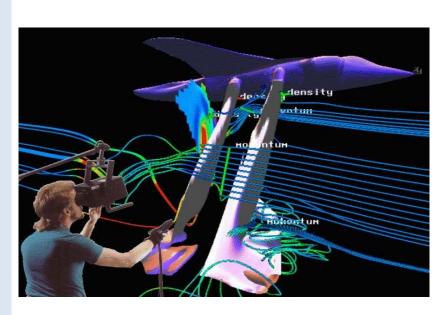


Input Devices & Tracking

Hannes Kaufmann

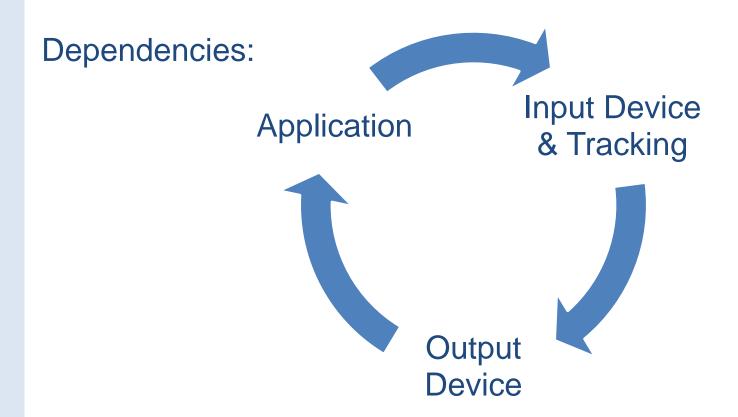
Interactive Media Systems Group (IMS)
Institute of Software Technology and
Interactive Systems

Based on material by Alexander Bornik, Dieter Schmalstieg, Oliver Bimber and Skip Rizzo


Motivation

- Last time: Various VR Application Areas
- VR/AR environment =
 Hardware setup + VR software framework +
 Application
- Detailed knowledge is needed about
 - Hardware: Input Devices & Tracking, Output Devices,
 3D Graphics
 - Software: High-level programm., VR frameworks
 - Human Factors: Usability, Evaluations, Psychological Factors (Perception,...)

Input devices


- Hardware that allows the user to communicate with the system
- Input device vs. interaction technique (IT) (e.g. zoom)
- Single device can implement many ITs

The Interface Problem

There is **not** a single ideal solution for all applications!

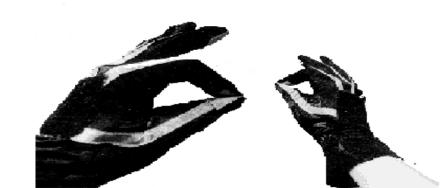
Examples: VR application for children - HMD?, data gloves?

CAD engineer – input by gestures?

How to find a good solution: Know the possibilities!

Input Device Classification

- Discrete Continuous
- Degrees of Freedom
- Active Passive
- Technological Principle


Degrees of Freedom (DOF)

- Number of independent values/measurements
- Commonly used:
 - (2DOF -> 2D e.g. mouse)
 - 3DOF -> position
 - 3DOF -> orientation (rotation relative to coordinate system axes): roll / pitch / yaw
 - 6DOF -> position + orientation

Discrete - Continuous

- Discrete / event-based
 - Generate one event at a time based on the user
 - Examples: Keyboard, Pinch Glove (see picture), Buttons
- Continuous / sampled
 - Continuously generate events in isolation (passive) or in response (active) to user action
 - Examples: Trackers, Datagloves
- Hybrids (e.g. mouse)
- Miscellaneous input
 - Speech
 - Gestures
 - Locomotion devices

Active / Passive Devices

- Purely active input device:
 - Requires user interaction
 - E.g. keyboard, mouse, joystick, dials, sliders
- Passive device:
 - Generate data continuously
 - No input required
 - E.g. motion tracker

Technological Classification

- Classification by Operating type
 - Architectural / Technological principle
 - E.g. Magnetic, Optical, Inertial,...
 - Regardless of actual implementation
 - How (tracking) data is acquired
- Classification by Implementation
 - Principle of (tracking) data acquisition
 - Physical principle
 - Types of sensors used

Overview

- Desktop Input
- Symbolic Input
- Tracking (6DOF)
 - Criteria
 - Technology
 - Mechanical, Magnetic, Optical, Inertial, Time of Flight, Hybrid
- Haptics
- Locomotion

For all devices:

- Technological Principle
- Technological Advantages & Disadvantages
- Human Factors Advantages & Disadvantages

Desktop Input Devices

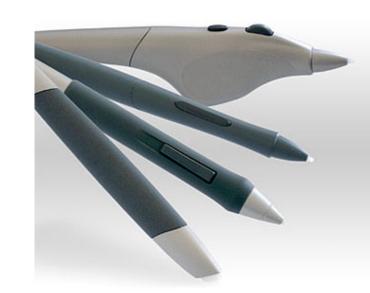
Used in Desktop VR:

- Keyboards
- 2D Mice and trackballs
- Joysticks
- Pen based tablets
- 6-DOF devices for the desktop
- Haptics

Joysticks

- Isotonic Joystick
 - Movement continues until handle pushed back to neutral position
 - Rate control (not position control)
 - Haptics: force-feedback
 - Easy to use
- Isometric Joystick
 - Handle does not move
 - Output varies with force that is applied
 - E.g. laptop trackpoint

Pen based tablets



e.g. Wacom tablets

- Very precise input
- Absolute input!

Mice/Joystick: relative input

6-DOF Desktop Input Devices

3Dconnexion:

- SpaceMouse
- SpaceBall 5000

Developed for desktop 3D interaction

- CAD
- Used additionally to mouse
- Fine manipulation can be difficult
- Needs time to learn usage
- 3D experts very quick but needs practice
- Not ideal during mobile work

LEAP Motion

- 2 mono infrared (IR)
 cameras (300 fps), 3 IR LEDs
- LEDs generate a 3D pattern of dots of IR light
- Processing of point cloud data on PC
- <1 meter distance</p>
- Advantage: High precision
- Disadvantage: Low range, small field of view

Haptic Input for Desktop VR

Phantom device:

- Accurate 6DOF input
- Mechanical Tracking
- Force Feedback (limited)
- Restricted Area
- Only 1-Point contact !!!

Other Desktop-bound Haptic Devices

- 6-DOF Delta device spherical knob (Novint Falcon)
- Haptic feeling for all fingers holding the knob
- Not mobile
- Custom made research devices

Symbolic Input Devices

Symbolic Input (Text, Numbers,...) in VR environments

- Design annotation
- Filename entry
- Labeling
- Precise object manipulation
- Parameter setting
- Communication between users
- Markup (highlight, bold,...)

Features of Symbolic Input in 3D

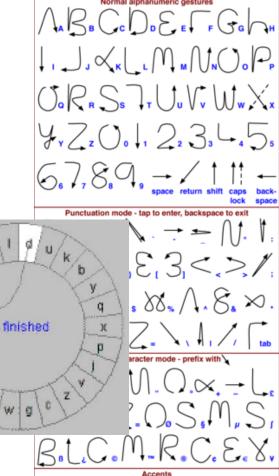
- Desktop devices (e.g. keyboards) usually don't work in 3D:
 - Users are standing / physically moving
 - No surface to place a keyboard
 - Difficult or impossible to see keys in low-light environments or when wearing HMD
- Work-arounds possible
- Positive:
 - Symbolic input in 3D less frequent than in 2D

Symbolic Input: Keyboard Based Techniques

- Miniature keyboards
- Low key-count keyboards
 - e.g. mobile phone SMS; T9 system
- Chord keyboards (e.g. Twiddler)
 - Training required
- Pinch keyboard
 - Based on pinch glove
- Soft keyboards

Pen Based

Pen-Stroke Gesture Recognition


- PDA Graffiti Alphabet
- Cirrin soft keyboard
- Pen Input (Digital Ink)
 - Recognition of handwriting

SCrivo.1

Gesture-based Techniques

- Either by using gloves, computer vision or motion capture
 - Difficult: Fast Gesture recognition needed
 - Today more and more vision based approaches (with depth cameras)

3 Types:

- Numeric gestures
 - Use of fingers represent number
 - Both hands can be used
 - No application of this technique known
- Sign language gestures (only small percentage of population knows sign language)
- Instantenous gestures

Sign Language Gestures

Glove based

2D vision based

- Difficultin real time
- Occlusions
- 3D Motion
 Capture solutions
 - Many approaches
 - See depth cameras &3D User Interaction

Speech Input

- Complementary to other modes of interaction
- Got MUCH better due to machine learning approaches
- Issues to consider
 - continuous vs. one-time recognition
 - choice and placement of microphone
 - training vs. no training (= speaker independent)
 - handling of false positive recognition
 - surrounding noise interference
 - Language dependent

Speech Input - Hardware

Headset:

- wired or wireless (Bluetooth, RF)
- surround sound (5.1, 7.1)
- active noise cancelling


Tracking

Tracking systems

- Measure position and/or orientation of a sensor
 - 6 degrees of freedom in space
- Most VEs track the head and the hand
 - Correct viewing perspective
 - Interaction

Quality Factors & Criteria

- Degrees of freedom (3D pos.+orientation → 6DOF)
- Range or working volume
- Accuracy
 - Static
 - Dynamic
- Time for measurement phase lag, "Real-time"
- Update rate (measures/sec)
- Signal to noise ratio
- Registration
- Sociability (Tracking should not hinder freedom)

Range, Working Volume

- Amount of space, where tracker works
- Range:
 - Distance from sensors
 - FOV of camera
- Working volume:
 - Volume resulting from ranges
- Time until stability degenerates
 - E.g. Drifting of inertial trackers

Static & Dynamic Accuracy

Static Accuracy: Maximum deviation from fixed tracker position to fixed reference value

- Influenced by:
 - Receiver sensitivity, Transmitter s/n ratio, A/D converter resolution, (Analog component noise tolerance levels), Environmental effects, Algorithmic errors, Installation errors

Dynamic Accuracy: Accuracy as sensor is moved

- Dependent on static accuracy
- Influenced by:
 - Processor type, System architecture, Time dependent system components

Tracking System: Generic Architecture (Latency, Lag, Update Rate)

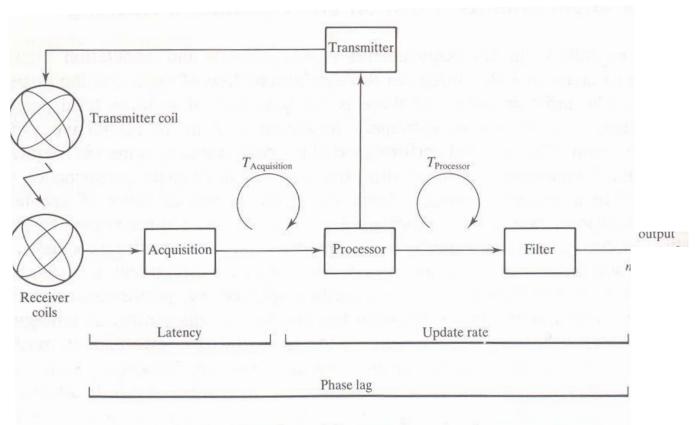


Figure 6.11 Generic architecture for a head tracker system.

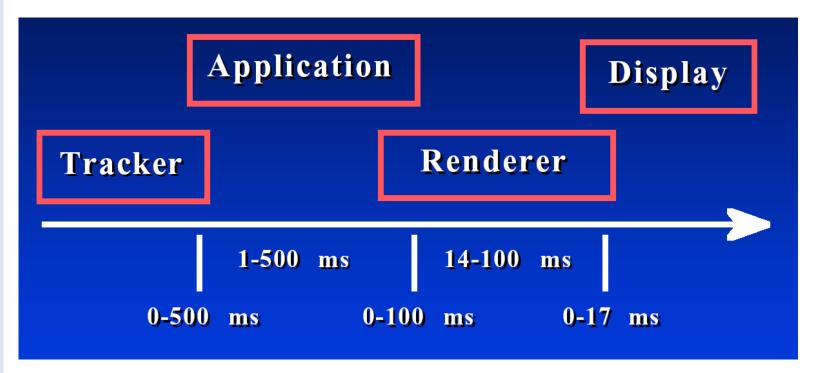
Latency & Update Rate

Latency: Rate at which acquisition portion of system can acquire new data

- Aspects:
 - Hardware limitations
 - Time to sense change in receiver's position
- Example optical tracking: Time to capture image

Update Rate: Trackers ability to output position and orientation data

- Influenced by:
 - System processor
 - Algorithm
- Example: Time to process image & extract data



Phase Lag

- Latency + update rate
- Fast motions tracker cannot keep track
- Contributors:
 - Architecture
 - Processor type
 - Algorithm
- Improving one of these can reduce lag

Visually coupled System – Still Interactive?

Tracker: phase lag

Application: time to process tracking data

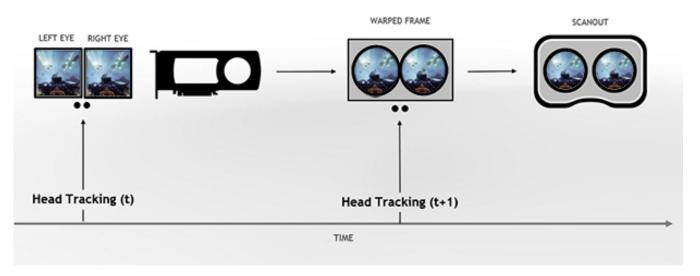
Time for rendering

Interactivity: 15-20 FPS; Recommendation: 90 FPS

Low Latency – State of the Art

 On low latency in VR – see Michael Abrash's (Oculus VR) talk about

What VR Could, Should, and Almost Certainly Will Be within Two Years


http://youtu.be/G-2dQoeqVVo (Feb. 11, 2014)

Asynchronous Time Warp

CONTEXT PRIORITY FOR ASYNCHRONOUS TIME WARP

REDUCES HEAD TRACKING LATENCY

- Front Buffer Rendering
- Single Pass Stereo

Still 7ms difference between left/right eye on single display HMDs -> 2 displays used

Registration (esp. for AR)

- Correspondence:
 - Actual position / orientation =Reported position / orientation
- Good accuracy/resolution does not imply good registration
- Important for more than one sensor
- Important usabilty factor can cause bad side effects (Cybersickness)

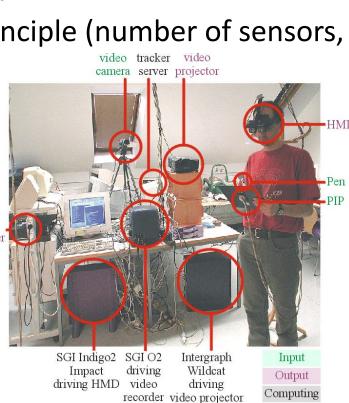
Effects of Inaccurate Tracking

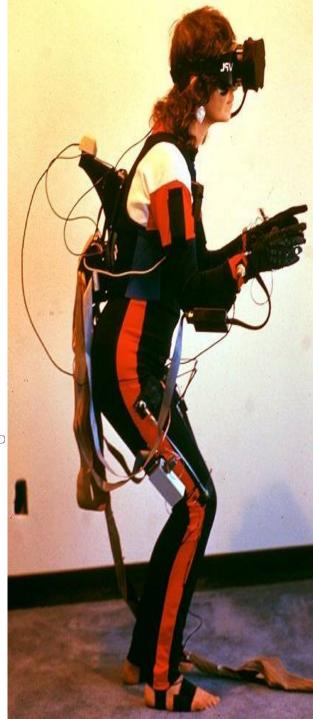
- Objects appear where they are not
- Proprioceptive conflicts
 - Static: limb location conflicts
 - Dynamic: visual delay (lag)
 - Limb jitter or oscillation
- Misregistration
 - Constant OK (immersive, non see-through)
 - Changing can hurt
- User forced to adapt
- Simulator sickness (Cybersickness)

Sociability

- Can it be used by multiple users?
- Is interaction possible then?
- Restrictions by:

Operating principle (number of sensors,


occlusions


Weight

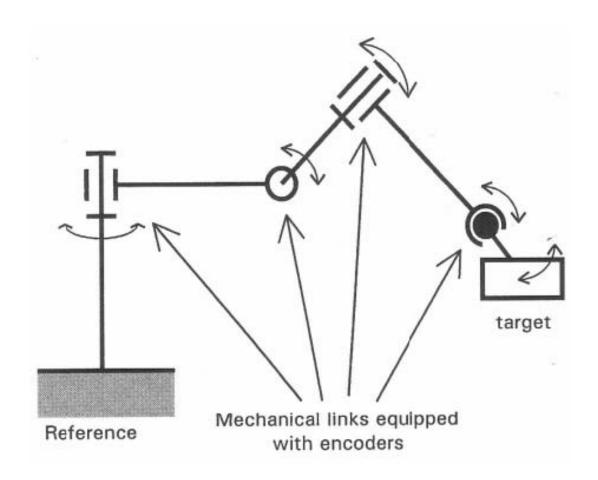
Size

Phase lag

Wires

Classification by Operation Principle

- Mechanial
- Magnetic (AC/DC/passive)
- Optical
 - Marker based
 - Natural feature; Vision (Gestures)
 - Motion capture
- Inertial (gravity, acceleration)
- Time-of-Flight & Frequency Measuring
 - (Radio Waves) GPS ...
 - (Sound waves) Acoustic
- Hybrids (combination of multiple)



Structure – Tracking Hardware

- Technological Principle
- Technological Advantages & Disadvantages
- Human Factors Advantages & Disadvantages
- Examples

Mechanical Tracking

Mechanical Tracking

- Oldest tracking technology
- Measure angle of human joints
- Potentiometers for angular measurements
- Position reconstructed using kinematics

Mechanical Tracking

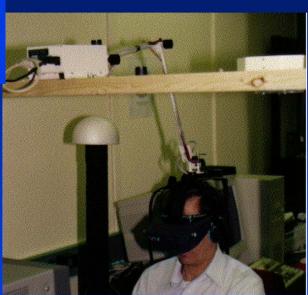
- Advantages
 - Technology well known
 - Tracks multiple users in real-time
- Disadvantages
 - Ground-referenced
 - Limited working volume
 - Uncomfortable
 - Exoskeleton
 - affects movement
 - Need to adjust per person, can be ill-fitting
 - No global movement tracking

Mechanical

- Pros
 - High precision
 - Very fast
 - High S/N
- Cons
 - Infrastructure
 - Compounded measurement error
 - Restricted working volume
 - Restricted motion
 - Not very sociable

Fakespace

Boom 3C/HF/Push

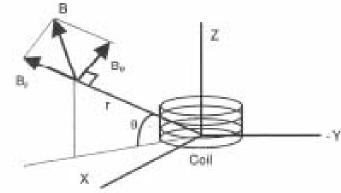


ADL-1

Shooting Star Technologies

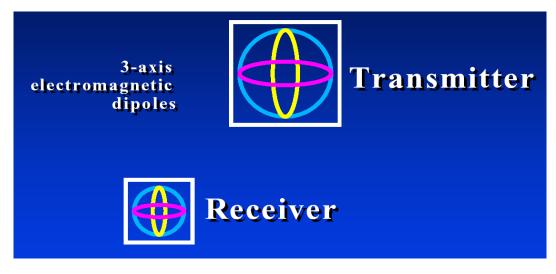
CyberForce

- Most natural interface the human hand
- Immersion Corp. Products:
 - CyberGlove
 - CyberTouch
 - CyberGrasp
 - CyberForce
- 6DOF tracking
- Usability problem



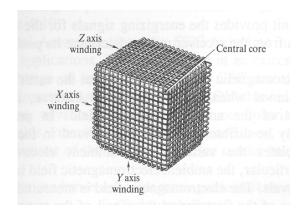
Magnetic Tracking

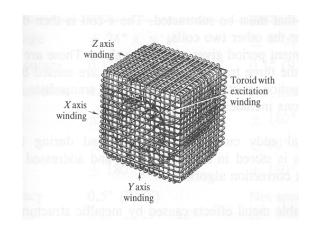
 Circulating electric current in coil -> magnetic field is generated


 At distance r, the field has polar coordinates B₀ and B_r

- Magnetic flux is created in reciever (magnetic field sensor)
- Magnetic flux: Function of distance and orientation relative to coil
- To measure position and orientation of reciever in space, emitters consist of 3 orthogonal coils and recievers of 3 sensors -> combination of three elementary orthogonal directions

Magnetic Tracking - Alternating Current (AC)


- Transmitter: electromagenetic dipoles -> AC field
- Receiver: induced voltage measured
- Voltage dependent on:
 - Distance transmitter <-> receiver --> position
 - Orientation of coils in magnetic fields --> orientation

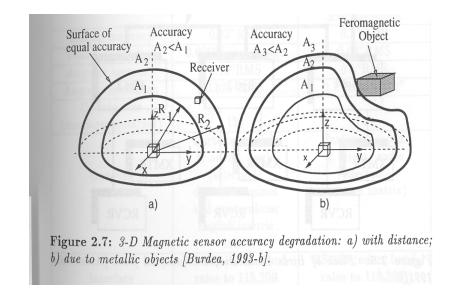

DC Magnetic - Overview

- Similar operation to AC
- Short DC pulses vs. contin. AC
- Transmitter
 - 3 orthogonal coils, cubic core
 - Mounted rigidly to reference structure
 - Driven sequentially
- Receiver
 - 3 orthogonal coils, cubic core
 - Additional energizing coil
 - All 3 measures concurrent
- 4 phase measurement (4.: earth magn. Field – subtract out)

Transmitter

Receiver

Magnetic: Advantages


- No line of sight restrictions continuous data
- Small/lightweight sensors
- Wireless versions available
- Off the shelf available, robust
- High update rate (200 Hz or more)
- Price depends on tracking range can be relatively inexpensive

Magnetic: Disadvantages

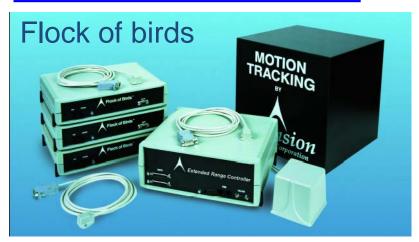
External noise

- At metal, power wires,...
- Unwanted eddy currents (Field distortions)
 - conductive material will distort the magnetic field (monitors)

- Field strength ~ 1/d^3
 - Jitter at boundaries (Filtering increases phase lag)
 - Cannot increase electromagnetic field strength -> might have consequences on humans
- Not the best accuracy
- Limited working volume (max. 3-5m radius)

AC Magnetic Products

 Polhemus (Fasttrak, InsideTrak, LongRanger ...)


Longranger: sphere ~ 50 cm with orthogonal coils

DC Magnetic - Ascension

Video of our former VR lab

At miniBIRD: um.

MiniBird

AC/DC Magnetic - Specifications

AC

Model	Latency	Max. # of sensor	Range	Accuracy	Costs
FastTrak	4 ms	4	~ 3 m	2mm, 0,15 degree	€7.000
IsoTrak	20 ms	2	~ 1,5 m	0,25 cm; 0,75 degree	€3.500
LongRanger		4	~ 10 m		
InsideTrak	12 ms	2	~ 1,5 m	1,25 cm; 2 degrees	€1.200
UltraTrak Pro	6 ms	32	4,5 m	2,5 – 7,5 cm, 3 deg.	€75.000

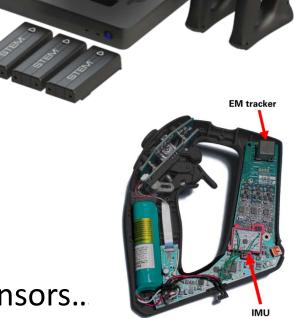
DC

Model	Latency	Max. # of sensor	Range	Accuracy	Costs
Flock	20 ms	30	~ 1 m	0,25 cm; 0,5 degree	€3.000
Flock 10	20 ms	30	~ 3 m	3 cm; 1 degree	€8.000
MotionStar	20 ms	120	~ 3 m	3 cm; 1 degree	33.000
MotionStar					€
Wireless	20 ms	18	~ 3 m	3 cm; 3 degree	64.000

All latency times without filtering

Magnetic: MotionStar

- Wireless Magnetic Tracking System
- Up to 20 sensors
- → Motion Capturing
- More than one transmitter possible



Razer Hydra (2011) & Sixense STEM System

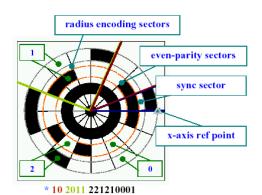
- Low cost PC controller
- 6 DOF AC magnetic tracking
 - Very low field strength
 (1/40 earth magn. field)
 - Switching polarity with ~8,000 Hz
- 1 mm, 1 deg accuracy
- Hydra: Range ~1.5 m from base
- Low latency, no line of sight
- Distortions from metallic objects
- Sixense STEM System
 - Wireless, longer range (3.5m), 5 sensors...
 - Additional inertial sensor as distortion compensation!

Passive Magnetic

- Devices
 - Compass (magnetometer)
- Measure
 - Earth's magnetic field
 - Heading only (2DOF)
- Pros:
 - No infrastructure, Available outdoors, Absolute reference
- Cons
 - Affected by
 - Other ferrous and magnetic materials
 - Active magnetic sources
 - Limited information (2D orientation only)
 - Field is very tilted in significant parts of the world

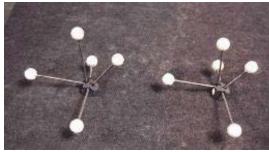
Optical Tracking

Optical Flow Motion Estimation


- Easy to implement
- Watch pixel movement
- Compare movement vectors of pixels
- Indicates movement direction
- Not very accurate!

Vision Trackers

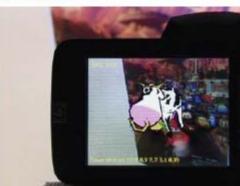
Types


- Fiducials
 - ARToolkit
 - Video1: Magic Book
 - Video2: Cockpit Layout
 - Video3: Invisible Train
 - ARTag
 - Intersense
- Markers/LEDs
 - Active / Passive
- Natural features
 - Images
 - Video: IKEA Katalog
 - 3D objects
 - Various research projects

Vision-based Tracking

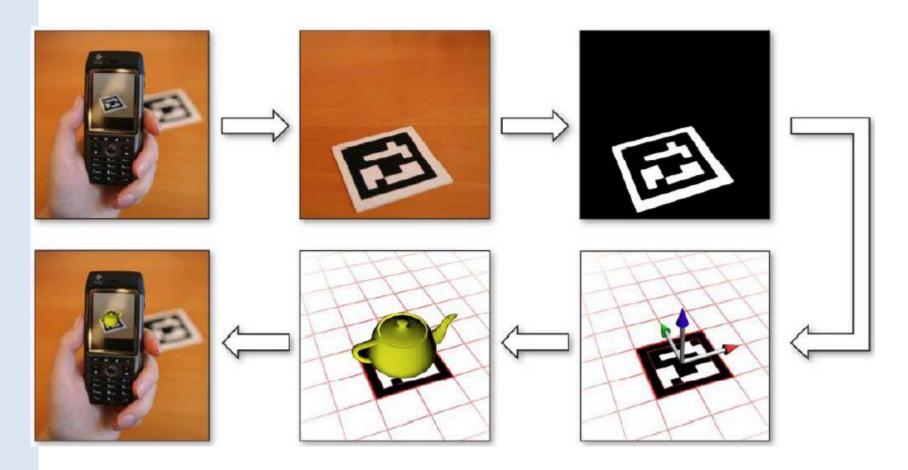
Most devices have cameras

- Marker-based
 - Artoolkit port



- SIFT, Surf, FERNs
- Active search tracking

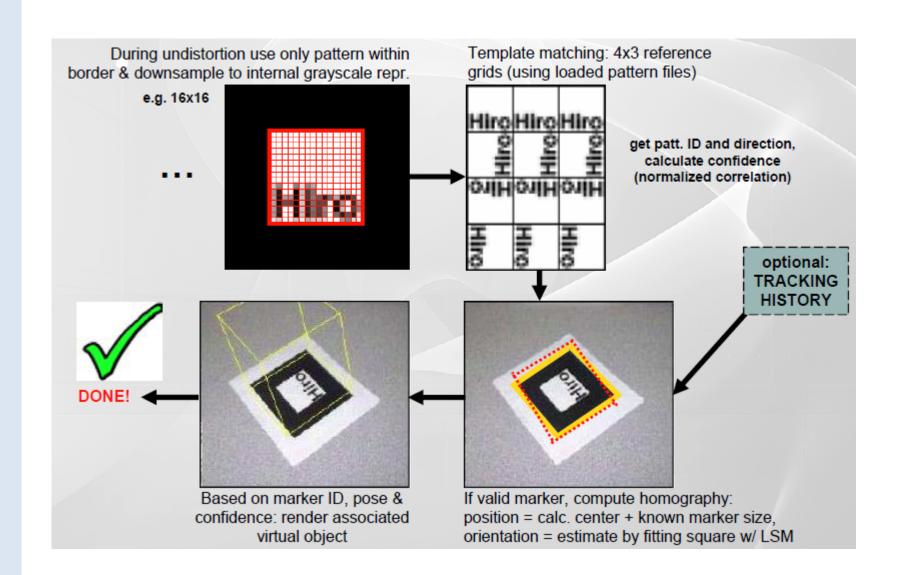
 Recognition, Initialization, Mapping and Tracking


Marker Tracking

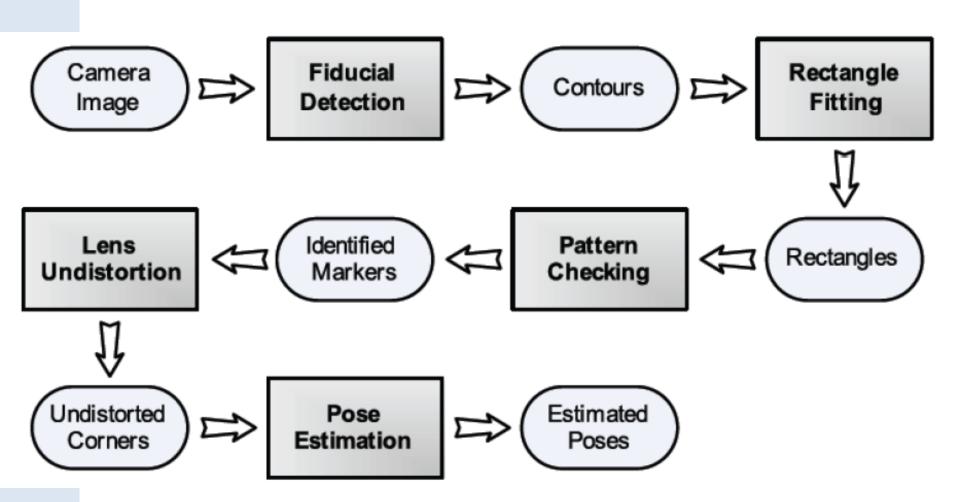
- Has been done for more than 10 years
 - Mobile phones today are faster than computers of that time
- Several open source solutions exist
- Fairly simple to implement
 - Standard computer vision methods
- A rectangular marker provides 4 corner points
- -> enough for pose estimation!

Marker Tracking: Pipeline Overview

Goal: Do all this in less than 20 milliseconds on a mobile phone

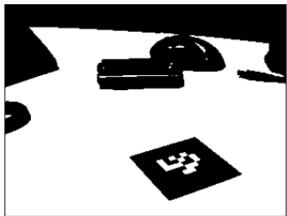


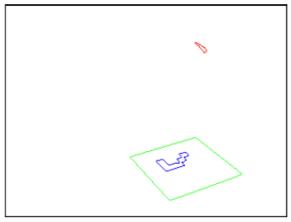
Marker Tracking: Overview 1/2



Marker Tracking: Overview 2/2

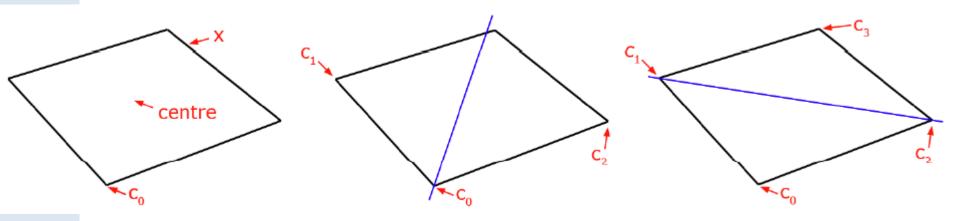
Marker Tracking: Overview Pipeline



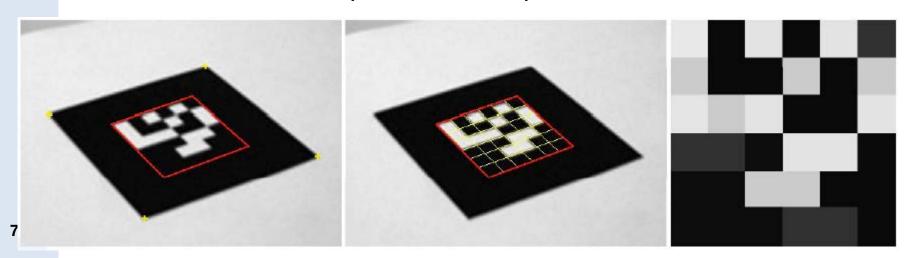


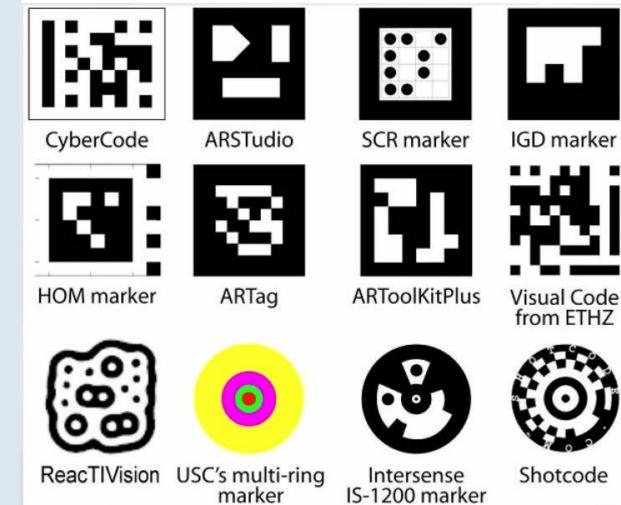
Marker Tracking: Fiducial Detection

- Threshold the whole image
- Search scan-line per scan-line for edges (white to black steps)
- Follow edge until either
 - Back to starting pixel
 - Image border
- Check for size
 - Reject fiducials early that are too small



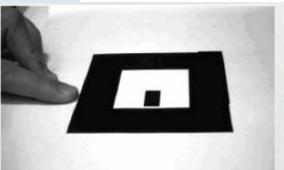
Marker Tracking: Rectangle Fitting


- Start with an arbitrary point "x"
- The point with maximum distance must be a corner c0
- Create a diagonal through the center
- Find points c1 & c2 with maximum distance left and right of diagonal
- New diagonal from c1 to c2
- Find point c3 right of diagonal with maximum distance
- Repeat to check if no more corners exist

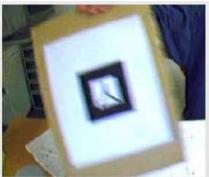

Marker Tracking: Pattern checking

- Calculate homography using the 4 corner points
 - "Direct Linear Transform" algorithm
 - Maps normalized coordinates to marker coordinates (simple perspective projection, no camera model)
- Extract pattern by sampling
- Check pattern
 - Id (implicit encoding)
 - Template (normalized cross correlation)
- Four 2D-3D correspondences pose estimation

Other Popular Fiducial Marker Libraries for AR

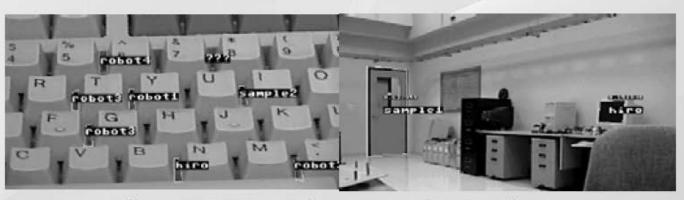

Improvements / diffs:

- Improved robustness (e.g. partial occlusion, error detection in pattern)
- Speed-ups and code optimizations
- Commercial libraries


Non-exhaustive list

Tracking Challenges in ARToolKit

Occlusion (image by M. Fiala)


Unfocused camera, motion blur

Dark/unevenly lit scene, vignetting

Jittering (Photoshop illustration)

False positives and inter-marker confusion (image by M. Fiala)

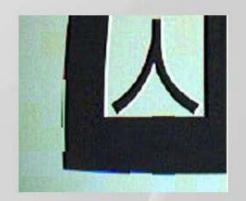


Image noise (e.g. poor lens, block coding / compression, neon tube)

Fiducials - Sources of Errors

- "Optical noise" low resolution/pixel flickering
- Too far: Marker too small; too close: marker does not fit into image
- Ambiguity during detection
- Changing lighting conditions

Solution: Infrared light

- No problems in dark environments
- Active Markers: Emit light (e.g. IR LEDs)
- Passive Markers: Reflect light

Inside-Out / Outside-In Tracking

Outside-In:

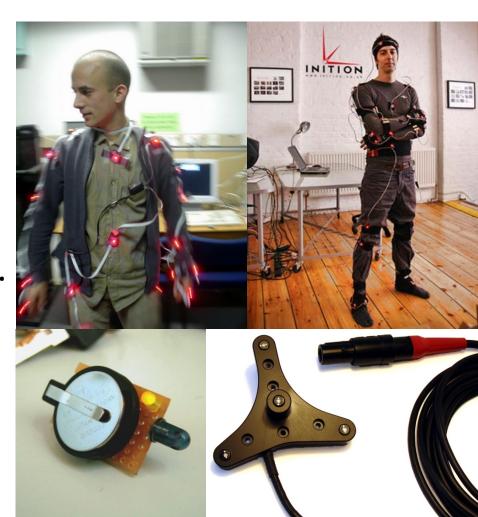
 Sensors (Cameras) are located at fixed reference point

• Inside-Out:

- Sensors are located on mobile target
- Higher resolution and accuracy in orientation than outside-in
 - Reason: produces larger motion in image -> larger displacement of pixels -> higher accuracy

Inside-Out: HiBall

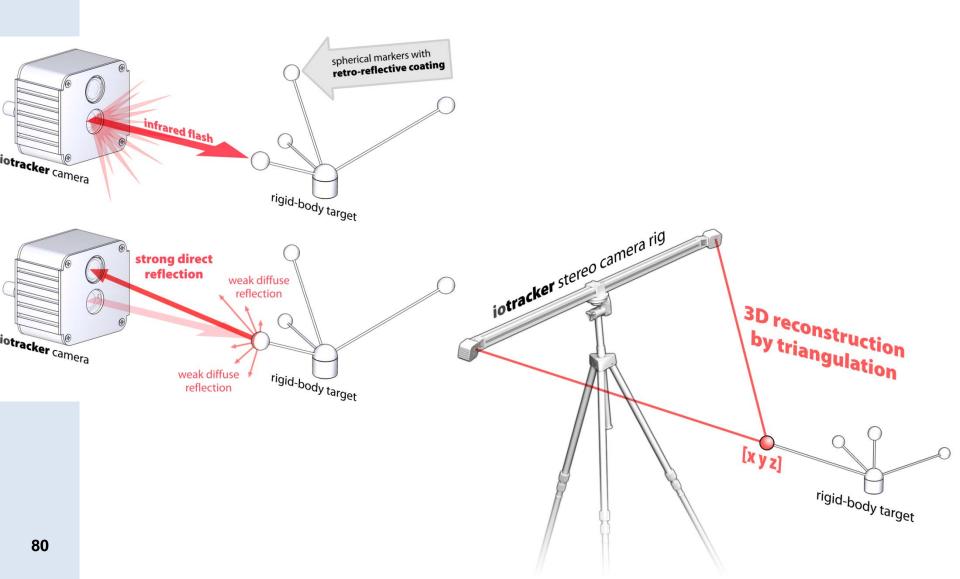
- HiBall-3100 wide area tracker
- HiBall: 6 lenses and photodiodes
- Active markers (IR LEDs)
- 6-DOF
- Hundreds of LEDs mounted on ceiling
- Very high accuracy
- High update rate: 2000 Hz



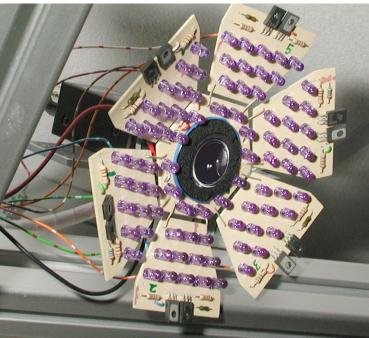
Overview: Tracking Active Markers

- Frequency-encoded IDs solve correspondence problem, but require high-speed cameras.
- Tethered or batterypowered markers restrict user movement.
- Higher cost of equipment, additional maintenance overhead.

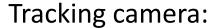
Optical Tracking - Polaris


- Optical
- Passive and active targets

Marker-based Optical Tracking: Passive Targets


Overview: Passive Infrared-Optical Tracking Systems

Overview: Passive Infrared-Optical Tracking Systems



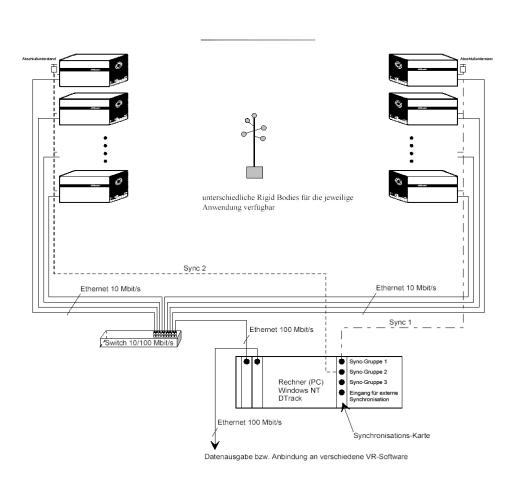
Optical Tracking - A.R.T.

IR flash


IR camera

Embedded Linux System for image processing

Targets:
Retroreflective spheres
Unique distances/arrangement



Example: Fingertracking (Dorfmüller)

A.R.T. Tracking - Schema

- Multiple cameras
- Synchronization: external PC
- Autonomous image pre-processing
- Central processing: external PC

Optical Tracking - Specifications

Model	Latency	Max. # of sensor	Range	Accuracy	Costs
A.R.T. Dtrack	20 - 40 ms	10	~ 6 m	250 µm; 0,4 degree	€30.000
ND Polaris					
(active)	20 ms	20	~ 3 m	350 µm	?
ND Polaris					
(passive)	20 ms	6	~ 3 m	100 μm	?
OptoTrak	20 ms	256	~ 3 m	100 μm	€64.000

All latency times without filtering

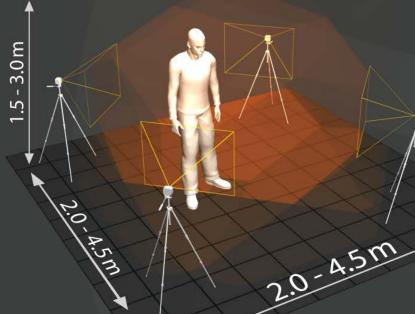
Prices: Optical Tracking Systems

- However, commercially available infrared-optical trackers are not exactly affordable...
 - Vicon Peak 6-camera MX3 system € 71,080
 - A.R.T. 4-camera ARTrack2 package € 30,000 (approx.)
 - PhaseSpace 4-camera system € 25,280
- Constant prices for more than ~10 years
- Clients:
 - Movie industry (Motion Capture)
 - Medical research
 - Industrial AR/VR applications & research
 - Not affordable for many other areas

TU Wien IMS: iotracker

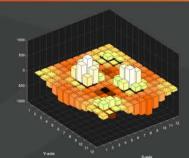
 Self-assembled tracking cameras by using commercial parts

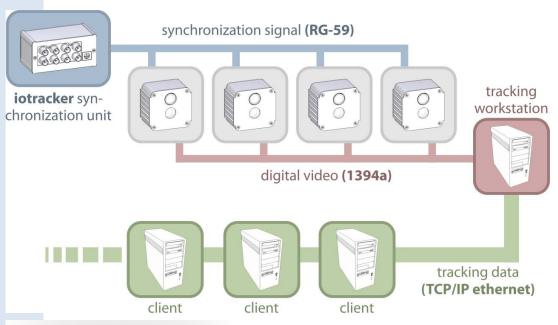
- connected via Firewire
- Combined tracking + application on 1 PC
- Scalable: 60Hz-200Hz
- Price: 1/3 1/5 of other commercial systems

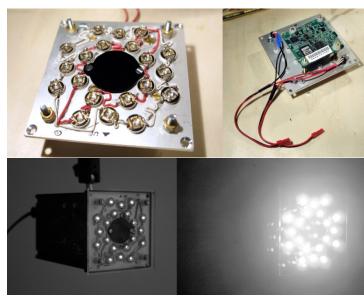

TECHNISCHE UNIVERSITÄT WIEN
VIENNA
UNIVERSITY OF TECHNOLOGY

pose tracking

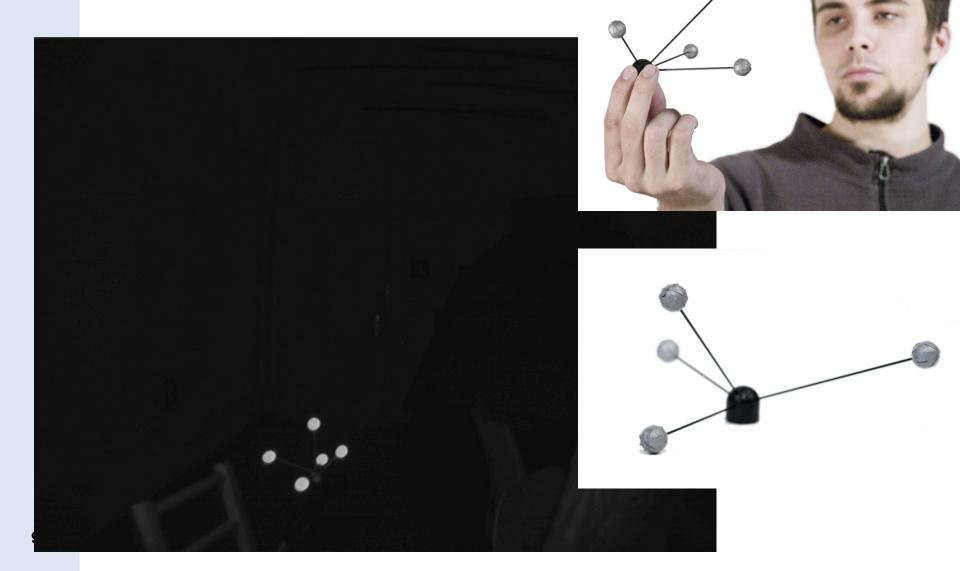
Update rate: 60 Hz Latency: 18 - 40 ms Jitter: < 0.05 mm / 0.02° Accuracy: ± 0.5 cm





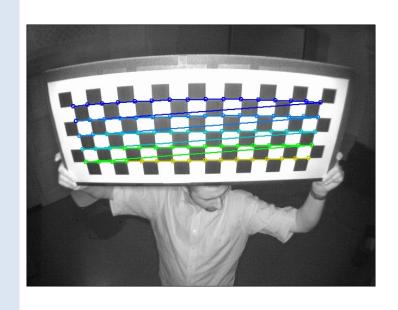


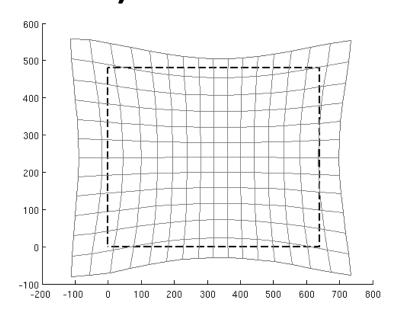
Camera Hardware



Retroreflective Markers

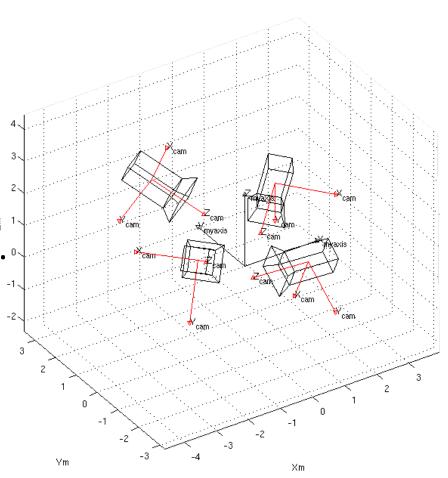
Ideal Camera Image




Optical Tracking System Design

- 1. Camera calibration (intrinsic, extrinsic parameters)
- 2. Segmentation & feature identification: detecting blobs
- 3. Feature correlation: finding multiple-view blob correspondences
- 4. Projective Reconstruction: acquire 3-DOF marker positions
- 5. Model-fitting: find pre-calibrated rigid constellations within the marker point cloud
- 6. Pose estimation: obtain 6-DOF pose (rotation/translation) for each rigid constellation

Camera Calibration (Intrinsic Parameters)


Non-linear lens distortion model (Heikkilä 1997):

- Radial / tangential distortion
- Focal distance, ...

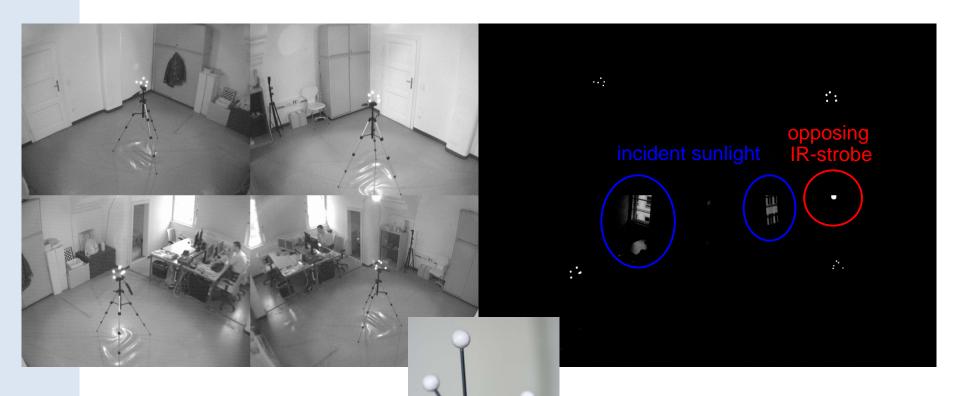
Camera Calibration (Extrinsic Parameters)

- Calculate position and orientation of cameras to each other and points in space
- We use the calibration algorithm by Svoboda et al. [*]
 - uses multiple-camera (>3) singlepoint correspondences
- [*] Tomas Svoboda, Daniel Martinec, Tomas Pajdla A Convenient Multi-Camera Self-Calibration for Virtual Environments (2005)

-100 0

100 200 300 400 500 600

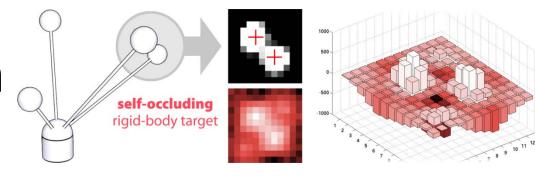
0 100 200 300 400 500 600


0 100 200 300 400 500 600

-100 0 100 200 300 400 500 600

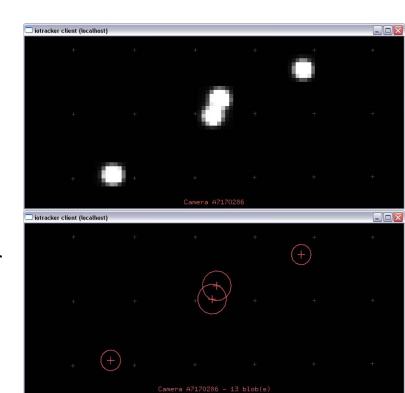
🧸 iotracker client (localhost) 🥮

Blob Detection

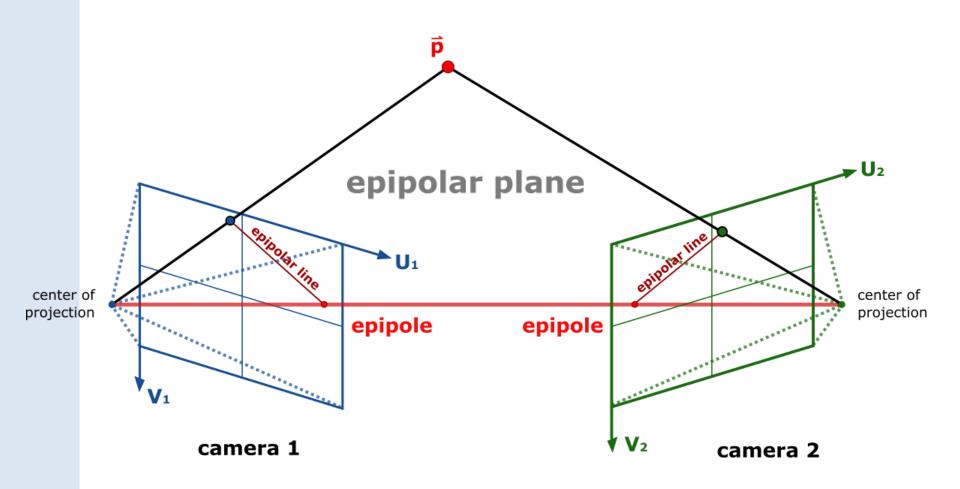

Shutter: 1/31s

Maximum Gain

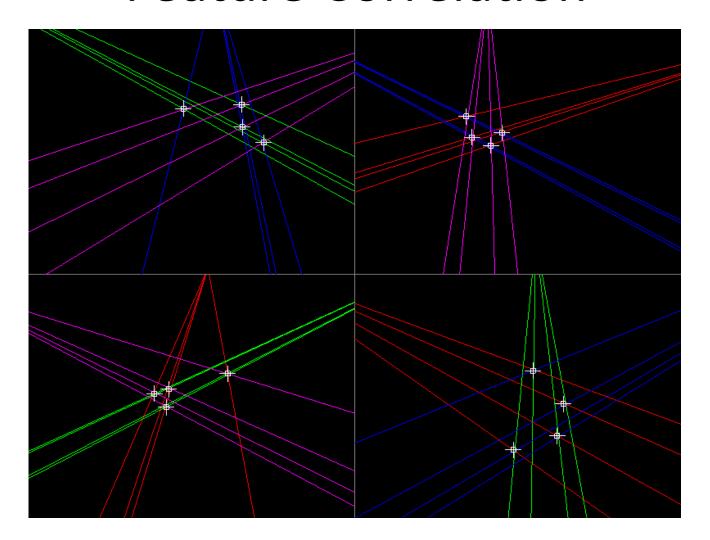
Shutter: 1/200s Low Gain



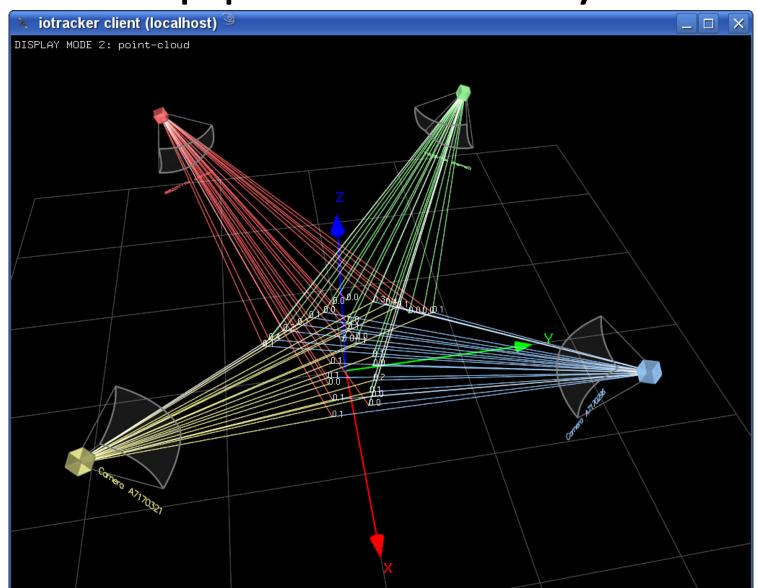
Blob Detection


Two-step procedure:

- Binary thresholding to discover blob candidates.
- Weighted-luminance centroid computation, using per-pixel difference matting
 - Background model is trained beforehand
- Problem: overlapping blobs
 - Solutions: contour-based segmentation or Hough circle finder

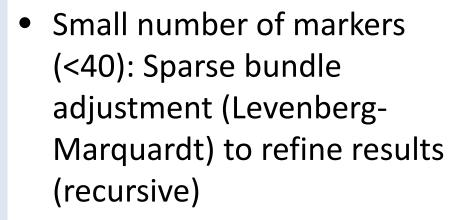


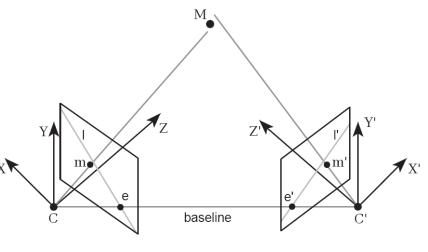
Epipolar Geometry

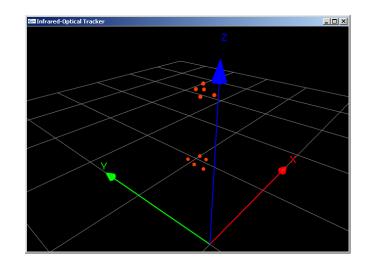


Epipolar Geometry: Feature Correlation

Epipolar Geometry:

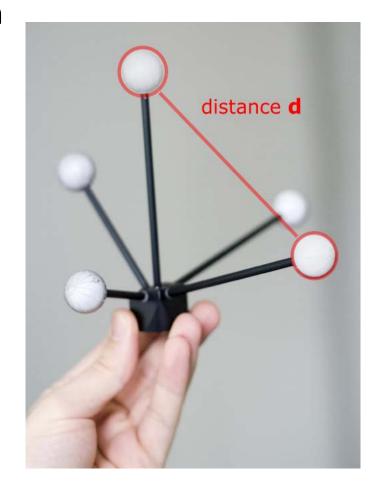



Projective Marker Reconstruction


 Rays do not exactly intersect (in practice)

 Currently using least-squares approach for projective
 reconstruction

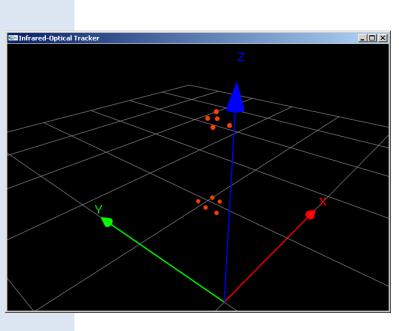
→ 3D Point cloud

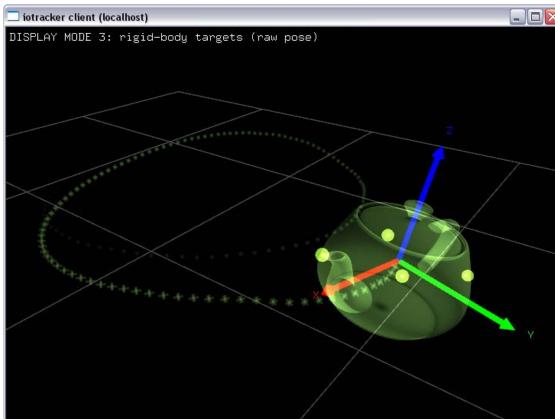


Model-Fitting

 pre-compute intra-constellation marker distances
 n! / [2*(n-2)!] entries

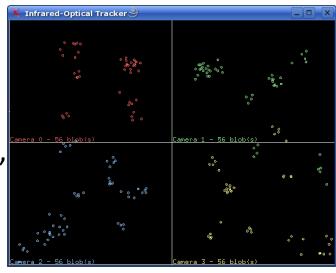
Once per frame/constellation:

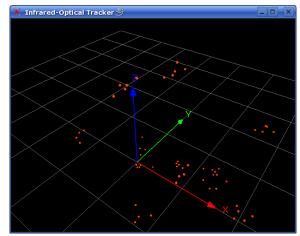

- for every pair compute the Euclidean distance (about 5000 computations for 100 markers)
- Selection out of multiple hypotheses



6-DOF Pose Estimation

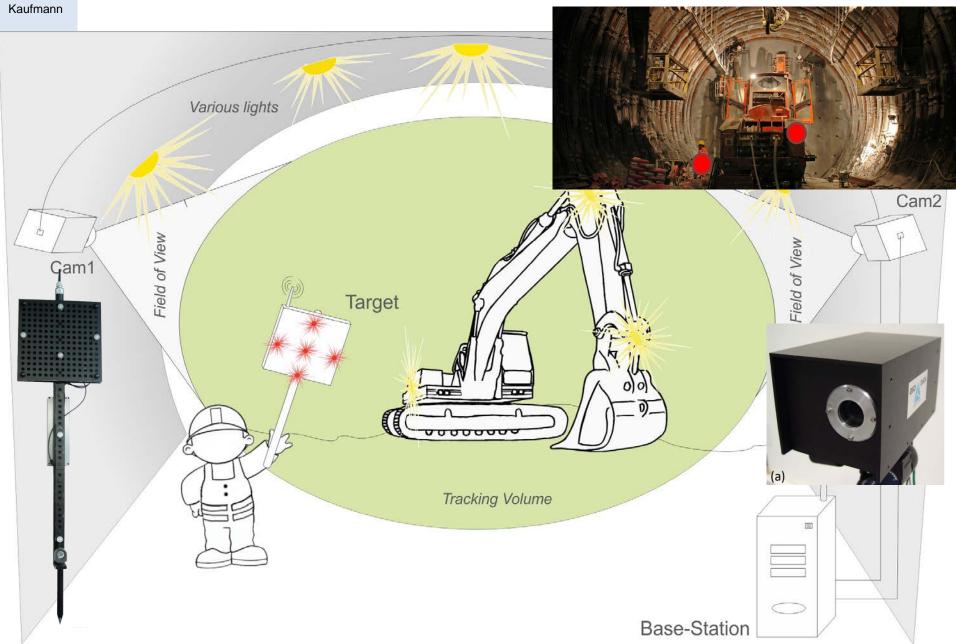
Based on stored target model:
 Perform a least-squares estimation of rotation and translation.





Results: Performance

Artificial benchmark:


- 4 cameras
- 224 blobs (56 per camera), with simulated 2D jitter (gaussian noise), no segmentation
- 56 markers
- 8 rigid constellations (consisting of 36 markers)
- all 8 constellations tracked at 60Hz with approx. 70-75% combined CPU load (2.16 GHz Intel T2600)

Measurements in a Tunnel

Consumer Devices

Usually tracking in small area (monitor):

- Dynasight (2500 USD)
- TrackIR (180 USD)
 - **–** 6DOF
- OptiTrack (599 USD 1 cam)
 - 100fps
 - On-board blob detection

Active/Passive Marker Tracking

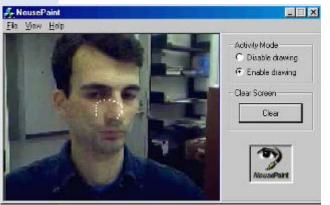
- Advantages
 - Very accurate
 (millimeter or submillimeter)
 - Supports tracking in a large volume
 - allow for untethered tracking

- Disadvantages
 - Requires active (LED)
 or passive markers
 - Occlusion problem

HTC Vive Lighthouse

- Inside-Out Trackingsystem
- 2 line lasers per base station + synch IR LEDs (every 8.3ms)
- Photo diodes on HMD and controller
- Time difference -> angle to

base


Steam VR (Valve) Lighthouse Tracking

- 1006Hz inertial sensor mainly used for tracking (hybrid tracking!)
- 60Hz optical tracking update rate
- 1ms worst case latency (head), 2.7ms (controllers)
- Very precise. Static jitter: 0.3mm lateral,
 2.1mm in distance direction (single base)

Optical Tracking without Markers

Natural Feature Tracking (NFT)

- More difficult than marker tracking
 - Markers are designed for their purpose
 - The natural environment is not...
- Less well established methods
 - Every year new ideas are proposed
- Slower than marker tracking

Idea:

- 1. Detect reliable features in image (e.g. corners, lines, ...)
- 2. Compare with reference image/3D model

Many different methods and combinations

- Features
 - Points
 - Edges
 - Horizon
- Sensor fusion
 - Gyroscopes
 - Accelerometers
 - GPS, ...
- Requires Initialization
- Not (very) robust
 - Sensor fusion
 - Recovery methods

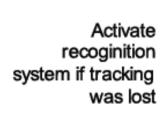
Azuma, '99

Kretschmer et al., '02

Ribo et.al., '02

NFT - Initialization vs. Tracking

- Initialization = Recognition
 - Computationally expensive
 - Required at startup

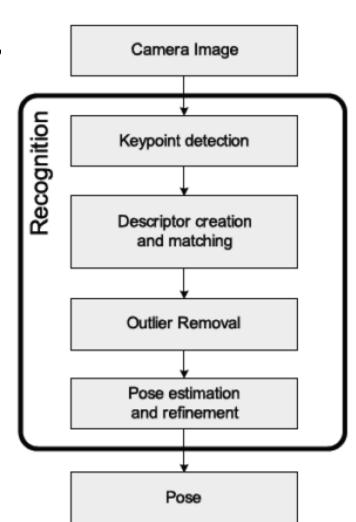

Tracking

Fast and cheap

Robust

Accurate

Target Recognition System


Activate tracking system if target was found

Target Tracking System

Detection in Every Frame

- This is what most "trackers" do...
- Targets are detected every frame
- Popular because detection and pose estimation are solved simultaneously

Natural Feature Tracking: Examples

- EPFL Book: <u>Video1</u>, <u>Video2</u>
- Stricker: ISMAR Demo
- Reitmayr: Cambridge Going-out Demo
- PTAM on iPhone
- 13th Lab: SLAM and Room measurements
- InsiderNavigation: <u>Indoor Navigation at Airport</u>

FAST Corner Detector

- FAST corner detector frequently used for mobile apps
- Produces very stable features
- Simple and fast algorithm to compute a feature: If *n* contiguous pixels are all brighter than the nucleus (center pixel) by at least treshhold *t* or all darker than the nucleus by *t*, then the pixel under the nucleus is considered to be a feature. Best results with Fast-9 (*n*=9)

* [Røsten, 2005]

Robustness by using FAST on a database of different scales

PTAM: Algorithm Overview

- Georg Klein and David Murray. PTAM: Parallel Tracking and Mapping, 2007.
 PTAM is a SLAM algorithm (Simultaneous Localization and Mapping)
- Tracking and mapping are separated and run in two parallel threads
- Mapping is based on keyframes, which are processed using batch techniques (Bundle Adjustment)
- The map is densely initialized from a stereo pair
- Large numbers (thousands) of points are mapped

PTAM in the Hofburg Festsaal

PTAM Tracking - Part 1

A new frame is acquired from the camera, and a prior pose estimate is generated from a motion model

Map points are projected into the image according to the frame's prior pose estimate

A small number (50) of the coarse-scale features are searched for in the image

PTAM Tracking - Part 2

The camera pose is updated from these coarse matches

A larger number (1000) of points is reprojected and searched for in the image

A final pose estimate for the frame is computed from all the matches found

Natural Feature Tracking by Detection

SIFT: Scale-invariant feature transform [Lowe, 1999]

- State of the art for object recognition
- Known to be slow
- Typically used off-line
- Invariant to uniform scaling, orientation, affine distortion, and partially invariant to illumination changes

Ferns [Ozuysal, 2007]

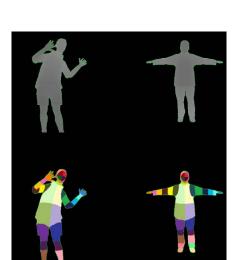
- State of the art for fast pose tracking
- Memory intensive
 - requires ~10x too much memory for phones
- Long training phase

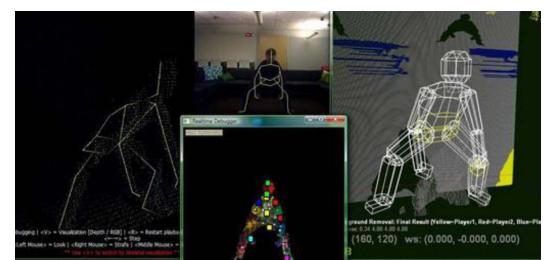
NFT with SIFT on a Mobile Phone

Natural Feature Tracking

- Highly desirable to get rid of markers
 - More beautiful setups
 - More acceptance from commercial side
- Very precise
- However, suffers from
 - Light conditions (spotlights)
 - Environmental changes
 - Camera's field of view
 - Large occlusions
 - Performance issues
 - Low CPU performance
 - Memory requirements
 - Bad or slow cameras (blur)

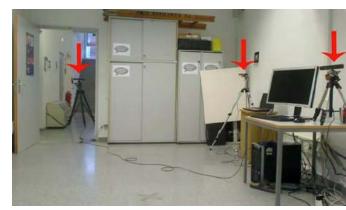
Depth Cameras

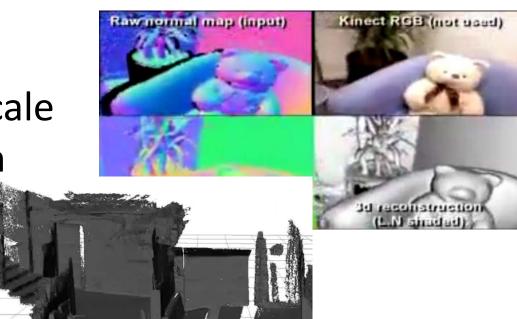

 3 different technologies to capture an RGB + depth (RGBD) image with a single camera


- -Structured Light
- —Time of Flight (ToF)
- –Light Field Camera

Structured Light: e.g. Microsoft Kinect

- 3D Sensor" developed by Primesense
 - projects infrared pattern onto scene
 - detects pattern shift in camera image
 - 9 sub-regions with "random" pattern
- Heavy machine learning to "guess" pose
 - Mocap studios generated images, filmed people





Some Kinect Projects

Reconstructed mesh

- Wide Area Tracking with Multiple Kinects
- Reconstruction –
 Kinectfusion
- Profitex Large Scale
 3D Reconstruction
 for Firefighters

Mobile Kinect-Like Sensors

Primesense Capri (bought by Apple)

Structure Sensor

Time of Flight Cameras

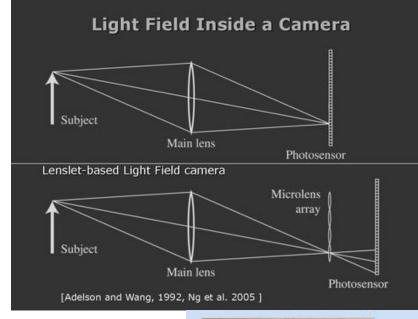
- Compute time of flight of IR pulse for each pixel
- Output depth image in addition to RGB
- Usually 0.5 7m range (or 7-14m etc.)
- Usually 8-bit depth resolution
 - -> range split into 256 parts
- Currently max. 512x424 resolution for depth image
- New possibilities for new applications

Microsoft Kinect 2

- Time-of-Flight Sensor
 - − 512 x 424 px depth imag
 - 1920×1080 (RGB camera)
 - 30 Hz
 - FOV: 70 x 60
 - Range: 0.5–4.5 meters
 - Latency: 60-80ms

Infrared in V2

Depth sensing in V2


1080p color camera in V2

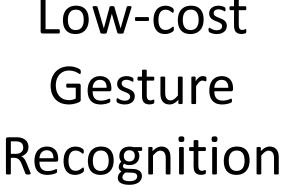
Light Field Camera (Plenoptic camera)

- is a camera that uses a microlens array to capture 4D light field information about a scene
- Allows reconstruction of the whole light field situation

4000x4000 pixels; 292x292 lenses = 14x14 pixels per lens

125µ square-sided microlenses

Light Field Cameras


- Cameras: Raytrix, Lytro
 e.g. Raytrix R5, 1000x1000 resolution
 (2Kx2K sensor, grayscale), 60Hz, dual GigE, >100 depth layers
- Interactive Examples: http://lightfield.stanford.edu/lfs.html
- Enables applications such as
 - Changing focus
 - Deblurring an image
 - Depth image computation

Slides about light fields:

Low-cost Gesture

Kinect / SONY Playstation Eye Toy for Rehabilitation

Motion Capture

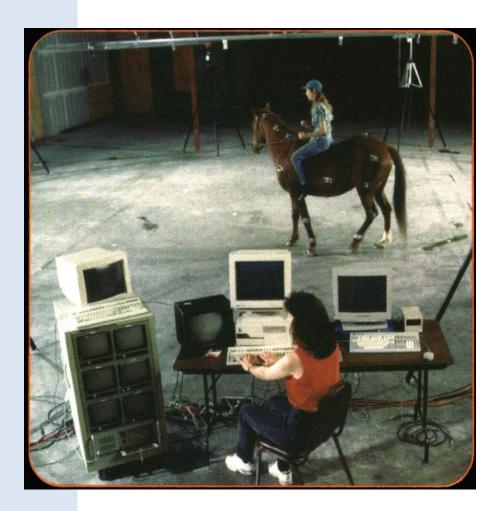
Motion Capture Technologies:

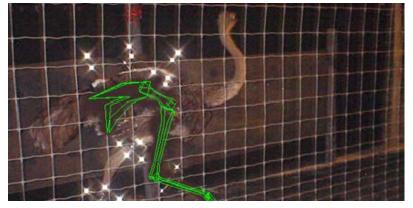
- Exoskeleton (Mechanical)
- Wireless Magnetic Sensors
- Wireless Inertial Sensors
- Marker based (Optical)
- Pure vision based (no markers):
 - First systems exist
 - High computational power needed (cluster)

Optical: Vicon

MCON 62

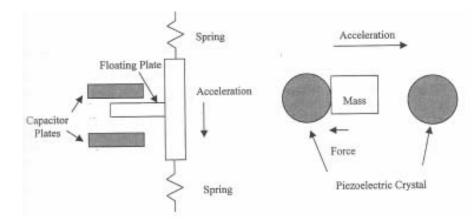
- 3 different camera models (0.3 – 4M pixels; 240-1000fps)
- Very high quality
- Price starts at 70K





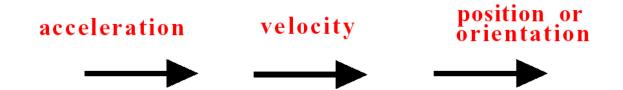
Tracking Animals

Inertial Sensing

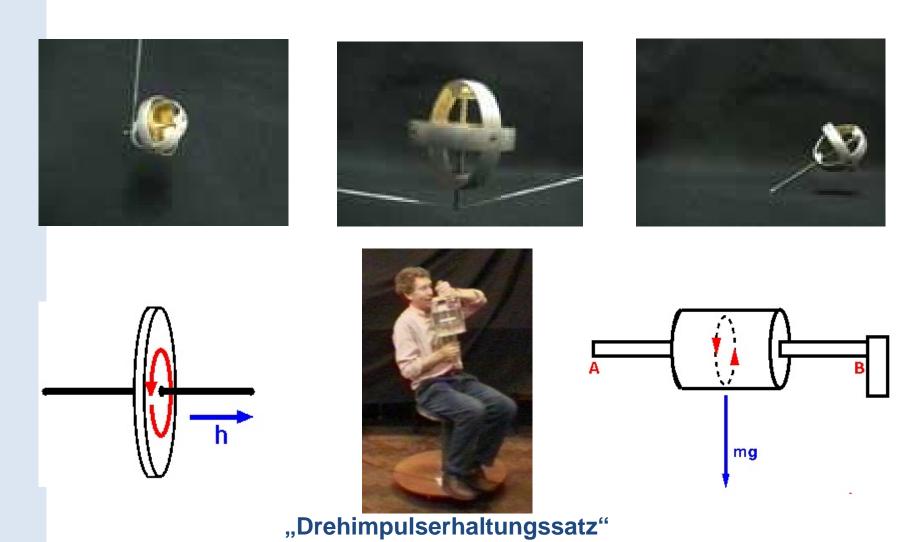


Inertial or Gravimetric

- Accelerometers
 - Linear accelerations
 - Mass on spring in tube; Piezoelectric


- Rate sensors (Gyroscope)
 - Angular velocity
 - Excentric mass....
- Gravity sensors
 - Orientation in gravity field

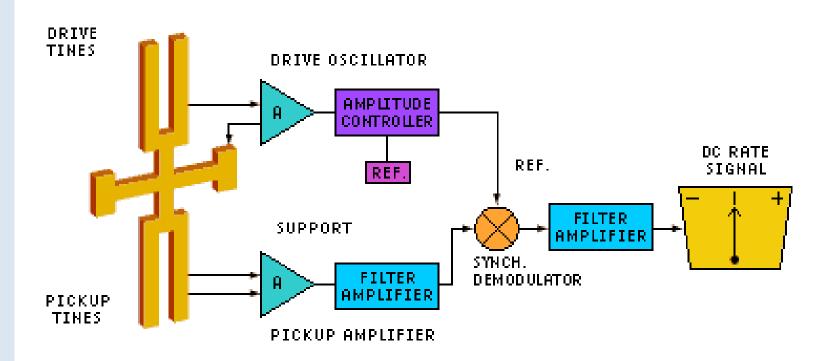
(Explanation: Piezoelectricity is the ability of certain crystals to generate a voltage in response to applied mechanical stress.)


Inertial Navigation

- Relative navigation from known starting point
- Sense rate, integrate once
- Sense Acceleration, integrate twice

How to Measure Angles with a Gyroscope?

Fto any collection of spinning objects, the total angular momentum must stay constant.

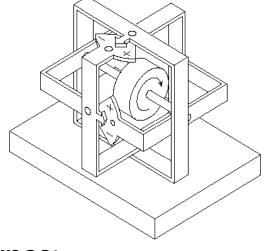


Vibrating Gyroscope

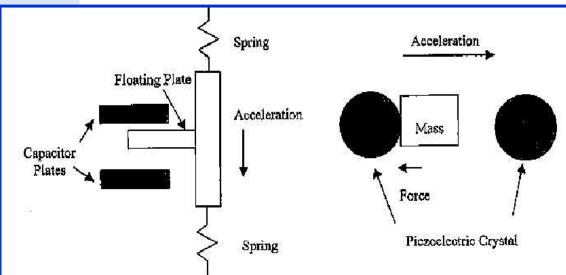
- When rotated a vibrating element (vibrating resonator) is subjected to Corioli's effect.
- Coriolis effect causes secondary vibration orthogonal to the original vibrating direction
- Sensing the secondary vibration -> the rate of turn can be detected
- For vibration exert and detection the piezo-electric effect is often used -> often called "piezo", "ceramic", or "quartz" gyro

The GyroChip[™]

Quartz tuning fork -> rotation -> coriolis force-> voltage


Vibrating Gyro

- suitable for mass production and almost free of maintenance
- Drawback
 - If used under external vibration, it cannot distinguish between secondary vibration and external vibration
 - can be partly overcome by using other vibrating elements (rings) instead of tuning fork


Inertial Trackers

- Intersense IS-300
- Less noise, lag
- Mostly only 3 DOFs (orientation)
- Relative measurements
 - --> integration errors --> drift

Types:

Gyroscopes
Accelerometers
Inclinometer
Electronic compass

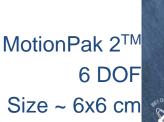
Application Areas

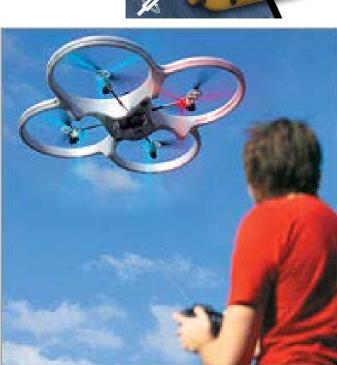
Stabilization

- Satellite Communication Antennas
- Optical Line-of-Sight Systems
- Missile Seekers
- Electro-Optical Infared Radar Systems

Controls

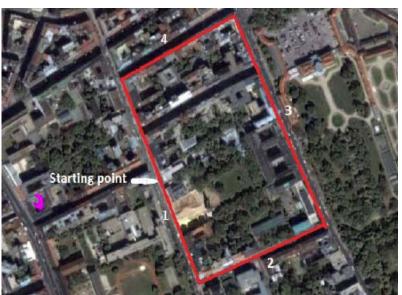
- Aircraft & Missile Flight Control
- Attitude Control
- Yaw Dampers

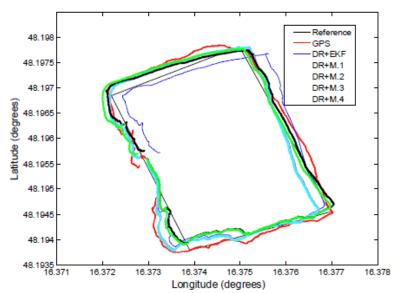

Guidance


- Missile Mid-Course Guidance
- Inertial/GPS Navigation Systems

Instrumentation

- Sounding Rockets & Missiles
- Simulation & Training Aids




X-UFO

Navigation of Humans/Machines

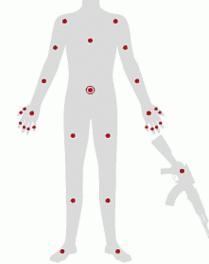
- Traditionally used in robotics (inertial and/or optical)
- Outdoors additionally GPS

Motion Capture with Inertial Sensors

X-sense MVN

PrioVR

Inertial MoCap: Perception Neuron


- Low cost: 1.500 EUR
- 32 sensors flexible use
- USB or WiFi transfer
- 60 fps (with 32 sensors)
- Finger Tracking

Kickstarter 2015: \$571,908

pledged of \$250,000 goal •

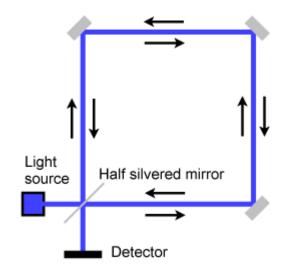
Inertial Tracking - Sensors

Pros

- Truly Sourceless
- Very fast
- Robust

Cons

- Bias, scale and alignment errors
- Bias integration results in drift
- Wireless versions require "bigger" sender



Other Gyroscopes & Additional Sensors

- Sagnac Effect
 - Ring Laser Gyroscope
 - Fiber Optic Gyroscope

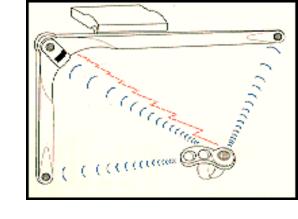
Quantum Gyroscope

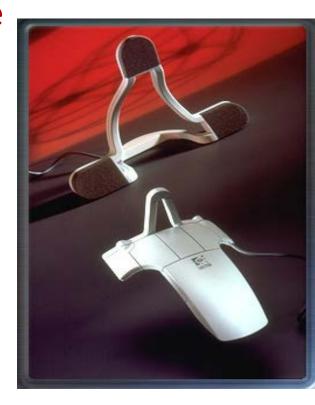
- Electronic compass:
 Measuring the earth's magnetic field
- Inclinometer measures slope (viscous fluid)

Time-of-Flight and Frequency Measuring

- Acoustic Trackers (Ultrasound)
- GPS / DGPS
- Radio Frequency
 - WLAN
 - RFID
 - UWB

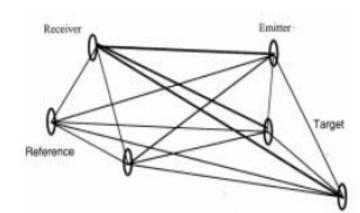
— ...


Time-of-Flight and Frequency Measuring


- Measure the time of propagation of a signal
- Compare phase difference of waves
- Measure frequency of waves to indirectly estimate time difference

Acoustic Tracking

- Measure distance between reference features and moving target
- Determine distance: Measure time of propagation of pulsed signals (travel time of sound)
 - Speed of propagation must be constant (!)
- Pulsed signal: Ultrasound (~40Khz)
- Use 3 or more emitters and 3 or more recievers (6 DOF)
- Typical setup for 3 DOF:
 - 3 microphones, 1 speaker



Logitech Fly Mouse

Ultrasonic Time-of-Flight

- Each emitter sends out signals sequentially
- Recievers recieve signals simultaneously
- Compute position of target emitters with respect to the fixed reference via simple triangulation
- Repeat for (at least) 3 target emitters
 - position and orientation of target with respect to fixed reference

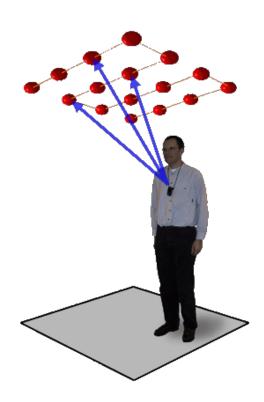
Acoustic Tracking: Pros & Cons

Advantages

- Small and light weight targets
- Relatively inexpensive

Disadvantages

- Line of sight issues
- Accuracy depends on constancy of velocity of sound
- Speed of ultrasonic waves varies
 - Temperature, Pressure, Humidity, Turbulence
- Ultrasonic noise
 - CRT tubes of monitors, disk drives, etc.
 - Reflection of signal



Acoustic Trackers: Wide Area

- Wireless targets are possible
- Example: AT&T Cambridge BAT, IS-900

AT&T Bat

Global Positioning Systems (GPS)

Global Navigation Satellite Systems (GNSS)

- GPS (USA; Global Positioning System)
- GLONASS (Russia)"Globalnaja Nawigazionnaja Sputnikowaja Sistema"
- Gallileo (Europe)

GPS

- Large scale
- Based on radio signals
- Uses 24 satellites in orbit -> 4 of them seen simultaneously from any point on earth
- + 6 monitoring stations, 4 ground antennas, 1 master control station

GPS

- Two levels of service:
 - Standard positioning service (SPS)
 - Precise positioning service (PPS) -> only for U.S.
 Government
- Each satellite has atomic clock (accuracy 340ns for SPS)
 - 1ms clock error produces horizontal measurement error of 300km
- Master control station controls orbit of satellites and corrects clocks

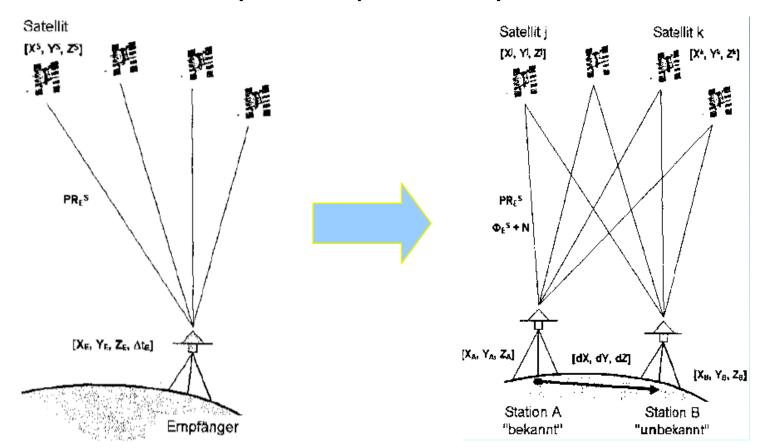
GPS Receiver

- Receiver needs to receive signals from at least 3 different satellites to determine position
- BUT receives clock as unknown time bias! (drift)
- Satellites more accurate (2ns/year) than GPS receivers (10ns/day)
- Therefore use 4 satellite signals to calculate position and time bias; in practice: 5 satellites!!
- Accuracy of SPS: 100m
- Accuracy of PPS: at least 10x better than SPS

GPS Pros & Cons

Advantages:

- Uniform global accuracy (~ 10-100m) without other infrastructure
- Cheap and easy to use


Disadvantages:

- Direct line of sight needed no GPS data indoors
- Problems in narrow street passages, wood,...
- Resolution and precision

Differential GPS (DGPS)

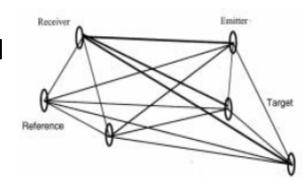
- Uses additional fixed ground station to refine resolution
 - Theoretically 0.1m, practically 3-5m

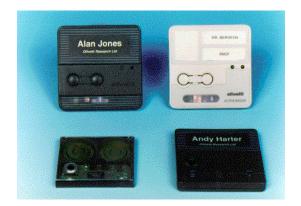
Austrian EPOSA System

- Differential correction data sent over GMS, Internet (by RTCM or NTRIP standard)
- Supports GPS and GLONASS
- Cooperation between BEWAG, ÖBB-IKT and

Wien Energie

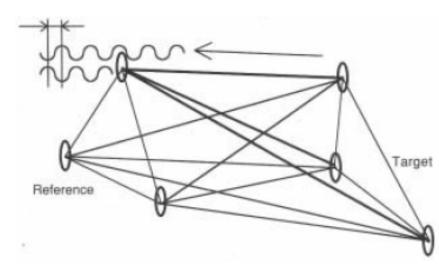
1-3 cmPrecision





Radio Frequency Trackers

- Triangulation similar to acoustic tracking
 - Proximity
 - 802.11a/b = WLAN
 - RFID
 - GSM
 - Ultra Wideband
 - Phase difference



Phase Difference Time of Flight

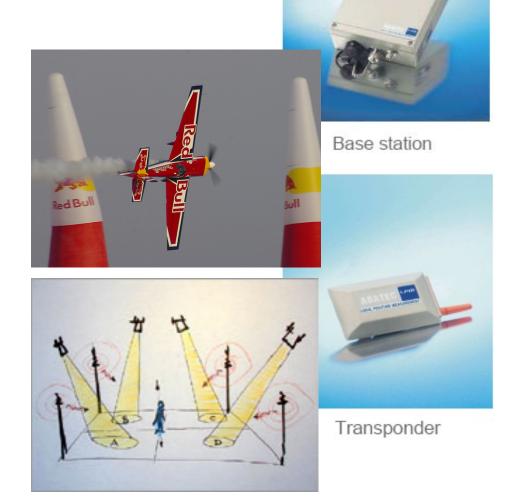
- Similar to acoustic tracking
- Target sends signal
- Receiver has reference signal with the same frequency
- Receiver compares phase shift of target signal with reference
- Modification of phase indicates relative movement of target
- Example: laser measuring

Phase Shift Pro & Cons

- Advantages
 - High data rates possible (phase shift can be measured continuously)
- Disadvantages
 - Limited to environmental conditions
 - Temperature, pressure,
 - GPS: Ionospheric influences (sun winds)
 - Reflections in the environment are problematic
 - Multipath effect
 - Accuracy
 - Cumulative errors in measurement process

Ubisense Ultrawide-band (UWB)

- UWB transmits signal over multiple bands of frequencies simultaneously: 3.1 - 10.6 GHz (RFID systems operate on single bands of radio spectrum)
- Active tags used; Ubisensors 5.8 to 7.2 GHz
- Tags have unique 32-bit (4-byte) identifier and send location max. 40 Hz



Abatec: Local Position Measurement (LPM)

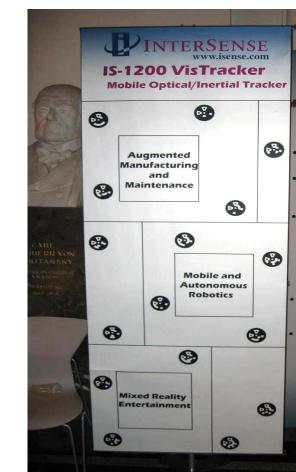
- Austrian company: Inmotiotec
- Large area tracking
 - Red Bull Air Race
 - Zactrack
- 500x500m area/sect.
- Max. 30 sections
- Like UWB: 5.8Ghz
- Update rate: 1000Hz
- Accuracy: +/- 5cm (outdoors)

Kinexion – Decawave

- Decawave IEEE 802.15.4 standard
- UWB: over 15 diff. frequency bands
- +/- 10cm accuracy
- Inertial sensor integrated
 - -<0.1° orientation data & acceleration
- 40m indoors, 300m outdoors
- 15g sensors
- Industrial & sports applications

Hybrid Trackers

- Idea: one tracker's strength is other tracker's weakness
- For example: Intersense IS-600 / 900
 - inertial: +fast, -drift
 - acoustic: -slow, +accurate



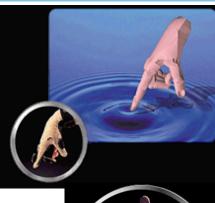
Intersense IS-1200

- Combination of inertial + optical tracking
- Advantage: Very accurate
- Disadv.: Markers needed

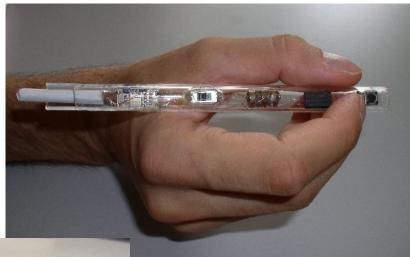
Miscellaneous Devices

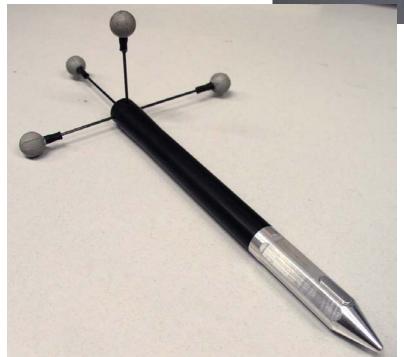
- Gloves
- Pens / Wands
- Hybrid Devices
- Game Controllers

- Haptics
- Locomotion


Data Gloves

- Used to track the user's finger movements
 - for gesture and posture communication
- Almost always used with a tracker sensor mounted on the wrist
- Common types
 - CyberGlove
 - 18 sensors, 22 sensors
 - 5DT Glove
 - 5 sensors, 16 sensors
 - P5 Glove
 - bending sensors





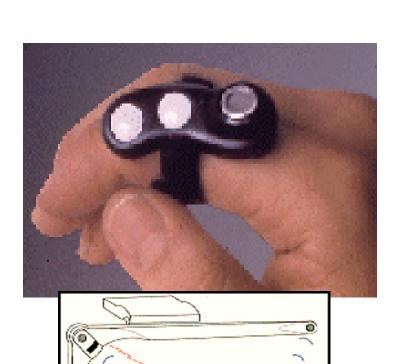
Tracked Wireless Pens (IMS)



Hybrid devices

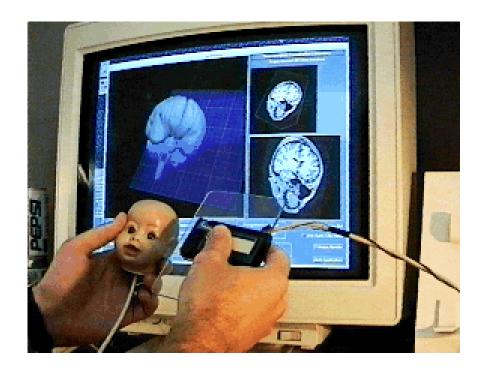
Continuous and discrete input Examples

- Button device + tracker
- Flex & Pinch
- Ring mouse
- LCD tablet
- Shape Tape
- Cubic Mouse
- Spaceball



Mouse Type Devices

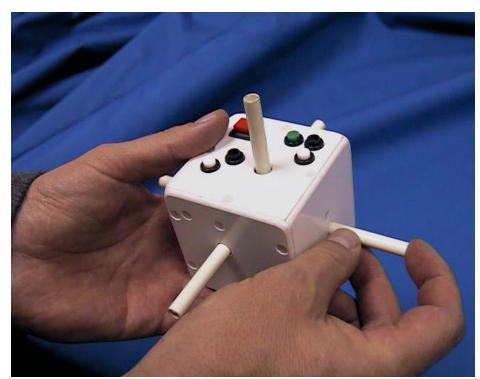
- Space Mouse
- Ring Mouse (pictured)
- Fly Mouse
- Gyro Mouse



Various Props – Real Objects

- Head prop
- Car prop
- ...

Brain segmentation

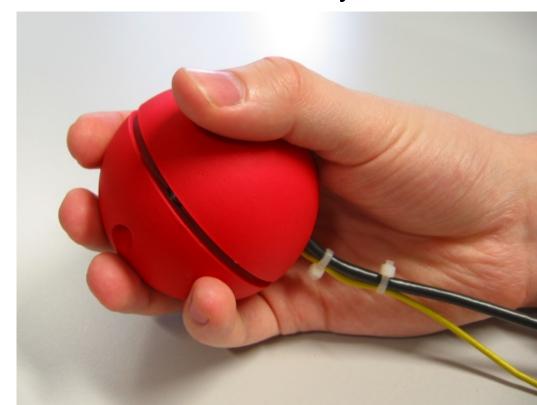


Cubic Mouse

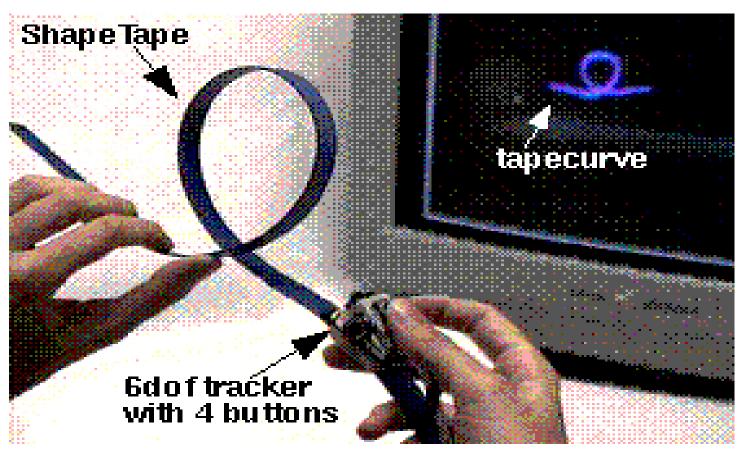
- First 12 DOF input device
- Tracks position and rotation of rods using potentiometers

- Other shapes and implementations possible
 - Mini Cubic Mouse

– ...



iOrb


- Inertial Tracker inside
- 1 Button
- Freely rotatable

Reitmayr et al., 2004

Shape Tape

Courtesy Balakrishnan et al

Wiimote

- 3-axis accelerometer
- Optical (IR) sensor
 - IR LEDs on a sensor bar used for recalibration
 - Calc. distance to sensor bar
 - max. 5 points simultaneously

Rumble functionality

Sony MOVE Motion Controller

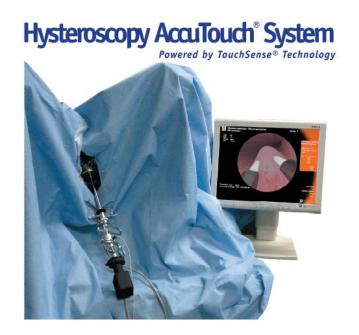
- Inertial sensor (gyro, accel., magnetom.) – measures orientation
- 60 Hz camera used for optical tracking of colored sphere
 - High accuracy (cm/mm)
 - Controller can change colors (eases segmentation)

Haptic Devices

Tactile Technologies – Feeling Pressure

- Tactile information is produced by perturbing the skin
 - Pins -either alone or in an array, as in devices for Braille display
 - typically used for fingertip stimulation
 - Air jets blow to produce a disturbance
 - Cushions of air can be inflated or deflated to vary pressure on skin
 - Electrical stimulation -low levels of current provide a localised tingling sensation
- Typically used in gloves, or for larger body areas
- These technologies all share the same lack of realism

Haptics


- Human tactile sensoring sensitive to vibration 10-1000Hz -> 1000Hz required for stable force feedback
- Physical accuracy difficult to achieve in real time
- Simplified/approximate (deformation) models
- GPU based haptics modelling approaches
- Haptics devices & photos: <u>http://www.personal.rdg.ac.uk/~shshawin/LN/L8hapticdesigns.html</u>
- Futher literature: Good introduction to haptics: http://www.dcs.gla.ac.uk/~stephen/lectures/HCI4/HCI4%20kinaesthetic%20haptics.pdf

Haptics – Special Devices

- Haptic Smarttool
 - Could be useful for medical applications
- Medical Training Devices (e.g. Endoscopy)

Locomotion devices

Locomotion = Active Movement

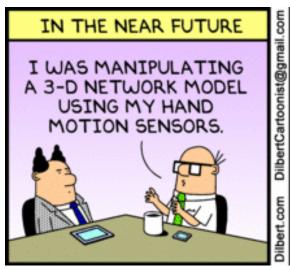
- Treadmills
- Stationary bicycles
- Walking/flying simulations (use trackers)

Locomotion - Prof. Iwata

- Virtual Preampulator (1996)
- TorusTreadmill (1999)
- GaitMaster 2 (2000)
- CirculaFloor (2005)
- Powered Shoes (2006)
- StringWalker (2007)

Current Locomotion Devices (2014 -)

- Cyberith Virtualizer
 - Developed by Tuncay Cakmak (TU Vienna)
- Infinadeck
 Omni-Directional Treadmill (ODT)
- Virtuix Omni



Literature

 3D User Interfaces – Theory and Practice Doug Bowman, Ernst Kruijff, J. LaViola, Ivan Poupyrev; Addison Wesley, 2005.

