

3D Interaction Techniques

Hannes Kaufmann

Interactive Media Systems Group (IMS) Institute of Software Technology and Interactive Systems

Based on material by Chris Shaw, derived from Doug Bowman's work

Copyright 3 1996 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited

Why 3D Interaction?

3D Interaction Techniques

- Methods used to accomplish a given task via the interface
 - Hardware components: Input & Output devices
 - Software components = control-display mappings: translating information from input devices to system actions -> display to user

The Interface Challenge – The best of both Worlds

- Naturalism: make VE & interaction work exactly like real world.
- Magic: give user new abilities
 - Perceptual
 - Physical
 - Cognitive

The Interface Challenge

 Will the cognitive overhead required to use the interface distract users from the intended tasks and goals?

Goals of Interaction Design

- Performance
 - efficiency
 - accuracy
 - productivity
- Usability
 - ease of use
 - ease of learning
 - user comfort
- Usefulness
 - users focus on tasks
 - interaction helps users meet system goals

- But, most current VE apps either
 - are not complex interactively, or
 - have serious usability problems

What makes 3D Interaction difficult?

- Spatial input
- Lack of constraints
- Lack of standards
- Lack of tools

- Lack of precision
- Layout more complex
- Fatigue

Universal Interaction Tasks

- Selection: picking object(s) from a set
- Manipulation: modifying object properties (esp. position/orientation, shape, color,...)
- Navigation
 - Travel motor component
 - Wayfinding cognitive component; decision making
- System control: changing system state or mode
- Symbolic input (covered in Input Devices Part 1)
- [Modeling & Other tasks (create and modify 3d Obj.)]

Selection & Manipulation

Goals of Selection:

- Indicate action on object
- Make object active
- Travel to object location
- Set up manipulation

Isomorphic vs. Nonisomorphic

- Isomorphic:
 - strict, geometrical 1:1 correspondence between physical <-> virtual world
 - Most natural
 - Imitates physical reality and its limitations
- Nonisomorphic:
 - Magic virtual tools that extend working volume or arm length
 - Depends on application
 - Majority of manipulation techn. nonisomorphic

Selection performance

- Variables affecting user performance
 - Object distance from user
 - Object size
 - Density of objects in area

Common Selection Techniques

- Pointing
 - Touching with virtual hand/pointer
 - Ray casting
 - Cone casting (Flashlight)
 - Aperture
 - Two-handed pointing
 - Image plane
- Naming (speech rec.)

Enhancements to Basic Techniques

- Arm-extension
 - Go-Go Technique (mapping)

- Fishing-Reel Technique (additional device: distance)

• World in Miniature (WIM)

- Select icon-like objects

Technique Classification by Metaphor

Selection: Task Decomposition

Evaluation: Selection Task

- Ray-casting and image-plane generally more effective than Go-Go
 - Exception: selection of very small objects can be more difficult with pointing
- Ray-casting and image-plane techniques result in the same performance (2DOF)

Goals of Manipulation

- Object placement
 - Design
 - Layout
 - Grouping
- Tool usage
- Travel

Variables affecting user performance

- Required translation distance
- Amount of rotation (avoid clutching)
- Required precision of placement

Manipulation Metaphors 1

- Simple virtual hand
 - Natural, easy placement
 - Limited reach, fatiguing, overshoot
 - 1:1 position mapping
- Ray casting
 - little effort required
 - Exact positioning and orienting very difficult (lever arm effect)
- Indirect depth control (e.g. mouse wheel)
 - Infinite reach, not tiring
 - Not natural, separates DOFs

HOMER technique

Hand-Centered Object Manipulation Extending Ray-Casting

- Select: ray-casting
- Virtual hand moves to object
- Manipulate: hand

Manipulation Metaphors 2

- HOMER (ray-casting + arm-extension)
 - Easy selection & manipulation
 - Expressive over range of distances
 - Hard to move objects away from you
- Scaled-world grab
 - Selection by image plane
 - World scaled down around virtual hand
 - Easy, natural manipulation
 - Hard to move objects away

Image plane interaction

- Selection and manipulation
- Different gestures

Manipulation Metaphors 3

- World-in-miniature
 - All manipulation in reach
 - Doesn't scale well for large environments
 - Indirect
- Voodoo Dolls
 - Two-handed (2 pinch gloves)
 - Create "dolls" by image-plane technique
 - Indirect manipulation

Classification by Components

Evaluation: Positioning Task

- Ray casting effective if the object is repositioned at constant distance
- Scaling techniques (HOMER, scaled world grab) difficult in outward positioning of objects: e.g. pick an object located within reach and move it far away
- If outward positioning is not needed then scaling techniques might be effective

Evaluation: Orientation Task

- Setting precise orientation can be very difficult
- Shape of objects is important
- Orienting at-a-distance harder than positioning at-a-distance
- Techniques should be <u>hand-centered</u>

Manipulation notes

- No universally best technique
- Constraints and reduced DOFs
- Naturalism not always desirable
- If VE is not based in the real, design your environment for optimal manipulation

Navigation

- Travel: motor component
- Wayfinding: cognitive component

Travel

- Motor component of navigation
- Movement between 2 locations
- Setting the position (and orientation) of the user's viewpoint
- Most basic and common VE interaction technique
 - used in almost any large-scale VE
- Travel often directly controlled in AR !
 - Viewpoint controlled by user

Travel Tasks

- Exploration
 - travel which has no specific target
 - build knowledge of environment
- Search
 - naive: travel to find a target whose position is not known
 - primed: travel to a target whose position is known
 - build layout knowledge
 - move to task location
- Maneuvering
 - travel to position the viewpoint for a task
 - short, precise movements

Traveling metaphors 1/2

- Steering metaphor: continuous specification of direction of motion
 - gaze-directed
 - Pointing (the "fly" gesture)
 - physical device (steering wheel, joystick)
 - Examples: Beckhaus chair (video)

- Target-based metaphor: discrete specification of the goal location
 - point at object
 - choose from list
 - enter coordinates
 - Example: <u>Reitmayr Outdoor</u>

Traveling metaphors 1/2

- Route-planning metaphor: one-time specification of path
 - place markers in world
 - move icon on map

- Manipulation metaphor: manual manipulation of viewpoint
 - "camera in hand"
 - fixed object manip.
 - Example: film camera movement
 - Grabbing in the air technique (2 gloves)

Evaluation results (by Bowman)

- "Teleportation" can lead to significant disorientation
- Environment complexity affects information gathering
- Travel IT and user's strategies affect spatial orientation

Evaluation results

- Steering techniques best for naive <u>and</u> primed search
- Map-based techniques not effective in unfamiliar environments, or if any precision is required

"Natural" travel metaphors

- Walking techniques
- Treadmills
- Bicycles
- Other physical motion
 - VMC / Magic carpet
 - Disney's river raft ride
 - Simulation of flying

Real Walking

• Real Walking in virtual worlds

- Enhances sense of presence
- Enhances perception of size and distance
- Focuses attention
- Improves task performance
- But:
- Limits size of virtual environment to size of tracking space
- Have to make the user believe to walk in a much larger space

Immersive Deck

Hannes

Kaufmann

Redirected Walking

- Same benefits as real walking
- Extends the possible size of the VE

HMD

backpac

real

eal curve

rotation

virtual

direction

Different methods:

- Way points
- Distractions
- Gains:
 - Translation
 - Rotation
 - Curvature

Change Blindness

- Changes are applied while the user is distracted
- Cyclic paths possible

38

Our approach: Flexible Spaces

- Real world rules do not apply
- Real walking
- Natural constraints
- Focus on virtual content
- Bigger distance between the rooms more overlap
- Procedural layout generation

Navigation: Myths

- There is one optimal travel technique for VEs.
- A "natural" technique will always be better than another technique.
- Desktop 3D, workbench, and CAVE applications should use the same travel ITs as HMD-based VEs.

WRONG !

Kaufmann

Navigation: Design Guidelines

- Make simple travel tasks simple (target-based techniques for motion to an object, steering techniques for search).
- Provide multiple travel techniques to support different travel tasks in the same application.
- Use transitional motions (not teleportation!) if overall environment context is important.

System control

- Catch-all for other types of VE interaction
 - Issuing command
 - Changing mode
 - Choosing tool
- Often composed of other tasks

Common types of system control techniques

- Menu systems
- Voice commands
- Gestures/postures
- Implicit control (e.g. pick up new tool to switch modes)

Kaufmann

Floating menus in 3D

- Requires user knowledge
- Can occlude environment
- Using 3D selection for a 1D task
- Can be difficult to find

 Better than Heads-up-Display (HUD) but still very bad design – AVOID!

Pop-Up Menus - Radial

- Sundial
 - Pie menu with 3D selector
 - User rotates "Shadow stick" to occlude desired segment
- Example: iOrb

lannes

Kaufmann

1 DOF menu

- Correct number of DOFs for the task
- Can be put away
- Only one menu level at a time

Pen & Tablet Interaction

Pen & Tablet Interaction

Tablet = real object:

- Can put away
- Handwriting input possible
- Can be used as a clipboard

- Combine 2D/3D interaction
- Use any type of 2D interface, not just menus

Pen:

- Constrained surface for
 Direct manipulation
 Magic Lens Metaphor
- Usability: People are used to 2D input

2D interaction in a 3D world

- Quite useful for appropriate tasks
- Can integrate seamlessly with 3D
- If presence is important, the 2D interface should be *embedded*, not *overlaid*

Applications - Examples

Real applications always combine interaction techniques

Examples:

- Projection Screen Interaction e.g. <u>ArsBox</u>
- Volumetric Displays e.g. <u>Perspecta3D</u>
- ARToolkit Interaction: <u>Mozart MagicBook</u>
- Handheld HMD
- Outdoor AR modeling: <u>Tinmith</u>

Philosophies of Interaction Design

- Artistic approach
 - Intuition about users, tasks
 - Heuristics, metaphors
 - Aesthetics
 - Adaptation

- Scientific approach
 - Formal analysis
 - Formal evaluation
 - Performance requirements

Own Experience: Combination of both gives best results!

AR Interaction Techniques

IT Comparison VR – AR

	Virtual Reality / 3DUI	Augmented Reality
Selection	Raycasting, virtual hand, world scaling	same
Manipulation	Everything can be manipulated.	Distinction between <i>real / virtual</i> objects
Navigation	Viewpoint can be controlled freely.	Only <i>passive</i> hints
System control, Symbolic input	Menus, voice, gestures	same

Manipulation

- Direct VR Style
- Augmented Environments / Surfaces
- Tangible Interaction

Kaufmann

Augmented Surfaces

- Touch leads to surfaces
- Often using projection (e.g. Digital Desk [Wellner93]
- Treat paper and electronic documents as the same

Touch Tables

Augmented Surfaces: Pros/Cons

- Good
 - Intuitive interaction
 - Same modalities for real + virtual objects
- Bad
 - only 2D
 - creates a spatial seam

Projected AR Environments 1/2

• MIT 6th Sense

• Microsoft Omni Touch

Projected AR Environments 2/2

• Microsoft Augmenting Indoor Spaces

Kaufmann

Tangible Interaction

- Use real placeholder to manipulate virtual content
- Full 6DOF manipulation
- Popularized through ARToolkit

Hannes

Kaufmann

Tangible User Interaction

- Virtual Buttons
- Toggle buttons using Markers
- Proximity

Kaufmann

Tangible: Tiles

- Tangible markers
 - data
 - operations
- Integration with real world
 - annotations
- See through HMD
- Collaborative

Luminous Tangible Workspace

- Urban planning tool
 - Tangible building models
 - Interactive simulations
 - Wind
 - Sunlight / shadows
 - Traffic patterns

Navigation

- Moving mobile device is a natural navigation interaction technique
- Zoom/Pan might be over-accelerated
- Mobile device movements relative to target are used for input

Navigation Support

- Direct Overlays
 - Information registered to Environment
 - Easy to interpret
 - Small field of view
 - No overview no knowledge build-up
- Map integration
 - Provides overview
 - May require mental rotation to align
 - Occludes display

Examples

Example Navigation Apps

• Wikitude Drive

• ACrossAir Nearest Tube

Maps

- Map and spatial knowledge
- Rules for good map design
 - Provide you are here marker
 - Provide grid
 - Choose either north-up or forward-up map
 - Try mixing local and global maps
- Often as World-in-Miniature

Examples: Gestural Interaction

Oblong Industries

• Movies / Visions

Interaction Techniques for Smartphones / Tablets

Kaufmann

Crosshair Selection

 Crosshair and "Button" press -> Selects specific spot

Point, Grab, Move, Release

• Relative to target 2D

• Relative to "world" 3D

Kaufmann

Intuitive Interaction for Handheld AR

DrillSample

Hannes Kaufmann

Indirect Object Manipulation via Target Movement

Layered Pie Menus

- Mobile device movements relative to head/target are used for menu selection
- Head movements relative to device

Mixed Interaction Space with face tracking

Hannes Kaufmann

Direct Hand/ Foot Gestures

- Hand Interaction / Gesture
- Foot Interaction / Gesture

Hannes

Kaufmann

Social AR – A Vision ?

- Users create content & model the world
 - "YouTube" of AR
 - Supported with automated methods
- Situated social networks
- AR 2.0
- Same Place / Different Time

Rob Cottingham - socialsignal.com/n2

Oh,no,officer - it's not graffiti. it's an analog real-time augmented reality application.

Kaufmann

Literature

 3D User Interfaces – Theory and Practice Doug Bowman, Ernst Kruijff, J. LaViola, Ivan Poupyrev; Addison Wesley, 2005.

Hannes Kaufmann

Thank you for your attention!

Questions, Comments?