
Dec 2002

1

Using TPump in an Active 

Warehouse Environment

Dr. Vincent Hager

Senior Consultant CRM Solutions

Teradata Division – Austria

December 2002

Dec 2002 Teradata / NCR Confidential
2

2 / 

Using TPump in an Active 
Warehouse Environment

Agenda

• Architecture

• Script Variables

• Data related Variables

• Challenges & Deployment

• Scenarios

• TPump in a Continuous Environment

• Best Practices



Dec 2002

2

Dec 2002 Teradata / NCR Confidential
3

3 / 

TPump Architecture

• MPP Teradata Loading

– SQL DML— Active Streams or Batch

• TPump

– Many client platforms

– Many client sources

– Row level locking

• Performance

– Multi-statement, Multi-session

– Can saturate:  Wire, Client, and/or RDBMS

Dec 2002 Teradata / NCR Confidential
4

4 / 

TPump Architecture

AMP

AMP

PE

AMP
PE

PE

PE

PE

TPump

Parallel Sessions

64K Block

64K Block

64K Block

64K Block

Multiple Physical Routes

• FICON, ESCON, GbE, etc.

PE Processing
•Reuse cached plan
•Apply ‘pack’ in parallel
•Checkpoint

Utility Processing
•Until EOF:
•Read input stream
•Build <pack> exec and rows in 
buffer
•Asynch send on any available 
session
•Optional checkpoint <frequency>

AXSMod

Read OPR

Read any Source

•Disk, Tape

•OLE-DB, ODBC
•Pipes, MQ
•3rd Party
•Etc.



Dec 2002

3

Dec 2002 Teradata / NCR Confidential
5

5 / 

Motivations using TPump
in an Active Warehouse 

• TPump is suitable, when some of the data 
needs to be updated closer to the time the 
event or the transaction took place 

• avoids table-level locks (row-hash locks only)

• Concurrent table SQL access during updates

• flexibility in when and how it is executed

• queries can access a table concurrently with
TPump

• several TPump jobs can run against the same 
table at the same time

• sources as varied as MVS, NT or UNIX 
concurrently

Dec 2002 Teradata / NCR Confidential
6

6 / 

TPump Script Variables

The TPump key variables, in order of 
greatest potential impact on performance, 
are the following (BEGIN LOAD):

• PACK

• SESSIONS (number)

• SERIALIZE (ON or OFF)

• CHECKPOINT (mins)

• ROBUST (ON or OFF)

• NOMONITOR



Dec 2002

4

Dec 2002 Teradata / NCR Confidential
7

7 / 

TPump PACK Factor

• The Pack Factor is the number of  statements that 

will be packed together into a TPump  buffer and 

sent to the database as one multi-statement 

request.  Higher is usually better.

One Buffer, Pack = 3

CLIENT

  1 insert plus USING clause columns

  1 insert plus USING clause columns

  1 insert plus USING clause columns

  1 Multi-Statement Request

with USING clause

DATABASE

Dec 2002 Teradata / NCR Confidential
8

8 / 

TPump Sessions

Buffer 1 Buffer 2 Buffer 3 Buffer 4

Row 1 Row 2 Row 3

Row 4 Row 5 Row 6

Row 7 Row 8 Row 9

Input File

CLIENT

DATABASE

Pack = 3

Sessions = 4

AMP 9

AMP 14

AMP 22

There is no correlation between TPump Sessions and AMPs.  

Both the pack factor and the number of sessions contribute to 

the level of parallelism inside Teradata. 



Dec 2002

5

Dec 2002 Teradata / NCR Confidential
9

9 / 

TPump Sessions

• Number of connections to the database that 
will be logged on for this TPump job.  Each 
session will have its own buffer on the client.  
The greater the number of sessions, the more 
work will be required from the client and 
database.

• In setting the number of sessions, make sure 
to adjust the pack factor first, then:
– Start with very few sessions until the application is 

running as expected.

– Increase the number of sessions considering the pack 
factor, server and client power, how many other TPump
jobs are likely to be running concurrently.

– Increase sessions gradually.

– How many TPumps concurrently?

Dec 2002 Teradata / NCR Confidential
10

10 / 

TPump SERIALIZE

• Tells TPump to perform a partitioning of the input 
records across the number of sessions it is using, 
ensuring that all input records that touch a given 
target table row (or that contain the same non-unique 
primary index value) are handled by the same session.

Buffer 1 Buffer 2 Buffer 3 Buffer 4

Input File

CLIENT

STANDARD:
One Buffer Fills at a Time

Full & Sent Full & Sent   Being Filled   Waiting

Buffer 1 Buffer 2 Buffer 3 Buffer 4

CLIENT

SERIALIZE:
Buffers Fill Irregularly

Partial Partial      Full & Sent Partial

Input File

• With SERIALIZE, all buffers may be partially filled at
any point in time;  without SERIALIZE, only one 
buffer will be partially filled at any point in time.



Dec 2002

6

Dec 2002 Teradata / NCR Confidential
11

11 / 

Considerations for SERIALIZE

• Consider SERIALIZE ON for the following 
situations:
• Possibility of multiple updates with the same primary 

index value in the input file

• If the order of applying updates is important 

• Recommended with UPSERTs if any single row can be 
touched more than once

• To reduce deadlock potential

• Impacts of serialization:
– Some additional work is done by the client when 

partitioning the input

– Buffer replenishment is spread out, making stale data a 
greater possibility

– Performance may be impacted by sending a frequent 
number of partial buffers to the database when a 
checkpoint is taken.

Dec 2002 Teradata / NCR Confidential
12

12 / 

TPump SERIALIZE

• SERIALIZE ON removes deadlock potential between 
buffers within the same TPump job, when rows with
non-unique primary index values are being processed.  

• Manual partitioning is required to do the same 
between multiple TPump jobs.

DATABASE

AMP 22

NUPI= 6

Buffer 1

NUPI= 7

NUPI = 7

NUPI = 3

Buffer 2

NUPI = 6

NUPI = 2

NUPI =6

Buffer 3

NUPI = 1

NUPI = 4

NUPI =4

SERIALIZE ON

AMP5

NUPI= 4

AMP 14

NUPI= 7



Dec 2002

7

Dec 2002 Teradata / NCR Confidential
13

13 / 

TPump Deadlock Potential

• Manually partitioning input data across multiple
TPump jobs will force the same NUPI values to go 
to the same TPump job.   This eliminates inter-
TPump deadlock potential when the same table is 
updated from different jobs.  

DATABASE AMP 14

NUPI= 7

TPump

Job 1

NUPI= 8

NUPI = 7

NUPI = 3

TPump

Job 2

NUPI = 6

NUPI = 2

NUPI = 7

TPump

Job 3

NUPI = 7

NUPI = 4

NUPI = 9

Dec 2002 Teradata / NCR Confidential
14

14 / 

TPump CHECKPOINT 

• Frequency (minutes) between occurencies of
checkpointing

• During a checkpoint all the buffers on the client are 
flushed to the database, and mini-checkpoints (if 
ROBUST is ON) written since the last checkpoint will 
be deleted from the log table.



Dec 2002

8

Dec 2002 Teradata / NCR Confidential
15

15 / 

TPump ROBUST ON

• ROBUST ON avoids re-applying rows that have 
already been processed in the event of a restart 
(data integrity). It causes a row to be written to 
the log table each time a buffer has successfully 
completed its updates. These mini-checkpoint are 
deleted from the log when a  checkpoint is taken.

• ROBUST  OFF is specified primarily to increase 
throughput by bypassing the extra work involved 
in writing the mini-checkpoints to the log.

• When to use:
– INSERTs into multi-set tables, as such tables will accept 

re-inserted rows 

– Updates are based on calculations or percentage increases 

– If pack factors are large, and applying and rejecting 
duplicates after a restart would be unduly time-consuming

– If data is time-stamped at the time it inserted into the 
database

Dec 2002 Teradata / NCR Confidential
16

16 / 

TPump IGNORE DUPLICATE ROWS

• IGNORE DUPLICATE ROWS means that duplicate 
inserts, if they are attempted (as they would be on a 
restart with ROBUST OFF) will not generate a write to 
the error table.  This will add efficiency to a restart, 
should one occur.



Dec 2002

9

Dec 2002 Teradata / NCR Confidential
17

17 / 

TPump Data Variables

• Variables related to the database design 
and the state of the data itself:
– How clean is the data

– Any sequence to the input stream

– Degree and type of indexes defined on the table 
being updated

– Use of Referential Integrity, fallback or
permanent journaling

– Number and complexity of triggers

– Number of columns being passed into the 
database per update

– Ratio of UPDATEs to INSERTs when UPSERT is 
used

Dec 2002 Teradata / NCR Confidential
18

18 / 

TPump Data Variables

• Multi-Statement SQL

• Efficiency by use of „USING“-clause (cached 

exec-plans increasing throughput)

• „USING“ 512 columns limitation

• UPSERT processing: watch out ratio 
between UPDATEs to INSERTs (the more 

INSERTs the lower the throughput)



Dec 2002

10

Dec 2002 Teradata / NCR Confidential
19

19 / 

Challenges using TPump 

• Careful design of insert/update/delete strategy 
required to make use of effectiveness

• Avoid table locks and FTS (only Single/Dual AMP 
operations desired)

• Longer runtime (+40%) when data with errors 
(1%)

• Longer runtime with a NUSI (+50%), worse with 2
NUSIs (+100%)

• Longer runtime (+45%) with fallback

• SERIALIZE adds 30%, ROBUST adds 15%

Dec 2002 Teradata / NCR Confidential
20

20 / 

TPump Deployment

• Feeding clean data from your transformation 
processes into TPump is important for overall 
performance.

• Pay attention to pack rate and session optimization.

• NUSI and database configuration can have a 
significant impact on data acquisition throughput.

• Want EAI/ETL tools with continuous data acquisition 
capability for feeding into TPump.



Dec 2002

11

Dec 2002 Teradata / NCR Confidential
21

21 / 

TPump Scenarios 

(I) Large, high volume

(II) Small, highly time-critical bursts

(III) Extract from OLTP database

(IV) Multi-Source batch

(V) Variable arrival rates, low volume

(VI) TPump in a Continuous Environment

Dec 2002 Teradata / NCR Confidential
22

22 / 

TPump Scenarios (I) 

• Large, high volume

� A high volume of transaction data being inserted 
daily

� Data must be loaded and available in less than 8 
hours from arrival

� Batches arrive separately from each outlet, and are 
loaded while queries run

� Data is clean and a powerful mainframe client 
initiates TPump

� Use of Batch Window not feasible anymore



Dec 2002

12

Dec 2002 Teradata / NCR Confidential
23

23 / 

TPump Settings (I)

� Pack factor 31

� Sessions:  Same as the number of AMPs 

� Serialize OFF

� CHECKPOINT 0  

� ROBUST OFF 

Buffer 1

CLIENT

DATA

BASE Insert R1

Insert R2

Error R3
Rollback

Back to

Client

Buffer 1

Insert R1

Insert R2

Error R4
Rollback

Buffer 1

Rollback

5 Rows

sent

Insert R1

Insert R2

Error R5

4 Rows

sent

3 Rows

sent

Back to

Client
Back to

Client

Upon errors the whole buffer is rolled back and resent

Dec 2002 Teradata / NCR Confidential
24

24 / 

Conclusion (I)

• Large, high volume

� Using TPump in this scenario provides an 
opportunity to move the load of a given row 
closer to the actual time the event happened.  
The site may currently be loading one batch of 
inserts a day for each outlet, but has the 
flexibility in the future to do two or three TPump
runs per outlet per day, if they choose.  Using
TPump offers a controllable transition to 
updating that is closer to real time.



Dec 2002

13

Dec 2002 Teradata / NCR Confidential
25

25 / 

TPump Scenarios (II) 

• Small, highly time-critical bursts

� Sporadic, small files, such as reference material or 
information refreshes

� Need close to real-time availability of the data, 1 
minute or less 

� Arrives from 10-15 different sources throughout a 
24-hour period

� Some sources provide clean data, other sources 
have occasional errors in the data. 

Dec 2002 Teradata / NCR Confidential
26

26 / 

TPump Settings (II)

• Pack Factor: 35 (clean data source), 3 
(unreliable data source)

• Sessions: 1/4  the # of AMPs (clean data), 
same as the # of AMPs (unreliable data)

• SERIALIZE OFF 

• CHECKPOINT 0 

• ROBUST OFF

• NOMONITOR (when jobs are very short: shorten 
job initialisation time)

• Use Persistent Macros for DML (NAME 
command)



Dec 2002

14

Dec 2002 Teradata / NCR Confidential
27

27 / 

TPump Scenarios (III) 

• Extract from OLTP database

� Event or transaction data extracted from the 
transaction database into queues or pipes

� 20 minute turnaround from transaction to data 
warehouse

� Application reads queue coming from OLTP 
database, transforms data 

� Multiple, short, demand-driven TPump jobs run 
concurrently

Dec 2002 Teradata / NCR Confidential
28

28 / 

TPump Settings (III)

• Pack Factor:  12

• Sessions:  Between 10% to 50% of the number 
of AMPs 

• SERIALIZE:  OFF for INSERT jobs, ON for
UPSERTs (to bypass Deadlock Potential)

• CHECKPOINT  0

• ROBUST OFF

APPLICATION

TPump Jobs

Teradata

Table 3

Table 2

Table 1

Read segments

Transform data

Starts TPump jobs

Validates EOJ

OLTP

Data

Base

Pipe or Queue



Dec 2002

15

Dec 2002 Teradata / NCR Confidential
29

29 / 

TPump Scenarios (IV) 

• Multi-Source batch

� Concurrent TPumps during multi-hour batch 
window at night

� Next day turnaround is acceptable

� Different sources that reside in different locations 
update the same table

� Highly-indexed target tables

Dec 2002 Teradata / NCR Confidential
30

30 / 

TPump Settings (IV)

• 5 TPump jobs running concurrently:

� Pack Factor 5 (TPump jobs less resource-intensive)

� Sessions:  ½ the number of AMPs

� SERIALIZE OFF

� CHECKPOINT 15 

� ROBUST OFF (reapplying inserted rows is not an 

issue, and with a low pack rate, recovery issues are less)



Dec 2002

16

Dec 2002 Teradata / NCR Confidential
31

31 / 

TPump Scenarios (V) 

• Variable arrival rates, low volume

� Captures movement of an object or a 
transportation industry carrier

� Real-time is within one hour of the change in 
position

� Duplicate reporting is possible, order of applying 
updates is important

� Data contains errors approaching 5%

Dec 2002 Teradata / NCR Confidential
32

32 / 

TPump Settings (V)

• Pack Factor 5 (propensity for error conditions and slow-

arriving data need to fill the buffers)

• Session:  Same as the number of AMPs (more buffers 

to be sent into Teradata)

• SERIALIZE ON (The order that the updates are applied is 

important in this application, and there is a possibility that 

rows with the same primary index value will be inserted 

through different buffers at the same time)

• CHECKPOINT  20  (large value to counteract the cost of 

flushing of partial buffers) 

• ROBUST ON



Dec 2002

17

Dec 2002 Teradata / NCR Confidential
33

33 / 

TPump Scenarios (VI) 

• TPump in a Continuous Environment

� load data through a queue in an ongoing fashion

� automatic and tightly coordinated rotation of 
different TPump instances, all fed by the same 
queue

� automatic hand-off of control between TPumps, 
and to handle the end-of-job processing

� opportunity for tighter management in these 
areas:

• Error handling

• Monitoring statistics

• Sending alerts

• Detecting inconsistencies

Dec 2002 Teradata / NCR Confidential
34

34 / 

MQSeries Feed into TPump

Input Data

SOURCE Feeder:
• Read input  
• Vary arrival rate
• Write timestamp  
• Write to queue

TPump Job(s)

TERADATA

SQL

Scheduler: 
• Starts TP & BTEQ jobs
• Forces  EOJ to Queue
• Initiates post-job     

processing

Load Server RDBMS

EO
F

MQ Access 
Module

BuffersNOTIFY exit Summary & 
Validation Reports

Start 

TPump

TPump

EOJ

TP_Sta

t

Hold
Stattrigger

Base Table

MSG Queue

Source Feeds

MQGet

MQPut

MQPut

Input Data



Dec 2002

18

Dec 2002 Teradata / NCR Confidential
35

35 / 

Role of Source Feeder

• Provide application data feeds.

• Read transaction messages from a file.

• Add a timestamp to the message.

• Put message into the queue.

• Arrival rate is adjustable.

Dec 2002 Teradata / NCR Confidential
36

36 / 

Role of Scheduler

• Stand-in for commercial scheduler.

• Start TPump job.

• End TPump job by placing an EOF message 
to the Queue.

• Launch post-job processing:

– BTEQ script to consolidate error rows inside 
Teradata.

• Monitor load process status/results.



Dec 2002

19

Dec 2002 Teradata / NCR Confidential
37

37 / 

Role of MQSeries AXSMod

• Connect to MQSeries:

– Local or remote.

• Get messages from MQSeries.

• Add timestamp to the messages.

• Stream messages to TPump.

• Guaranteed reliability:

– No lost inserts.

– No duplicate inserts.

Dec 2002 Teradata / NCR Confidential
38

38 / 

Rotating Multiple TPumps

TPump1
initializes,
starts up and
reads from
the queue

TPump2
initializes
& waits

TPump 1

TPump1
ends, sets
off BTEQ
script

8:00     8:01 9:00        9:01 10:00  10:01Time

TPump 2

TPump2
starts up
and reads
from queue

TPump1
initializes
& waits

TPump2 ends,
sets off BTEQ
script

TPump1
starts up
and reads
from queue

BTEQ 1

BTEQ 2

BTEQ1

BTEQ2

TPump1 TPump1

TPump2



Dec 2002

20

Dec 2002 Teradata / NCR Confidential
39

39 / 

TPump Settings (VI)

• All TPump instances use the same parameters:

� Pack Factor 10

� Number of sessions 20  

� Checkpoint 30

� ROBUST ON

� SERIALIZE OFF

Dec 2002 Teradata / NCR Confidential
40

40 / 

Real Time Information about 
a TPump Instance 

TPump Job

BTEQ Output
• Audit Trail

TPump Output
• Audit Trail

Notify Exit
• Event driven feedback

• Can drive alert to DBA

• Job termination code

Monitor Table
• Periodic progress check

• Get # of errors per minute

• Enables trend analysis

Journal Table
• Backup (reapply)

• Source for PK Deletes

• Reprocessing errors



Dec 2002

21

Dec 2002 Teradata / NCR Confidential
41

41 / 

Error-Handling

Supplementing error row identification:

• Import#, Record# already in the error file row.

• At time of consolidation, add unique TPump name.

• Unique MQ message-ID can also be preserved on each 
row as it is loaded (or during error processing).

This application will consolidate errors and detail about 
the row, but will not:

• Reconstruct the error row.

• Re-process the original row, if it has been preserved.

Dec 2002 Teradata / NCR Confidential
42

42 / 

TPump Status and Statistics

TPump optionally maintains real time stats in a table:

• UserName, Import Start Date, Time, RestartCount.

• Last Table Update Date, Time 

• RecordsRead, RecordsOut

• RecordsSkipped, RecordsRejcted, RecordsErrored 

Row exists for life of job:

• Inserted at job start.

• Updated each minute.

• Deleted at job completion.



Dec 2002

22

Dec 2002 Teradata / NCR Confidential
43

43 / 

Monitoring Techniques

• Status Table
– Triggers placed on TPumpStatusTbl.

– Triggers insert status information into permanent 
stats table.

• NOTIFY EXIT 
– Initialize, Open.

– Errors.

– Checkpoint.

– Final Stats.

– Prototype writes delimited final stats record to flat 
file.

Dec 2002 Teradata / NCR Confidential
44

44 / 

TPump Best Practices         

• High pack factors can increase TPump throughput. 
When high pack factors cannot be used, more 
sessions are another way to increase TPump
throughput if the client can support them.

• To reduce data load latency and improve real-time 
availability of single rows, reduce the pack factor

• If input data contains errors, a low pack factor will 
reduce the overhead of rolling back the request that 
contained the error, and re-processing all error-free 
rows.

• Speed up TPump startup by using persistent 
macros and specify TPump’s recommended pack 
factor from a previous, similar run.



Dec 2002

23

Dec 2002 Teradata / NCR Confidential
45

45 / 

TPump Best Practices (cont‘d)

• When selecting the number of sessions, consider 
the total system load at the time the TPump job is 
run.   When multiple TPump jobs are running, 
consider a number of sessions equal to the number of
AMPs in the system, or less.

• If multiple TPump jobs may update rows from the 
same table with the same primary index value, 
manually partition the data on the primary index of 
the table, so all rows with the same PI value are 
directed to the same TPump job.  Then also specify 
SERIALIZE ON to force the rows with the same NUPI 
value to a single session within that TPump job, 
further reducing possible contention.

Dec 2002 Teradata / NCR Confidential
46

46 / 

TPump Best Practices (cont‘d)

• Beware of Locking Conflicts:

– Locking conflicts on the target table row-hash 
(insert, update) 
� SERIALIZE ON

– Locking conflicts in Dictionary at SQL Submission 
� Housekeeping of DBC.AccessRights

– Locking at TPump startup 
� Pre-build and reuse (persistent) macros for ET-
DDLs



Dec 2002

24

Dec 2002 Teradata / NCR Confidential
47

47 / 

TPump Best Practices (cont‘d)

• Assign the TPump user to a higher priority 
performance group when the TPump job runs at the 
same time as decision support queries, if the TPump
completion time is more critical than the other work 
active in the system.  

• If target table of inserts in the database is part of a 
join index, direct TPump into a non-indexed staging 
table. Insert/select from there into the base table at 
regular intervals is likely to be a better-performing 
approach to updating a table when a join index is 
involved. Prior to the insert/select, a UNION can be 
used to make sure data recently inserted into the 
staging table is included in query answer sets.

• To ensure that TPump is able to perform single-AMP 
operations on each input record, include the entire 
primary index value for the row being updated 
among the columns passed to Teradata.

Dec 2002 Teradata / NCR Confidential
48

48 / 

Thank you !


