
QTool
An Overview

Roland Braito∗

June 12, 2002

Abstract

QTool is small program which is being built to facilitate the in-
tegration of message queueing services and data warehouse loading
tools. As of this writing, it offers basic queue management (including
monitoring), enqueueing functionality, and a special scheduler used for
continous loading a data warehouse from a message queue. QTool cur-
rently offers support for MS Message Queueing and was designed to
be used with, but is not limited to, Teradata’s TPump utility.

Contents

1 Overview 1

2 Future Work 6

3 Technology Used 6

1 Overview

The principle design goal of QTool is to offer everything needed to conti-
nously load a data warehouse from a message queue. Since most data ware-
houses are rather complex entities, a decision has been made to limit each
QTool instance to serving exactly one queue and one ”Continous TPump
Job”. Please note, that one ”Continous TPump Job” typically consists of
at least two BTEQ and two regular TPump jobs being called alternately.

To fill several tables from different queues, simply start one QTool in-
stance per queue to be accessed.

The typical way to use QTool would be to start it up, specify the queue
to be accessed, and then choose the desired functionality by selecting the

∗roland.braito@aon.at

1



appropriate tab. When launched, QTool displays the QStats tab which is
shown below.

Figure 1: QStats tab showing graphical representation of the data

At the upper left, the fields to specify the queue are shown, the buttons
at the lower left are used to create, delete and empty the specified queue, as
well as to count the messages in it and to send a special job-rotating message
to the queue. At the right, the QStats display is shown. It consists of a graph
showing the number of messages in the queue plotted over time. These data
are saved in tab-separated format to a file, which can be specified. To reduce
the amount of data, a polling interval can be chosen.

At the bottom a status bar is shown.
Furthermore, since a graph offers only qualitative information, the display
can be toggled between a graphical view and a textual view of the data,
offering precise quantitative information.

2



Figure 2: QStats tab showing textual representation of the data

The next tab offers enqueueing functionality, which is one of the main
purposes of QTool. The data is read from a ”flat file” and enqueued at the
specified rate in the accessed queue. Further properties which can be spec-
ified are: message priority, how many records each message should contain
and the total number of records to be queued.

In the lower part of the tab, some statistic are shown, along with how
long it takes to send one message and how many records can be put into one
message. The latter two are calculated during each calibration by inspecting
the data-file. Calibration sometimes is necessary, due to the fact that the
time needed to compose and send messages greatly depends on message
size and CPU power. It is performed by klicking on the ”Cal.” button.
Since QTool uses C++ code to access MS Message Queueing Service, it is
considerably faster than any VisualBasic tool.

3



Figure 3: Enqueueing tab

The messages tab, which is not yet implemented, will provide access to
messages in the specified queue. It will list the messages in the queue, offer
the ability to inspect the properties and body of a message, as well as to
delete a single message or several messages at once.

Until this functionality is implemented, the MS Management Console,
which is part of the Windows 2000 operating system, has to be used to
inspect single messages.

The scheduler tab offers the ability to run a ”Continous TPump Job”1.
A ”Continous TPump Job” ist comprised of two series of jobs each consist-
ing of a BTEQ initialization job, followed by a TPump job feeding the data
warehouse and – optionally – a finalizing BTEQ job, which are alternately
called to enable a virtually continous loading of the data warehouse. Since
this is done through batch-processing, QTool needs to know where to find
the executables and the job files. Once this information, along with the ro-
tation interval, has been entered, and the scheduler has been started, QTool
generates batch-files to call the BTEQ and TPump utilities, redirecting their
output into files named according to the following scheme:

<nameOfJobFile>_out_<timestamp>.txt

1For an in-depth discussion of this topic please refer to the article ”TPump in a Con-
tinuous Environment” by Bob Hahn & Carrie Ballinger, NCR Active Data Warehouse
Center of Expertise, April, 2001.

4



where

<timestamp>

has the format:

YYYYMMDD_HHMMSS_mmm

with hours being in 24-hour format and mmm being milliseconds. So, a
possible output-file for the job-file

"D:\init1.txt"

would be

"D:\init1_out_20020522_140222_223.txt"

In the lower part of the tab, a constantly updated table is provided, showing
the history of started jobs as well as the current status of the active ones. As
a special bonus to illfated admins, a doubleclick on a table-entry displays the
corresponding output-file, thus making error-tracking a little less painful. . .

Pressing the ”STOP!” button stops the creation of new jobs, but does
not interrupt already running jobs, since this can have a hazardous impact
on the RDBMS.

Figure 4: Scheduler tab

5



2 Future Work

Plans for the immediate future of QTool include:

• Implementing message reading and deletion

• Implementing further queue-management functionality (security, etc. . . )

• Implement JMS capability (see section 3)

3 Technology Used

Warning: This section is aimed at readers interested in the tech-
nology behind QTool, and as such may cause considerable bore-
dom to non-programmers!

QTool has been written in Java2SE. It uses Swing to display it’s GUI (and
the JSci package for displaying the graph).

Since MS Message Queueing Service (MSMQ) is neither Java Messaging
Service (JMS) compliant nor provides Java-Interfaces, the Java Native In-
terface (JNI) has been utilized to access the MSMQ COM/C++ API and
the Win32 API. This usage of native code, is the reason of QTool’s superior
performance over VisualBasic based tools.

Unfortunately the standard MSMQ API is offers very limited manage-
ment functionality. Therefore QTool makes use of the unofficial MSMQ
Admin API.

Since Java offers a non-proprietary standard to use message services
(JMS), it is planned to add the capability to access JMS compliant messaging
services to QTool.

To enable high-speed communication between the native code accessing
MSMQ and the Java code displaying the QStats, socket communication is
being used.

The scheduler starts the BTEQ and TPump jobs using Runtime.exec().
Obviously, QTool makes rather heavy use of multithreading.

6


