MolRec at CLEF 2012: Chemical Structure Recognition CLEF 2012, Rome, Italy

Noureddin M. Sadawi Alan P. Sexton Volker Sorge www.cs.bham.ac.uk/~nms|~aps|~vxs

> School of Computer Science University of Birmingham, UK

19 September 2012, CLEF 2012, Rome

- Convey information through pictorial representations a picture is worth a thousand words
- Chemical structure diagrams in publications and patents research articles, patent specs, catalogues, etc.
- Convert images to computer processable/searchable format patent search, drug discovery, cancer research, etc
- Simple but powerful approach MolRec employs a clearly defined *rule based approach*

Molfile mol.tif

- Image analysis and shape identification
- Connectivity preservation and contextual discrimination
- Strategy to manage cases
- Suitable output format

< □ > < 同 >

- Rule-based Systems (RBS) encode human knowledge
- RBS have three components: a Working Memory, a Rule Engine and a Rule Base
- The Working Memory has a set of facts
- The Rule Base contains rules
- The Rule Engine interprets these rules and applies them as the case may be

- The rule engine works with the contents of the working memory
- The rule engine continuously accesses the working memory
- A rule is applicable if there exist objects that satisfy its preconditions
- There must be a termination mechanism

- Vectorisation (Detection of geometric primitives) Character Groups, Circles, Line segments, Triangles and Arrows
- Working memory is a set of primitives
- Rule Base has 18 rules
- Rule Engine (rewrites primitives into a graph)
- Rules are chosen randomly from a rule pool
- Disambiguation and graph correction
- Produce output from graph (e.g. MOL, SMILES)

Example Rule: R2. Double Bond

- $L = \{l_1, l_2\}$ is a set of two line segments,
- $\forall l \in L : length(l) > wb (wedge base)$
- $\forall l \in L$: width(l) < bbw (bold bond width)
- $I_1 \parallel_{bs}^{ol} I_2$
- There is no line segment $I \notin L$ such that $l_1 \parallel_{bs}^{ol} I$ or $l_2 \parallel_{bs}^{ol} I$.

Consequence Cutting (l_1, l_2) will yield a double bond as well as at most two new line segments.

Rules I

Rules II

▲ □ ▶ ▲ □ ▶ ▲

э

Rules III

R19. Aromatic

R21. Double Bond with Type 1 Stereo-chemistry

R20. Tautomeric

R22. Double Bond with Type 2 Stereo-chemistry

2

Example Diagram

Primitives

Graph

N.M.Sadawi, A.P.Sexton, V.Sorge UoB's MolRec at CLEF 2012

MOL file

Molfile mol.tif

32	35	0	0	0 0 0	0	0 09	999 V	200	0										
	-0.1	678		-1.2245	Θ.	.0000	C	Θ	0	Θ	Θ	Θ	Θ	0	Θ	Θ	0	0	Θ
	-2.6	878		0.0755	0.	.0000	C	0	0	0	0	0	0	0	Θ	0	0	0	0
	-0.0	378		1.4855	Θ.	.0000	C	Θ	0	Θ	Θ	Θ	Θ	0	Θ	Θ	0	0	Θ
	-2.4	478		-1.7045	0.	.0000	С	0	0	0	0	0	0	0	Θ	0	0	0	0
					:				:					:					
					:				:					:					
	0.1	322		1.9355	0.	.0000	н	0	0	0	0	0	0	0	0	0	0	0	Θ
0.7122 -0.1145			0.	.0000	Ν	0	0	0	0	0	0	0	Θ	0	0	0	0		
-2.5478 2.0555			0.	.0000	0	0	0	0	0	0	0	0	Θ	0	0	0	0		
	-2.6	778		1.5155	0.	.0000	0	0	0	0	0	0	0	0	Θ	0	0	0	0
11	29	1	0																
12	13	1	0																
13	26	2	0																
13	31	1	0																
14	16	2	0																
	:																		
	:																		
	•																		
31	17	1	6																
23	29	1	0																
25	32	2	õ																
25	33	2	0																
28	29	1	õ																
м0	END	-																	

-2

《口》《聞》《臣》《臣》

Run	# Recognitions	# Mis-Recognitions	Accuracy
1	832	33	96.18%
2	821	44	94.91%
3	821	44	94.91%
4	832	33	96.18%

Four Runs on the Automatic Evaluation Set (865 images)

Run	# Recognitions	# Mis-Recognitions	Accuracy
1	44	51	46.32%
2	56	39	58.95%
3	44	51	46.32%
4	54	41	56.84%

Four Runs on the Manual Evaluation Set (95 images)

→ 3 → < 3</p>

• Touching Components

• Broken Components

< E

Problem Cases

Markush Structures

• Grouping Errors

Problem Cases

Ambiguity

• Other Reasons

Stereo-centre

<ロト <部ト < 注ト < 注ト

2

Correct Recognition I

→ 3 → < 3</p>

Correct Recognition II

→ 3 → < 3</p>

Correct Recognition III

Correct Recognition IV

3

э

< ∃ →

Correct Recognition V

2

э

< ∃ →

- The rule based approach means analysis is fast, easily extendible and *flexible*
- Recognition of even complex traditional diagrams works well
- Improved OCR (touching/broken symbol correction) would considerably improve the system
- Handling Markush structures and finding suitable representation
- More domain knowledge to solve connection permutation problem for superatoms
- More domain knowledge to accurately determine stereo-centre
- The larger picture, whole document analysis