
� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

� � ! � " #

• Steps for modelling a DWH

• Data granularity

• Data storage

• Attribute hierarchies

• Querying a DWH / OLAP

• Frequent mistakes when building a DWH

• Example: grocery store (R. Kimball [KIM96])

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : ; ! < = ! > ? @ < !

• Grocery chain with 500 stores spread over 3 states in the US

• Stores: supermarkets with departments like grocery, dairy, meat, frozen food,
bakery, liquor, drugs etc.

• About 60.000 products in each store

(R. Kimball, [KIM96])

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � A

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

B 6 C " = C

• Data from source systems: OLTP, legacy systems, syndicated data
• Cleaned - within itself consistent data

Data availab le -> building a Data W arehouse:

• Which business processes to model

• Defining granularity of data to be fed into the DWH

• Modelling the DWH data structure for storing the data

• Transforming data according to DWH structure

• Calculating aggregations and derived attributes

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � D

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

E F " = F B G C " H C C I ! < = C C C @ < J < K 9

DWH represent a business process view of the underlying data as opposed to the
transaction-oriented OLTP systems

The decision which business processes to model has serious effects on the resulting data
warehouse

• Problems to be addressed

• Questions to be asked

• Information needed and available

• Central DWH or data marts?

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � L

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : B G C " H C C I ! < = C C

OLTP - data:

• Point-of-Sales data (POS)
• Vendor delivery data
• Accounting data
• Customer data
• Promotions
• ...

Goal: build a dail y item mo vement database

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � M

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

; ! 6 H G 9 6 ! " @ >

• Data is fed into the DWH at a certain level of granularity
• Based on this level of granularity aggregations can be defined
• higher granularity - more data, lower granularity - less data

Questions :

• Which levels of granularity are available?
• Which levels of granularity are reasonable and useful in the DWH

(temperature sensor data: per millisecond, second, minute, hour?)

Tendency to store highest-granularity data where possible - once the granularity has been
reduced, detailed information is no longer recoverable

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � N

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : ; ! 6 H G 9 6 ! " @ >

Which granularity for POS data?
Possibilities:

• single transactions per customer per product per store
• group transactions per customer per product per store
• group transactions per store per product per day
• group transactions per store per product per week
• group transactions per day per productgroup per region
• ...

Goal: daily item movement database

transactions per day per product per store

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � O

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : ; ! 6 H G 9 6 ! " @ > P Q R

Granularity: transactions per da y per pr oduct per store

• Not per customer per product per store because customers cannot be uniquely
identified which would be essential for market basket analysis

• Not per week or month because we loose differences in e.g. Monday vs. Saturday
sales

• Not per productgroup because of loss of all information relating to special brands,
promotion campaigns

Note: these decisions depend a lot on the business process to be modelled and the
questions to be answered!

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

E 6 > C < S ? @ < ! " H T @ F U 6 @ 6

• Data used for OLAP analysis must be stored in some kind of database to be
accessed by the OLAP engine

• MOLAP?

• ROLAP?

• HOLAP ?

• Data Marts?

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : ? @ < ! 6 T S < ! ; ! < = ! > U E V

• Relational databases widely available

• Relational databases used for OLTP systems at companies

• Experienced IT personnel at companies used to relational databases

• ROLAP approach currently most common

Relational database used f or storing Gr ocer y DWH data

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

W 6 = @ C 6 H K U " 7 H C " < H C

Facts:

• Represent primary business process areas
• Unlikely to change once they are generated
• Stored at a certain level of granularity

Dimensions:

• Reference information by which facts can be structured for analysis
• Define aggregation hierarchies

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : W 6 = @ C 6 H K U " 7 H C " < H C

Grocer y Store , POS-Data

Facts:

• POS: sales facts

Dimensions:

• Time
• Store
• Promotion
• Product

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � A

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

X � Y Z I ? @ < ! 6 T ? = F 7 6 [? = F 7 6

Star Sc hema:
• Partitioning the data
• Denormalizing tables
• One central fact table is surrounded by several dimension tables
• Queries address the fact table and are structured using the dimension tables
• No need for joins spanning multiple tables
• Most prominent model for DWH

Snowflake Sc hema:
• Based on star - schema
• Fact table structure identical to star - schema
• Dimension tables normalized (3. NF)
• Clearer structuring of dimensions
• Database people used to 3. NF
• But: necessity to hide the now more complex structure from the user
• Usually not fully normalized dimension tables

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � D

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : \ F < < C " H T 6 ? = F 7 6 S < ! ; ! < = ! > U E V

• Snowflake schema higher normalized

• Uses less disk space

• Browsing by direct access to tables more complicated because of references
spanning multiple tables

• Dimension tables rather small -> little disk space benefit compared to size of DWH

• Star schema simpler to administer

Choosing a star sc hema f or the gr ocer y store D WH

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � L

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : ? @ 6 ! ? = F 7 6 S < ! ; ! < = ! > ? @ < ! U E V
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � M

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

Z @ @ ! "] G @ C

• Deciding which fields to add to the various dimension tables as well as to the fact
table

• Attribute hierarchies

• Aggregation levels

• Considering possible queries and constraints on the tables

• Effects on OLAP operations like drill-down, roll-up

• Separately for each table

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � N

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : W 6 = @ ^ 6] 9

• Stores data relevant for chosen business process area

• Includes key to the attached dimension tables

• Data taken from OLTP system: POS data

• Product sales per store per day

• Defining the place where the aggregation takes place: POS systems calculate the
sales for each product and upload to the central DWH

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � O

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : W 6 = @ ^ 6] 9 P Q R

Fact tab le attrib utes f or sales data

keys facts

time_key dollar_sales
product_key units_sales
store_key dollar_cost
promotion_key customer_count

... (tbd) ...

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : W 6 = @ ^ 6] 9 P _ R

• Key of fact table is made up of four foreign keys of dimension tables

• Basic facts obtained from the POS system

• Additional derived attributes for analysis purposes to be defined

• Size considerations (estimations): Gross revenue of grocery chain: $4 billion,
average price of product $2 -> about 2 billion items sold (ticket lines)
3 years history -> 6 billion records -> storing single transactions not easily feasible
2 billion ticket lines divided by 365 days divided by 500 stores -> ~11.000 items data
per day per store to be transferred if aggregation is performed at central DWH
average store 30.000 different products, about 10% sold per day -> transferring
~3000 records per day per store to central DWH if aggregation is performed at POS

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H ^ " 7

• Most general dimension

• Present in almost any DWH

• ‘Date’ attribute enough if only consecutive order of days relevant

• Separate dimension for evaluations concerning days of week, fiscal periods,
seasons, holidays, special events, festivals etc.

• Can be built in advance

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H ^ " 7 P Q R

Time dimension f or dail y data

time_key quarter
day_of_week fiscal_period
day_number_in_month holiday_flag
day_number_overall weekday_flag
week_number_in_year last_day_in_month_flag
week_number_overall season
month event
month_number_overall ...

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H ^ " 7 P _ R

• Preloaded with data for 5 - 10 years -> ~ 3650 records
• day_of_week: allows fast comparison of e.g. Monday to Saturday business
• day_number_in_month and last_day_in_month_flag: used for daywise comparison,

pay-day analysis
• day_number_overall: consecutive numbering of days allowing fast arithmetics

across month and year boundaries
• Similar flags for weekday - weekend business, holiday - non holiday, quarter

comparisons etc.
• event for special events like festivals, strike, catastrophies
• MIND: promotion periods could be handled as time attribute, but since they vary

from store to store and from product to product this is not feasible - promotions form
separate dimension

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � A

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H ^ " 7 P ` R

? @ 6 ! [? = F 7 6 � C a ? H < # S 9 6 b [? = F 7 6

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � D

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H I ! < K G = @

• Identifies each product by its stock keeping units ID (SKU)

• Based on universal product code (UPC) imprinted as barcode

• Includes special codes for in-store products like fresh meat, groceries, bakery goods
etc.

• Stores description of products

• Package size, product groups, brand names, subcategories and categories,
department, etc.

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � L

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H I ! < K G = @ P Q R

Product dimension

product_key (SKU) weight
SKU_description weight_unit_of_measure
package_size units_per_retail_case
brand units_per_shipping_case
subcategory cases_per_pallet
category shel_width
department shelf_height
package_type shelf_depth
diet_type ...

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � M

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H I ! < K G = @ P _ R

• Managed by headquarters and distributed to stores

• Defines a kind of merchandise hierarchy, e.g. SKUs roll up to package_size -> brand
-> subcategory -> category -> department etc.

• Normalization: only about 30 departments, repeated many times in table or
package_type -> could be normalized to save disk space, but not necessary

• Usually many more attributes stored in product dimension table

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � N

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H ? @ < !

• Describes each store of the grocery chain

• Geographic dimension

• Created at headquarters by collecting information from stores (contrary to product
data which is available at headquarters and distributed to stores)

• Two types of hierarchies in store dimension: geographic hierarchy and sales region
hierarchy

• Attributes describing stores with respect to relevant analysis queries like store size,
location, available departments etc.

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � O

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H ? @ < ! P Q R

Product dimension

store_key store_fax
store_name floor_plan_type
store_number photo_processing_type
store_street_address finance_services_type
store_city first_opened_date
store_county last_remodel_date
store_state store_sqft
store_zip grocery_sqft
sales_district frozen_sqft
sales_region meat_sqft
store_manager ...
store_phone

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H ? @ < ! P _ R

• Geographic hierarchy: store -> store_zip -> store_county -> store_state

• Sales hierarchy: store -> sales_district -> sales_region

• floor_plan_type, finance_services_type are textfields filled with standardized
descriptors that can be read and interpreted directly -> can be used for generating
OLAP queries by interacting with the table

• first_opened_date, last_remodel_date are date-type fields either directly filled with
date values or linked to copies of the time dimension

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H I ! < 7 < @ " < H

• Describes each promotion condition under which a product is sold, e.g. temporary
price reduction, newspaper ads, coupons, etc.

• So-called ‘causal dimension’: factors are thought to change product sales

• Causal conditions highly correlated: price reduction or coupons combined with ads -
> one record for each combination of promotions

• Can be used to analyze which products experienced an increased sale during the
promotion period

• Cannot be used to analyze which products which did not sell because they are not
present in the fact table storing only products sold (POS - data)

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H I ! < 7 < @ " < H P Q R

Product dimension

promotion_key ad_media_name
promotion_name display_provider
price_reduction_type promo_cost
ad_type promo_begin_date
display_type promo_end_date
coupon_type ...

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : U " 7 H C " < H I ! < 7 < @ " < H P _ R

Used for evaluation:

• Gain in sales during the promotional period (lift) - only possible if a kind of baseline
sales can be defined if the product had not been promoted

• Whether products under promotions showed a drop in sales after the promotion
period thus cancelling the gain (time shift)

• Whether products under promotion showed a gain in sales while other products in
the same product category showed a decrease in sales (cannibalization)

• Whether the products under promotion (plus additional products of the same brand
or product category) showed a net overall gain in sales comparing periods before,
during and after the promotion (growing the market)

• Whether the promotion was profitable taking into account the lift, time shift,
cannibalization as well as the costs for the promotion.

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � A

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : W 6 = @ ^ 6] 9 P ` R

Current F act Table Attrib utes f or Sales Data

keys facts

time_key dollar_sales
product_key units_sales
store_key dollar_cost
promotion_key customer_count

... (tbd) ...

Additional attributes to be defined for further analysis

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � D

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : W 6 = @ ^ 6] 9 P c R

Additivity:

• dollar_sales, units_sales and dollar_cost are additive across all dimensions

• It is possible to calculate aggregates in all dimensions
e.g. sales or costs per week, per month, per product group, per sales region etc.

• customer_count is not additive across all dimensions -> semi-additive attribute

• It is not possible to calculate e.g. customer count per product group

• Information is lost during the aggregation process

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � L

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : W 6 = @ ^ 6] 9 P d R

Example for customer_count:

• customer_count per week per product per store can be calculated
• customer count per week per product per sales region can be calculated
• customer_count per week per product group per store cannot be calculated:

sales for product A in store 1 has a customer_count of 20
sales for product B in store 1 has a customer_count of 60
sales for product group containing products A and B for store 1 has a
customer_count between 20 an 80

If required ways for obtaining correct customer counts for other dimensions must be
identified

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � M

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : W 6 = @ ^ 6] 9 P e R

Making customer_count additive:

• Changing granularity by storing single transaction lines per customer -> customer
counts can be calculated by grouping transactions and calculating sums on the fly

• Expensive solution

• Store brand, subcategory, category, department etc. customer counts in explicitly
stored aggregates

• Computed while aggregating the data for single customer ticket at POS
• Individual customer ticket aggregates are additive to allow computation of daily item

movement records

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � N

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : W 6 = @ ^ 6] 9 P f R

customer_count and Ad ditivity in Other Dimensions?

• Additivity in time dimension?

• Additivity in stores dimension?

• Additivity in promotion dimension?

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � O

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : ? @ 6 ! ? = F 7 6 S < ! ; ! < = ! > ? @ < ! P Q R
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

Z T T ! T 6 @ ^ 6] 9 C

Most queries address detailed data on one dimension and use summarized data on other
dimensions

Examples :

• How much total business did the newly remodelled stores do compared with the
chain average?
Specific stores, summarized over all products

• How did leather goods items costing less than $5 do with my most frequent
shoppers?
Specific products, summarized over all stores

• What was the ration of nonholiday weekend days total revenue to holiday weekend
days?
Specific days, summarized over stores and products

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

Z T T ! T 6 @ ^ 6] 9 C P Q R

Goal: Accelerating the most frequent queries

Steps :

• Identify the most frequent queries

• Identify dimensions and aggregates that are most relevant to the respective
business areas

• Define aggregate hierarchy

• Create selected pre-calculated aggregate fact tables

• Create corresponding aggregate dimension tables

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � A �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

Z T T ! T 6 @ ^ 6] 9 C P _ R

The use of prestored summaries (a ggregates) is the single
most eff ective too the data warehouse designer has to contr ol

perf ormance

(R. Kimball, [KIM96])

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � A �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

g K H @ " S > J < C @ W ! h G H @ i G ! " C

• Creating a list of possibly most frequent queries

• Performed during design phase (needed for DWH design anyway)

• Based on existing OLTP system and reports

• But : monitored and performed during operation of DWH:
watch what users are doing!

• Behaviour of users changes with given possibilities!

• List of queries

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � A A

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : g K H @ " S > " H T i G ! " C

• Sales of bakery goods during holiday periods compared to non-holiday periods

• Sales in the western sales district compared to the eastern sales district

• Sales of low-fat food products in the last 24 months

• Profitability of newspaper ads compared to radio commercials, effects of
combinations of both

• ...

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � A D

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

g K H @ " S > U " 7 H C " < H C

• Select dimensions most frequently involved in list of relevant queries

• Mind: select only the most relevant dimensions

• Consider size of aggregate tables: sparsity failure!

Sparsity: siz e explosion:

even if only 10% of a stores’ different products are being sold per day:

• not only 10% of all brands being sold in that store on that day
• more than 10% of all different products being sold over all stores

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � A L

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : g K H @ " S > " H T U " 7 H C " < H C

Dimensions:

• Product ?

• Stores ?

• Time ?

• Promotion ?

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � A M

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

g K H @ " S > V " ! 6 ! = F " C

• For each dimension create hierarchy based on available attributes

• Consider relevant queries

• Consider available data

• Consider additivity of fact table attributes
(e.g. customer count per product group?)

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � A N

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : V " ! 6 ! = F > S < ! I ! < K G = @

Attrib utes - Dimension Hierar chy :

product_key (SKU) ? weight ?
SKU_description ? weight_unit_of_measure ?
package_size ? units_per_retail_case ?
brand ? units_per_shipping_case ?
subcategory ? cases_per_pallet ?
category ? shel_width ?
department ? shelf_height ?
package_type ? shelf_depth ?
diet_type ? ...

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � A O

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : V " ! 6 ! = F > S < ! I ! < K G = @ P Q R
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � A �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : Z T T ! T 6 @ C S < ! ? @ < ! C

Attrib utes - Dimension Hierar chy :

store_key ? store_fax ?
store_name ? floor_plan_type ?
store_number ? photo_processing_type ?
store_street_address ? finance_services_type ?
store_city ? first_opened_date ?
store_county ? last_remodel_date ?
store_state ? store_sqft ?
store_zip ? grocery_sqft ?
sales_district ? frozen_sqft ?
sales_region ? meat_sqft ?
store_manager ? ...
store_phone ?

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � A �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : V " ! 6 ! = F > S < ! ? @ < ! C P Q R
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � D �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : V " ! 6 ! = F > S < ! ^ " 7

Attrib utes - Dimension Hierar chy :

time_key ? quarter ?
day_of_week ? fiscal_period ?
day_number_in_month ? holiday_flag ?
day_number_overall ? weekday_flag ?
week_number_in_year ? last_day_in_month_flag ?
week_number_overall ? season ?
month ? event ?
month_number_overall ? ...

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � D �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : V " ! 6 ! = F > S < ! ^ " 7 P Q R
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � D A

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � D D

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

Z T T ! T 6 @ K W 6 = @ ^ 6] 9 C

• Identify required / desired fact tables

• Higher-order aggregates can be calculated using lower-order aggregates
e.g. sales per department can be based on sales per category

• Estimate their number and size

• Check availability of data

• Check needed dimension aggregate tables

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � D L

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : g K H @ " S > " H T Z T T ! T 6 @ K W 6 = @ ^ 6] 9 C

Desired aggregate fact tables:

• One-way aggregate: category totals by store by day

• One-way aggregate: district totals by store by day

• One-way aggregate: monthly totals by product by store

• Two-way aggregate: category totals by district totals by day

• Two-way aggregate: category totals by month totals by store

• Two-way aggregate: district totals by month totals by product

• Three-way aggregate: category totals by district totals by month totals

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � D M

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : g K H @ " S > " H T Z T T ! T 6 @ K W 6 = @ ^ 6] 9 C

• 7 aggregated fact tables

• Aggregated fact tables are derivatives of basic fact table

• Checking additivity of fact table attributes:
dollar_sales ?
units_sales ?
dollar_cost ?
customer_count ?

• Aggregates of customer_count must be created at POS (point of sales)

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � D N

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

Y " H b " H T W 6 = @ # " @ F U " 7 H C " < H ^ 6] 9 C

• Keys for linking fact to dimension tables in starschema

• Keys for linking aggregated fact tables to aggregated dimension tables

• Defining attributes in aggregated dimension tables

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � D O

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : Y " H b " H T \ 6 @ T < ! > Z T T ! T a ? 6 9 C W 6 = @ C
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � D �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

Z T T ! T 6 @ K W 6 = @ ^ 6] 9 C P Q R

Additional fact tables can be added as necessity arises

Dimension tables tend to get very small as we move up the hierarchy
e.g. 1 entry in dimension table for all_stores, 1 for all_products, 1-10 for all years, ...

Number and size of aggregate fact tables explodes !

Check which aggregate fact tables are needed and which can be calculated

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � D �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : I < C C "] 9 Z T T ! T 6 @ K W 6 = @ ^ 6] 9 C

e.g. for dimensions

• Product : per category, all merchandise total

• Store : per district, per region, all stores total

• Time : month, year

We end up with 7 aggregate dimension tables (small) and 35 aggregate fact tables

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � L �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : I < C C "] 9 Z T T ! T 6 @ K W 6 = @ ^ 6] 9 C

One way aggregates:

category by store by day district by product by day

region by product by day all stores by product by day

month by product by store year by product by store

all merchandise by store by day

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � L �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : I < C C "] 9 Z T T ! T 6 @ K W 6 = @ ^ 6] 9 C P Q R

Two way aggregates:

category by district by day all merchandise by district by day
category by region by day all merchandise by region by day
category by all stores by day all merchandise by all stores by day
category by month by store all merchandise by month by store
category by year by store all merchandise by year by store
district by month by product district by year by product
region by month by product region by year by product
all stores by month by product all stores by year by product

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � L A

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : I < C C "] 9 Z T T ! T 6 @ K W 6 = @ ^ 6] 9 C P _ R

Three wa y aggregates:

category by district by month all merchandise by district by month
category by region by month all merchandise by region by month
category by all stores by month all merchandise by all stores by month
category by district by year all merchandise by district by year
category by region by year all merchandise by region by year
category by all stores by year all merchandise by all stores by year

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � L D

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

? 8 6 ! C " @ > W 6 " 9 G !

• 10.000 products with 2.000 aggregates (e.g. brands)

• 1.000 stores with 100 aggregates (e.g. districts)

• 100 time periods with 30 aggregates (e.g. financial period based on weeks)

• 10% of all products sold per day

Additional size

• Product dimension: 20%

• Store dimension: 10%

• Time dimension: 30%

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � L L

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

? 8 6 ! C " @ > W 6 " 9 G ! P Q R

Considering the 7 aggregates identified before:

• Category totals by store by day
• District totals by store by day
• Monthly totals by product by store
• Category totals by district totals by day
• Category totals by month totals by store
• District totals by month totals by product
• Category totals by district totals by month totals

By how much will the size of the database increase as opposed to the size of the base
fact table ?

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � L M

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

? 8 6 ! C " @ > W 6 " 9 G ! P _ R

A sug gestion / estimation:

Table Sparsity Factor

Category totals by store by day 0.2 0.2
District totals by store by day 0.1 0.1
Monthly totals by product by store 0.3 0.3
Category totals by district totals by day 0.2*0.1 0.02
Category totals by month totals by store 0.2*0.3 0.06
District totals by month totals by product 0.1*0.3 0.03
Category totals by district totals by month totals 0.2*0.1*0.3 0.006
TOTAL 0.716

Baseline: 10.000 products * 1.000 stores * 100 time periods * 10% -> 100 mil.
Plus aggregated fact tables: ~72% of baseline = 0.72 * 100 mil. -> 172 mil.

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � L N

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

? 8 6 ! C " @ > W 6 " 9 G ! P ` R

e.g. brands total by store by day:

• Assumption: only 10% of all products sold in given store on a given day ->
10% of 10.000 products = 1.000 products being sold ->
1.000 products in daily store data

• If every product sold belongs to a different brand ->
1.000 different brands = 50%

• There may be 50% of all brands in the daily store data as opposed to 10% of the
individual products ->
1.000 brands in daily store data

• Aggregated fact table may have same size as basic fact table

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � L O

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

? 8 6 ! C " @ > W 6 " 9 G ! P c R

Table Product Store Time Sparsity # Recor ds

Base: Products by store by week 10.000 1.000 100 10% 100 mil.
Brand by store by week 2.000 1.000 100 50% 100 mil.
Product by district by week 10.000 100 100 50% 50 mil.
Product by store by period 10.000 1.000 30 50% 150 mil.
Brand by district by week 2.000 100 80 80% 16 mil.
brand by store by period 2.000 1.000 30 80% 48 mil.
Product by district by period 10.000 100 30 80% 24 mil.
Brand by district by period 2.000 100 30 100% 6 mil.

TOTAL 494 mill.

Database may grow up 394% !

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � L �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

? 8 6 ! C " @ > W 6 " 9 G ! P d R

• Take care when designing aggregate tables

• Make sure that each aggregate summarizes at least about 10 - 20 records on the
average

Example:

• Product dimension summarized only 5 lower level products on the average
• Time dimension summarized only about 3 periods on the average
• One way aggregates of time and product contributed 250 mil. records

• If each had summarized about 20 lower level items on average ->
only about 70 mil. new records even with sparsity growing to 70%

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � L �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

i G ! > " H T Z T T ! T 6 @ ^ 6] 9 C

Queries transformed into SQL statements

e.g.: Show total sales by category in Cincinnati stores on New Year’s Day 1998 for base
fact table::

select category_description, sum(sales_dolars)
from base_sales_fact, product, store, time
where base_sales_fact.product_key = product.product_key
and base_sales_fact.store_key=store.store_key
and base_sales_fact.time_key = time.time_key
and store.city = ‘Cincinnati’
and time.day = ‘January 1, 1996’
group by category_description

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � M �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

i G ! > " H T Z T T ! T 6 @ ^ 6] 9 C P Q R

Same query if category totals aggregate table exists:

select category_description, sum(sales_dolars)
from category_sales_fact, category_product, store, time
where category_sales_fact.product_key = category_product.product_key
and category_sales_fact.store_key=store.store_key
and category_sales_fact.time_key = time.time_key
and store.city = ‘Cincinnati’
and time.day = ‘January 1, 1996’
group by category_description

Category_sales_fact and corresponding category_product dimension table replace base
sales fact and basic product dimension table

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � M �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

i G ! > " H T Z T T ! T 6 @ ^ 6] 9 C P _ R

• Navigator

• Reads users query and transforms it into best available aggregate query

• Metadata descriptions provide information about existing aggregate tables

• Existence of aggregate tables is transparent to the user

• Can be used to build statistics on user queries, aggregate table usage and the need
for additional aggregates

• Allows incremental rollout of new aggregation tables

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � M A

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

i G ! > " H T Z T T ! T 6 @ ^ 6] 9 C P ` R

• Navigator: Replacing base-level fact and dimension tables with aggregated fact and
dimension tables

1.) Rank order all aggregate tables

2.) Starting from the smallest, verify whether all of the dimensional attributes in the query
can be found.
If so, replace base tables in query with corresponding aggregate tables.
If not continue with the next bigger aggregate table until finally reaching the base fact
table

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � M D

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : j 6 � " T 6 @ < !
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � M L

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

J @ 6 K 6 @ 6

• Describes the data in the DWH

• Technical metadata

• Business metadata

• Operational metadata

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � M M

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : J @ 6 K 6 @ 6 W 6 = @ ^ 6] 9
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � M N

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : J @ 6 K 6 @ 6 [Z @ @ ! "] G @ C
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � M O

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : J @ 6 K 6 @ 6 [U ! " � K Z @ @ ! "] G @ C
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � M �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : J @ 6 K 6 @ 6 [U " 7 H C " < H C
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � M �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : J @ 6 K 6 @ 6 [U " 7 H C " < H V " ! 6 ! = F " C
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � N �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : J @ 6 K 6 @ 6 [^ " 7 U " 7 H C " < H
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � N �

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : J @ 6 K 6 @ 6 [4 g ? I 6 T
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � N A

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 = G @ " � g H S < ! 7 6 @ " < H ? > C @ 7 C

• Briefing books

• Tables

• Charts

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � N D

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : B ! " S " H T B < < b
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � N L

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : ^ 6] 9
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � N M

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

4 5 6 7 8 9 : \ F 6 ! @
$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

� � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � N N

� � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � � �

I " @ S 6 9 9 C

• Not knowing what you really want

• Thinking that DWH-design is the same as transactional DB design - a DWH is not
simply a big database!

• Loading the warehouse with data simply because it is available

• Underestimating the complexity of a DWH project

• Getting caught by technological gadgets

• Focusing on internal data and ignoring the use of external data

• Using data with overlapping or confusing definitions / semantics

• Believing performance and scalability promises

• Believing that once a DWH is running the work is done

$ % & ' (() * + , - , . , / , 0 ' 1 % 2 3 '

