5z

F

D @D

g(ﬂ
oo

High Level Graphics
Programming &
VR System Architecture

Hannes Kaufmann

uuuuu

Interactive Media Systems Group (IMS)

Institute of Software Technology and
Interactive Systems

Based on material by Dieter Schmalstieg

VR & AR Course Overview

Introduction

Hardware

Input Devices
Output Devices
3D Graphics Hardware

Software

3D Interaction
High Level Graphics Programming
Usability, Evaluations & Psychological Effects

Hannes
Kaufmann

mlm)e

Application Programmer’s View

Application

Application

V
Graphics Package

Hardware and Software
} ! !
Output | | Input Input
Device Device | |Device

Rendering
Engine or
Scene Graph

~

Hannes
Kaufmann

mlm)e

Low-Level Graphics API

OpenGL (v 1.0 1992), Direct3D (DlrectX 2, 1996)
Procedural |

|OpenGL Geometric Primitives :
P rl m It |VeS Al gewzzetr?(;wmzt_z -.-F are ,mfzgfzc’d by |
— Line, Triangle, ... e 7
— Color, ...
Dual Database Problem

— 1. Representation: Data Objects EEEE
— 2. Representation: Graphical
— Redundancy, Problem of Inconsistency

Kau

mlm)e

fmann

High-Level Graphics API

Rendering Engine (e.g. Unity, —
Unreal Engine,...) or Scene Graph Betriebssystem (28.1RIX)

e.g. OpenSceneGraph, OpenSG, X3D (VRML), Java3D,..
Object oriented

Scene Objects — “Objects, not Drawings”

— Not limited to graphical display

Interactivity: Event-model for 3D scenes

Software architecture

— Toolkit-approach, extendible

Hannes
Kaufmann

mlm)e

Lab Exercise: ,Higher
Level Programming”

e Game-Engine
— E.g. Unity3D unity?
— Extended functionality: ,Simple AR Framework®
e Tracking input

| 1
o . . . - ' E_ %
Distribution AR Toollgt, 8 |

Augmented Reality Tracking Libra n

— Object oriented programming in C# / Javascript
— Based on scene graph

ooo

aufmann

Why High-Level API?

e Rapid prototyping
e Rapid application development (RAD)

Interpreted script E
P ¥ .» Application or
_ => |Shell (Browser, Editor)
geometry file
Hi-Level API
Low-Level API

ooo

Hannes

“~ Scene Graph Example:
SGI Open Inventor

e Scene graph library
e Based on C++

e Used in research &
commercial projects

e Platform & windowing system independent

e 1. Version: SGI Inventor, 1992. Open Source (ver 2.1)
e 2.Version: VGS Open Inventor: Continued development of SGI Inventor.

e 3. Version: Coin by Systems in Motion (SIM), Re-Engineered API, Open
Source; ver. 3.0
http://www.coin3d.org/

Scenegraph — Structure

Graphical data structure = Scenegraph
Scenegraph consists of Nodes

Directed graph! (Head/Tail)
Directed edges -> Hierarchy

Use of the hierarchy
— Semantic Hierarchy: e.g. car (parts)
— Geometric Hierarchy: e.g. puppet / jointed doll

Usually one tree is sufficient
General: Directed Acyclic Graph (DAG)

— [Multiple parent nodes allowed *
— No directed circles b e N

ooo

Hannes
Kaufmann

10

Scene Graph - Nodes

Nodes consist of data and methods

Nodes are of a specific type
— Type determines behavior Ufm
— Behavior = Reaction to certain events SoFleliCortainer

T

— Events are generated by the application — Soods
by the user -> Interactivity T

Soshape

Nodes are instances of a class . I

SoCube

— Scene hierarchy vs. class hierarchy!

Flexibility: Choose node(type), compose scene graph
with nodes

Extendible: New nodes can be implemented

Y
== Scene Graph - Fields

oog

SoMaterial
ambientColor
diffuseColor
specularColor

e Attributes (member variables) emissiveColor

shininess

in nodes are called fields transparency

e Fields: set/get, detect changes,
connect fields across nodes

* Fields are objects by themselves
— Float-Object, String-Object etc.

11

mg Separator group node e @ Transform node

O Other group node O O Other property node

K';f]l?rﬂgﬁn Camera node @ . Node Kit
Example s @ @ vowomo

Texture Cu

O

Taxture

<5'

12

13

Graph Traversal: Basic Idea

e Data structure (scene graph) is processed
(=“traversed”)

e For each node a number of methods is
implemented:

— Rendering

— BoundingBox calculation

— Transformation matrix calculation
— Handle Events (e.g. picking)

— Search nodes

— Write to file

— Execute user callback...

e Graph Traversal Order

ooo

e All nodes must be processed
* |In general: Depth-First
e Traversal uses a State-Engine

e Difference in Group Nodes

— Ordered Group
e State Propagation top->down and left->right
e e.g. Inventor, VRML / X3D
* Very flexible scene graph generation
— Unordered Group
e State Propagation only top->down
* e.g.Java3D
e Parallel Render Traversal possible (Threads, SMP)!

14

State, Stack & Separator

| Color state stack
Separator

—

Red SphereSeparator

Separator Cube m

| | ﬁ Traversal saves state

Blue Cone IN Stack

15

16

Graph Traversal
Modeling Attributes

* In-between, leaves or fields?

I

Red

| Group Group

Groui) ‘ |
I
Red Sphere Cube Sphere Cube

Sphere Cube Red Red

Some toolkits only allow specific structures
e.g. X3D Shape & Appearance combined

TUE

Hannes
Kaufmann

Transformation-Hierarchy

I_IR_I

EL R SIL SIR
EL ER

HL HR | |
‘. ,‘ HL HR

OpenGL Matrix Stack <--> Transformation hierarchy

17

Instancing (Re-use)

Example: Car

@

In case of textures:
e Saves texture @ / LocalRoot
memory
FrontWheel RearWheel

Whee!

Coords Mormals Face
Set

Hannes

== Polygonal Shapes: Coordinates
1 3 S

ooo

Indexed vs. non-indexed polygon lists (e.g. FaceSet):
Non-Indexed:

V={P1=(x1,y1,z1), P2, P3, P2, P3, P4, P3, P4, P5, P6}
F={3, 3, 4}
Indexed:

V={P1,P2,P3,P4,P5,P6}

F={1,2,3,-1, 2,3,4,-1, 3,4,5,6,-1}

19

20

S Ooo

Polygonal Shapes: Attribute

overall

Per vertex

Bindings of attributes

 for material, normals, texture coordinates
 specifies mapping of attributes to polygons
» Overall object, per face, per vertex

Dependency Graph

 “Field connections”: Field types must be
compatible!

 Two different (overlapping) structures
— Scene graph
— Dependency graph (dependent fields)

21

Engines

 To model complex
dependencies in graph

e TargetField :=
Engine(SourceField)

e E.g. Calculator, Counter, Type
converter, Interpolator, Trigger

Engine

Engine

22

Y .
I, Node Kits / Prefabs

mlm)e

* Prefabricated sub-scene graphs
— e.g. transformation, material + shape

— Simplify the construction of semantically correct
scenes

SnShapekil

NopSeparatonr

24

25

S aoe

Software Design and Components
of an VR/AR Framework

Hannes Kaufmann

Interactive Media Systems Group (IMS)

Institute of Software Technology and
Interactive Systems

Kaufmann

26

AR/VR Framework:
Requirements & Wishes

Support multiple input & output devices

— Input: Interface to tracking middleware (e.g. OpenTracker,
VRPN)

— Output: High level graphics programming, Stereo
rendering,...

Handle user interaction

Allow flexible 3D user interface
— widget libraries/middleware

Support of collaboration
— multiple users, flexible user configuration, mobile work

Support distributed work
Easy application design / authoring

TUE

Hannes
Kaufmann

VR/AR/MR System Architecture

Application(s)

MR Framework
Rendering / Event Handling / Multi-user / Distrib.

: Distribution Framework | Networking
U=Gbllge _ _ e.g. Session
Rendering Engine

Management

[Middleware

27

Mﬁ Example: Distributed VR / AR
" in Education

= Distributed collaboration over large distances
= Large number of users supported

= Flexible hardware setups

. Iqterz?tion depends on input device properti

Internet

Y
== Distributed Shared Scene Graph

ooo

 Shared Memory (SM): Multiple CPUs access
the same memory

— Very simple and popular
— May need mutual exclusion (locks etc.)
e Distributed Shared Memory (DSM):

— SM on top of standard message passing

e Distributed Shared Scene Graph: DSM
semantics added to a scene graph library

29

Symmetric Approach:
Distributed Shared Scene Graph

Goal: Distribution without programming
Keep existing API intact

Host 1 Host 2 \
explicit
|App. El Sync. |§ App.l

App.
specific

SIS

Scene Graph

implicit
Sync.

* Dual database Distributed shared memory semantics
(app, scene) Transparent distribution

» Optimizations E.g.: Avango, Distributed Inventor (DIV)

30

Updates in DIV

' Hashtable

Iookup of
,,Update myNode
myNode->
&myField = 3 &
@

4

Synchronisation protocol:

- update field

- create node

- delete node

+ some more for for convenience...

myNode

31

DIV - Pipeline

Master Slave
|
DIV Updates Simulation code
Scene Traversal RSEUasY Scene Traversal
Rendering e
Engine!)
Geometry Stage Geometry Stage
]
Rasterization Rasterization
.- .
Display

\/

TU
5 Long Distance Distribution
Requirements for AR Applications

es
Kaufmann

 Main Challenges:
— Robust application replication

— Reliable network communication
over long distances:

e Networking Protocols (uni-/multicast) & Bandwidth
considerations

* 3 Options:
— Input data: e.g. Tracking data of input devices
— Output data: e.g. Application content, Screen

— Intermediate data: High level metadata for
33 regenerating correct application state

Hannes

<= |Long Distance Distribution - Example

ooo

3 Types of Data:

— Input data: e.g. Tracking data of input devices

e Tracking Middleware (e.g. OpenTracker, VRPN)
— For long distance: Use Unicast (UDP) instead of Multicast

— Output data / Application content
e Distributed Open Inventor (reliable TCP)

— Intermediate data: High level metadata for
regenerating correct application state

e Construct3D: enhanced replication behavior

— Geometric objects not transmitted! Only high level state data

34

Kau

mlm)e

fmann

35

Example: Distribution - Results

Platform independent (Windows, Linux)
Long distance (Vienna - Graz)
2-6 machines, 5 app. instances

Dynamic joining & leaving

Hybrid networks possible
(multicast UDP + TCP)

Educational evaluation
6 students (Sir Karl Popper
school)

	High Level Graphics Programming & �VR System Architecture
	VR & AR Course Overview
	Application Programmer’s View
	Low-Level Graphics API
	High-Level Graphics API
	Lab Exercise: „Higher �Level Programming“
	Why High-Level API?
	Scene Graph Example:�SGI Open Inventor
	Scenegraph – Structure
	Scene Graph - Nodes
	Slide Number 11
	Slide Number 12
	Graph Traversal: Basic Idea
	Graph Traversal Order
	State, Stack & Separator
	Graph Traversal�Modeling Attributes
	Transformation-Hierarchy
	Instancing (Re-use)
	Polygonal Shapes: Coordinates
	Polygonal Shapes: Attribute
	Dependency Graph
	Engines
	Node Kits / Prefabs
	Software Design and Components of an VR/AR Framework
	AR/VR Framework: �Requirements & Wishes
	VR/AR/MR System Architecture
	Example: Distributed VR / AR �in Education
	Distributed Shared Scene Graph
	Symmetric Approach:�Distributed Shared Scene Graph
	Updates in DIV
	DIV - Pipeline
	Long Distance Distribution Requirements for AR Applications
	Long Distance Distribution - Example
	Example: Distribution - Results

