties with which it interacts

»Endpoint Reference: Selection of service providers and invocation of
their operations. Can be used in Partner Links.

»Partners: A subset of the partner links of the process

33

Partner Link Types, Partner Links

Partner Link Types

<partnerLinkType
name="BuyerSellerLink">

<role name="Buyer">
<portType name="BuyerPT"/>

</role>
<role name="Seller">

<portType name="SellerPT"/>
</role>

</partnerLinkType>

Partner Links

<partnerLinks>
<partnerLink

name="buying"
partnerLinkType="BuyerSellerLink"
myRole="Buyer"
partnerRole="Seller"/>

</partnerLinks>

Buyer
(BuyerPT)

BuyerSellerLink

Seller

buying

Buyer

Process Web Service

Seller
(SellerPT)

34

Partner Links

Using partner links in the <invoke> activity:
<invoke
partnerLink="buying"
portType="SellerPT"
operation="buy"
inputVariable="itemid"
outputVariable="response"/>

Web Service
(SellerPT)

buy(itemid)
Process
(BuyerPT)

buying

response

35

Partner Links

Incoming calls with blocking <receive> activity
»Creates a new process instance

<receive partnerLink="selling” portType="SellerPT"
operation="getAmount" variable="itemid"
createInstance="yes"/>

Result via <reply> activity
<reply partnerLink="selling" portType="SellerPT"
operation="buy" variable="price"/>

Web Service
(SellerPT)

getAmount(itemid)

selling

price

Process
(BuyerPT)

36

Partner Links

Partner links define the messages and port types used in the interactions in both directions, along with role names

“Shipping”
partner link

“Invoicing”
partner link

“Scheduling”
partner link

“Purchasing”
partner link

<partnerLink name="scheduling"
partnerLinkType="lns:schedulingLT"

partnerRole="schedulingService"/>

<plnk:partnerLinkType name="schedulingLT">
<plnk:role name="schedulingService">

<plnk:portType name="pos:schedulingPT"/>
</plnk:role>

</plnk:partnerLinkType>

The portType
used in the
partner link

37

Endpoint References

BPEL4WS uses “endpoint references” for dynamic selection of service providers and
invocation of their operations

The relevant information about a partner service can be set up as part of business process deployment
� This is a more “static” approach

However, it is also possible to select and assign partner services dynamically

BPEL4WS leverages the WS-Addressing specification for this capability
� WS-Addressing defines a standard representation for endpoint references that incorporates information from a WSDL

description as well as policy information:

<wsa:EndpointReference xmlns:wsa="...">
<wsa:Address>http://www.someendpoint.com</wsa:Address>
<wsa:PortType>PurchaseOrderPortType</wsa:PortType>

</wsa:EndpointReference>
The portType

associated with
the address

38

Main Flow ConstructsMain Flow Constructs

39

The purchase order example uses all three constructs

“Receive”
construct

“Flow”
construct

“Reply”
construct

Main BPEL4WS constructs: “Receive”, “Flow” and “Reply” 1/3

40

Main BPEL4WS constructs: “Receive”, “Flow” and “Reply” 2/3

The receive construct allows a process to do a blocking wait for a
matching message to arrive

<receive partnerLink="purchasing"
portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="PO">

</receive>

The flow construct allows one or more activities
to be performed concurrently

Wait to
receive a
purchase

order on the
“Purchasing”
partner link

Represents
the purchase

order
message

41

The reply construct allows a process to send a message in reply
to a message that was received through a <receive>

<reply partnerLink="purchasing"
portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder"
variable=“Invoice">

</reply>

Send invoice
on the

“Purchasing”
partner link

Represents
the invoice
message

Main BPEL4WS constructs: “Receive”, “Flow” and “Reply” 3/3

42

Modeling dependencies between activities

There are several dependencies in the purchase order example

Cannot
complete price
calculation until

shipper is
determined

Cannot
complete

production
scheduling until

shipping
logistics are

arranged

43

The synchronization dependencies between concurrent tasks are
expressed by using “links” to connect them 1/2

Dependency links have to be defined in the <links> section:

<flow>
<links>

<link name="ship-to-invoice"/>
<link name="ship-to-scheduling"/>

</links>

... activities use the links as source and targets

</flow>

44

The synchronization dependencies between concurrent tasks are
expressed by using “links” to connect them 2/2

The following represents the dependency of the price calculation on the shipper selected:

<invoke partnerLink=“shipping"
portType="lns:shippingPT"
operation=“requestShipping"
inputVariable="shippingRequest">
outputVariable="shippingInfo">

<source linkName="ship-to-invoice"/>
</invoke>

<invoke partnerLink=“invoicing"
portType="lns:computePricePT"
operation=“sendShippingPrice"
inputVariable="shippingInfo">

<target linkName="ship-to-invoice"/>
</invoke>

This
represents
the “Decide
on Shipper”

activity

This represents
the “Complete

Price
Calculation”

activity

The common link
name represents a

dependency
between the two

activities

The common link
name represents a

dependency
between the two

activities

45

Message CorrelationMessage Correlation

46

Message correlation involves the association of two or more
messages with each other in an asynchronous environment

This may be done by associating contents in a given message with its
correlating message
� For example, in a purchase order/invoice scenario, the invoice may contain the

corresponding purchase order number

<PurchaseOrder>
<PurchaseOrderNumber>
<PurchaseOrderDate>

........
</PurchaseOrder>

Purchase Order:

<Invoice>
<InvoiceNumber>
<InvoiceDate>
<PurchaseOrderNumber>

........
</Invoice>

Invoice:

Purchase order
number is common
in both messages

47

BPEL4WS represents message correlations using “correlation sets”

A correlation set contains a set of properties shared by all messages in a correlated group
<receive partnerLink="Buyer" portType="SP:PurchasingPT"

operation="AsyncPurchase" variable="PO">
<correlations>

<correlation set="PurchaseOrder" initiate="yes">
</correlations>

</receive>
<invoke partnerLink="Buyer" portType="SP:BuyerPT"

operation="AsyncPurchaseResponse" inputVariable="POResponse">
<correlations>

<correlation set="PurchaseOrder" initiate="no" pattern="out">
<correlation set="Invoice" initiate="yes" pattern="out">

</correlations>
</invoke>

<correlationSet name="PurchaseOrder"
properties="cor:customerID cor:orderNumber"/>

<correlationSet name="Invoice"
properties="cor:vendorID cor:invoiceNumber"/>

48

VariablesVariables

49

Variables

Messages sent and received from partners
» Persisted for long running interactions
» Defined in WSDL types and messages

Customer
Service

Process

<A>
<variable> <activity>

<activity>

Persist Persist/
Retrieve

Customer
Service

Persist/
Retrieve

Persist/
Retrieve

<variable>

50

Variables in BPEL

<variables>
<variable name=“PO” messageType=“lns:POMessage”/>
<variable name=“Invoice” messageType=“lns:InvMessage”/>
<variable name=“POFault” messageType=“lns:orderFaultType”/>

</variables>

<message name=“POMessage”>
<part name=“customerInfo” type=“sns:customerInfo”/>
<part name=“purchaseOrder” type=“sns:purchaseOrder”/>

</message>
<message name="InvMessage">

<part name=“IVC” type=“sns:Invoice”/>
</message>
<message name=“orderFaultType”>
<part name=“problemInfo” type=“xsd:string”/>

</message>

Purchase Process WSDL:

BPEL:

51

How is Data Manipulation Done?

Using <assign> and <copy>, data can be copied and manipulated between variables
<copy> supports XPath queries to sub-select data

<assign>
<copy>
<from variable="PO" part="customerInfo"/>
<to variable="creditRequest" part="customerInfo"/>
</copy>
</assign>

52

Compensation HandlersCompensation Handlers

53

Long Running Transactions and Compensation

Undo
Reserve

Inventory

<scope>

</scope>

• ReserveInventory
• CancelReserveInv

InventoryService

• CheckCredit
• ChargeHoldFee
• CancelHoldFee

CreditService

Undo
Charge

Hold Fee

54

Long Running Transactions and Compensation Handlers

Submit
Purchase

Order

Process
Purchase

Order
Check

Inventory

Order
From

Supplier
User

Cancels!

Consider a situation in which a user cancels a purchase order:

In this situation, it is not possible to lock system resources (ex: database
records) for extended periods of time
� Therefore, the partial work must be undone as best as possible

Revert back to original state

55

Compensation Handlers in BPEL

<scope>
<compensationHandler>
<invoke partnerLink="Seller" portType="SP:Purchasing"

operation="CancelPurchase"
inputVariable="getResponse"
outputVariable="getConfirmation">

<correlations>
<correlation set="PurchaseOrder" pattern="out"/>

</correlations>
</invoke>

</compensationHandler>
<invoke partnerLink="Seller" portType="SP:Purchasing"

operation="SyncPurchase"
inputVariable="sendPO"
outputVariable="getResponse">

<correlations>
<correlation set="PurchaseOrder" initiate="yes" pattern="out"/>

</correlations>
</invoke>

</scope>

56

Fault HandlersFault Handlers

57

Exception Handling in BPEL

<faultHandlers> catch exceptions based on a fault name and fault variables
Fault Handlers can perform arbitrary activities upon invocation

<process>
...
<scope>

<faultHandlers>
<catch faultName="lns:cannotCompleteOrder"

faultVariable="POFault">
<reply partnerLink="customer"

portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="POFault"
faultName="cannotCompleteOrder"/>

</catch>
<catchAll>

<empty/>
</catchAll>

</faultHandlers>
... other activities

</scope>
</process>

<throw faultName="lns:cannotCompleteOrder“ variable=“POFault”/>

58

Event HandlersEvent Handlers

59

Event Handlers in BPEL

<eventHandlers> are invoked concurrently when certain events occur

There are two types of events: Message Events and Alarm Events

Message Events: Event that waits for a message to arrive
<process name="orderCar">

...
<eventHandlers>

<onMessage partnerLink="buyer" portType="car" operation="cancel"
variable="cancelDetails">

<terminate/>
</onMessage>
...

</eventHandlers>
...

</process>

60

Event Handlers in BPEL

Alarm Events: Define timeout events

<process name="orderCar" xmlns:def="http://www.example.com/wsdl/example" ...>
...

<eventHandlers>
<onAlarm for=

"bpws:getVariableData(orderDetails,processDuration)">
...

</onAlarm>
...

</eventHandlers>
...
<variable name="orderDetails" messageType="def:orderDetails"/>
</variable>
...
<receive name="getOrder"

partnerLink="buyer"
portType="car"
operation="order"
variable="orderDetails"
createInstance="yes"/>

...
</process>

61

BPEL Lifecycle Management

Creating a process instance
» BPEL4WS business processes represent stateful long-running interactions
» The creation of a process instance in BPEL4WS is always implicit (e.g. with first <invoke>)
» Activities that receive messages (<receive> activities or <pick> activities) can be annotated to

indicate that the occurrence of that activity causes a new instance (createInstance = „yes“)

Terminating a process instance
» When the activity that defines the behavior of the process as a whole (in most cases

<sequence> or <flow>) completes.
» When a fault reaches the process scope, and is either handled or not handled
» When a process instance is explicitly terminated by a <terminate> activity.
» If a compensation handler is specified for the business process as a whole, a business process

instance can be compensated after normal completion.

62

What is missing…

» Details on BPEL4WS activities (there are a lot of them…)
» Many examples that show how these activities „really“ work
» Demo with Oracle BPEL Process Manager (former Collaxa)
» The Future of BPEL + Conclusion
» Brief Introduction in Business Process Monitoring

with Senactive InTime

� Upcoming Week

Building Standard-Based
Business Processes
with Web Services

Josef Schiefer

Vienna, November 2004

