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Abstract  
With the creation of large audio collections, available on small portable devices or via Web portals, new 

ways for interacting with these collections need to be devised. Retrieving specific songs, or navigating 
through such audio repositories, relying on the way music sounds rather than on metadata tags, poses 
challenging problems. This paper presents the SOMeJB system, which builds on features extracted directly 
from sound signals such as CD recordings or MP3 files, to create a navigable information space of music 
according to perceived sound similarities of the individual titles. 

 
1. Introduction 
Recent advances both in storage as well as compression techniques make large collections of audio data 

available on small portable devices. People can fit their complete music collection onto single devices, 
having all their music available at their fingertips. Furthermore, given current broadband connections that 
reach increasingly into private homes, music offers itself for electronic distribution. While currently a large 
part of electronic music distribution is illegal sharing of files, it nevertheless points at the potential that 
music offers as an e-commerce good. We thus find the music industry starting to explore new business 
models offered by the electronic distribution of music (Premkumar, 2003). 

All these scenarios require ways to interact with the resulting musical digital libraries, be it in the form 
of Web Portals, home entertainment centers, or as mobile devices. Currently, access to musical data is 
mostly limited to queries against metadata tags, such as artist information, song titles, and (often utterly 
wrong, unnecessarily complex, or non-descriptive) genre tags. Serendipitous search is, at its best, supported 
by the browsing of more or less complex genre hierarchies and alphabetical artist listings. Even with 
additional metadata becoming available due to its creation during the production cycle of music we may not 
expect this approach to satisfy the needs of customers and users who want to access music by its primary 
characteristic and content, i.e. the way it sounds. 

First approaches to access music via its musical "content" are offered by query-by-humming systems, 
where users hum a melody in order to retrieve the appropriate song. While this allows users to locate a 
specific song in their collection even without knowing title or artist information, it does not support 
serendipity.  What we would thus like to offer is a way for users to explore a music repository, to give them 
an idea of which kind of music is to be found where in the collection, to allow them to create a mental 
model of a music library. We want to provide them with spatial orientation similar to the possibilities 
offered by conventional music "repositories", such as their favorite record store or their private music 
collection. In both these scenarios spatial orientation, the knowledge where to expect and find what type of 
music, are key characteristics that add significantly to the "usability" of the store or organization of their 
private CD collection. 

In this paper we present the SOM-enhanced JukeBox (SOMeJB) system, which aims at providing such 
an organization of music according to sound similarity, resembling musical style or genres. The SOMeJB 
Music Digital Library Project, as first outlined in (Rauber & Frühwirth, 2001), and described in more detail 
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in (Rauber, Pampalk & Merkl, 2002), (Rauber, Pampalk & Merkl, 2003) aims at creating such a browsable 
music archive by combining a variety of technologies from the fields of audio processing, neural networks, 
and information visualization, to create maps of music archives. It consists of three layers, namely 
(1) feature extraction, (2) organization by sound similarity, and (3) a navigational interface. In order to be 
able to group music by sound similarity a set of features needs to be identified to allow the computation of 
similarity. We have devised a representation based on Rhythm Patterns, which allow the capture of 
characteristics of music incorporating psychoacoustic models (Rauber, Pampalk & Merkl, 2002). On top of 
this Rhythm Pattern representation we use unsupervised neural networks, particularly the Self-Organizing 
Map (SOM) (Kohonen, 1995) as well as its extended model, the Growing Hierarchical SOM (GHSOM) 
(Dittenbach, Rauber & Merkl, 2002) to create a map or atlas type organization and representation of a 
music collection. Several visualizations, such as the Islands of Music (IoM), which are based on the 
Smoothed Data Histogram representation (SDH) (Pampalk, Rauber & Merkl, 2002a) of the SOM, as well 
as labeling provided in the form of Weather Charts, offer an appealing and intuitive visualization of the 
resulting maps, allowing users to explore a large musical space, to locate their favorite regions, and to find 
music according to their likings (Pampalk, Rauber & Merkl, 2002). 

The remainder of this paper is structured as follows: Section 2 briefly reviews some related work in the 
field of automatic genre analysis of music. Section 3 presents the extraction of the Rhythm Pattern features 
from the sound signal, followed by a presentation of the SOM and GHSOM neural networks in Section 4. 
The IoM visualization is briefly introduced in Section 5. Experimental results based on two different 
collections of music are discussed in detail in Section 6, with some conclusions rounding off the paper in 
Section 7. Source Code for all modules of the SOMeJB system, as well as on-line demos are available via 
the SOMeJB project homepage at http://www.ifs.tuwien.ac.at/~andi/somejb. 

 
2. Related Work 
A significant amount of research has been conducted in the area of content-based music retrieval, cf. 

(Foote 1999);(Wold, Blum, Keislar & Wheaton, 1996). Methods have been developed to search for pieces 
of music with a particular melody. Users may formulate a query by humming a melody, which is then 
usually transformed into a symbolic melody representation. This is matched against a database of scores 
given, for example, in MIDI format. Research in this direction is reported in, e.g.  (Bainbridge, Nevill-
Manning, Witten, Smith & McNab, 1999); (Birmingham, et al., 2001). Other than melodic information it is 
also possible to extract and search for style information using the MIDI format.  Yet, only a small fraction 
of all electronically available pieces of music are available as MIDI. A more readily available format is the 
raw audio signal, which all other audio formats can be decoded to.  A system where hummed queries are 
posed against an MP3 archive for melody-based retrieval is presented in (Liu & Tsai, 2001). 

Specifically genre based organization and detection has gained significant interest recently.  One of the 
first works to incorporate psychoacoustic modelling into the feature extraction process and utilizing the 
SOM for organizing audio data is reported in (Feiten  & Günzel, 1994). A first approach, classifying audio 
recordings into speech, music, and environmental sounds is presented in (Zhang  & Zhong, 1995). A 
system performing trajectory matching using SOMs and MFCCs is presented in (Spevak & Favreau, 2002). 
Specifically addressing the classification of sounds into different categories, (Wold, Blum, Keislar & 
Wheaton, 1996) use loudness, pitch, brightness, bandwidth, and harmonicity features to train classifiers. A 
wide range of musical surface features is used by the Marsyas system (Tzanetakis & Cook, 2000),( 
Tzanetakis & Cook, 2002) to organize music into different genre categories using a selection of 
classification algorithms.  

 
3. Features: Rhythm Patterns 
The feature extraction process for the Rhythm Patterns is composed of two stages. Following some pre-

processing steps the specific loudness sensation in different frequency bands is computed, which is then 
transformed into a time-invariant representation based on the modulation frequency. Due to space 
considerations we only present a brief summary of the feature extraction algorithm. Interested readers are 
referred to (Rauber, Pampalk & Merkl, 2003) for detailed discussion. 
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3.1 Preprocessing 

Starting from a standard Pulse-Code-Modulated (PCM) signal, stereo channels are combined into a 
mono signal, which is further downsampeled to 11kHz. Furthermore, pieces of music are cut into 6-second 
segments, removing the first and last two segments to eliminate lead-in and fade-out effects, and retaining 
only every second segment for further analysis. 
 
3.2 Feature Extraction: Specific Loudness Sensation 

Using a Fast Fourier Transform (FFT), the raw audio data is further decomposed into frequency ranges 
using Hanning Windows with 256 samples (corresponding to 23ms) with 50% overlap to counter ringing or 
side-lobe effects, resulting in 129 frequency values (at 43Hz intervals) every 12 ms. These frequency bands 
are further grouped into so-called critical bands, also referred to by their unit bark (Zwicker &  Fastl, 
1999), by summing up the values of the power spectrum between the limits of the respective critical band, 
resulting in 20 critical-band values. A spreading function (Schröder, Atal &  Hall, 1979) is applied to 
account for masking effects, i.e. the masking of simultaneous or subsequent sounds by a given sound. The 
spread critical-band values are transformed into the logarithmic decibel scale, describing the sound pressure 
level in relation to the hearing threshold. Since the relationship between the dB-based sound pressure levels 
and our hearing sensation depends on the frequency of a tone, we calculate loudness levels, referred to as 
phon, using the equal-loudness contour matrix. From the loudness levels we calculate the specific loudness 
sensation per critical band, referred to as sone. 
 
3.3 Feature Extraction: Amplitude Modulation 

To obtain a time-invariant representation, reoccurring patterns in the individual critical bands, 
resembling rhythm, are extracted in the second stage of the feature extraction process.  This is achieved by 
applying another discrete Fourier transform, resulting in amplitude modulations of the loudness in 
individual critical bands. These amplitude modulations have different effects on our hearing sensation 
depending on their frequency, the most significant of which, referred to as fluctuation strength (Fast, 1982), 
is most intense at 4Hz and decreasing towards 15Hz (followed by the sensation of roughness, and then by 
the sensation of three separately audible tones at around 150Hz). We thus weight the modulation 
amplitudes according to the fluctuation strength sensation, resulting in a time-invariant, comparable 
representation of the rhythmic patterns in the individual critical bands. To emphasize the differences 
between strongly reoccurring beats at fixed intervals a final gradient filter is applied, paired with 
subsequent Gaussian smoothing to diminish unnoticable variations.  The resulting 1.200 dimensional 
feature vectors (20 critical bands times 60 amplitude modulation values) may optionally be reduced down 
to about 80 dimensions using PCA. These Rhythm Patterns are further used for data signal comparison. 
 

4. SOM and GHSOM-based Organization 
The SOMeJB system uses the topology-preserving capabilities of the Self-Organizing Map (SOM), as 

well as its extended model, the Growing Hierarchical SOM (GHSOM), to create a map of a music 
collection, where similar pieces of music are located next to each other. The SOM (Kohonen, 1995) 
consists of a set of units i, which are arranged according to some topology, where the most common choice 
is a two-dimensional grid. Each of the units i is assigned a model vector mi of the same dimension as the 
input data, n

im ℜ∈ , initialized e.g. to random values. During the training process input signals x are 
presented to the map in random order. An activation function based on some metric (e.g. the Euclidean 
Distance) is used to determine the winning unit (the `winner'). In the next step the weight vector of the 
winner is modified following some time-decreasing learning rate α  in order to represent the input signal 
more closely. Apart from the winner, units in a time-varying and gradually shrinking neighborhood region 
hci  around the winner are adapted as well, cf. Equation 1. This enables a spatial arrangement of the input 
patterns such that alike inputs are mapped onto regions close to each other in the grid of output units.  
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As two deficiencies of the standard SOM model we have to note its static architecture, which has to be 

defined prior to the training process, as well as the impossibility to faithfully reflect the hierarchical 
structure inherent in data.  With the GHSOM (Dittenbach, Rauber & Merkl, 2002) we proposed a novel 
neural network model that addresses both deficiencies.  It uses a hierarchical structure of multiple layers, 
where each layer consists of a number of independent SOMs. One SOM is used at the first layer of the 
hierarchy, representing the respective data in more detail. For every unit in this map a SOM might be added 
to the next layer of the hierarchy. This principle is repeated with the third and any further layers of the 
GHSOM.  

To overcome the SOMs limit of a predefined network size we use an incrementally growing version of 
the SOM. This relieves us from the burden of predefining the network's size, which is rather determined 
during the unsupervised learning process. We start with a layer 0 consisting of only one single unit. The 
weight vector of this unit is initialized as the average of all input data. The training process then starts with 
a small map of, say, 2x2 units in layer 1, which is self-organized according to the standard SOM training 
algorithm. This training process is repeated for a fixed number λ of training iterations. Ever after 
λ training iterations the unit with the largest deviation between its weight vector and the input vectors 
represented by this very unit is selected as the error unit. Either a new row or a new column of units is 
inserted between the error unit and the neighboring unit most dissimilar in input space. The weight vectors 
of these new units are initialized as the average of their neighbors. This results in an unbalanced hierarchy 
of maps, where each map represents a subspace of the complete data set at increasing levels of granularity. 

 
 

5. Visualization 
The resulting maps offer themselves as interfaces to explore a music archive. Advanced cluster 

visualization techniques based on the SOM, such as the U-Matrix (Ultsch &  Siemon, 1990), may be used 
to assist in cluster identification. A specifically appealing visualization based on smoothed data histograms 
(SDH) (Pampalk, Rauber & Merkl, 2002a) are the Islands of Music, which use the metaphor of 
geographical maps, where islands resemble styles of music, to provide an intuitive interface to music 
archives. Furthermore, attribute aggregates are used to create Weather charts that help the user in 
understanding the sound characteristics of the various areas on the map.  

With SDH each data item, when presented to the map, ``votes'' for the map units which represent it best. 
All votes are accumulated for each map unit and the resulting distribution is visualized on the map. As 
voting function we use a robust ranking where the map unit closest to a data item gets s points, the second 
s-1, the third s-2 and so forth, for the s closest map units. All other map units are assigned 0 points. The 
parameter s can interactively be adjusted by the user. The concept of this visualization technique is 
basically a density estimation, thus the results resemble the probability density of the whole data set on the 
2-dimensional map. The main advantage of this technique is its low computational cost. For a detailed 
discussion and evaluation of these visualizations, see (Pampalk, Rauber & Merkl, 2002). 

 
 
6. Experiments 
In this section we present results from two sets of experiments. The first setting is a rather small 

collection of 77 pieces of music (total playing time: approx. 5 hours) from a variety of genres. It will serve 
as a demonstrator of the basic capabilities of the SOMeJB system and the resulting IoM visualization, 
focusing on the explorative possibilities offered by our approach. 

The second experiment is based on a much larger collection of 1.129 pieces of music with a total 
playing time of about 56 hours, structured into the 10 dance categories of the International Dance Sport 
federation (IDSF), namely the five Latin-American Dances Samba, Cha-Cha-Cha, Rumba, Paso-Doble, 
and Jive, as well as the five Ballroom Dances Slow Waltz, Tango, Viennese Waltz, Slow Foxtrot, and 
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Quickstep.  Apart from the much larger size of this collection, and the resulting scalability issues being a 
focus of analysis of the system, this setting can also be used for a quantitative analysis of the system's 
organizational capabilities, as we can compare the organization created by the SOMeJB system with the 
pre-defined classification of the titles into the respective dance categories.  

 
6.1 Experiment 1: Collection-77 
This collection contains 77 pieces of music from some very diverse genres, ranging from classical 

music to heavy metal.  Due to its size it offers itself for detailed presentation and discussion of the resulting 
map. The experiments presented in this section, including audio samples, are also available on the Web for 
interactive exploration.1  

 

 
Figure 1: IoM Visualization of 7x7 SOM of Collection-77 

 
Organizing these 77 pieces of music on a 7x7 SOM results in the map depicted in Figure 1 in the 

Islands of Music (IoM) representation.  When analyzing the basic layout of the map, we find a rather large 
island on the left part of the map, consisting of basically two connected islands. The one in the upper left 
corner has two high peaks, depicted as snow-capped mountain tops. When looking at (or listening to) the 
titles mapped onto the respective units of this cluster we find them to be soft classical music, specifically 
Air from Bach's Orchestersuite #3 , Ave Maria by Schubert, Für Elise and the Mondscheinsonate by 
Beethoven, as well as Schumann's Fremde Länder und Menschen, on the corner unit. All of these titles are 
very soft, peaceful classical titles. Moving to the neighboring unit to the right takes us to a cluster of two 
titles, namely the Andante from the Brandenburgisches Konzert #2 by Bach, as well as the Bach Partita #3 
in E for Solo Violin. These are again clearly classical pieces of music, yet somewhat more dynamic. 

Moving one unit down from this takes us to the second peak, which still is made up of predominantly 
classical music, yet again more dynamic, intensive, and basically orchestral pieces, as opposed to the 

                                                 
1http://www.ifs.tuwien.ac.at/~andi/somejb/experiments/somejb2_col77/ 
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predominantly solos constituting the clusters discussed so far. Titles here are the 1st Movement of the 5th 
Symphony by Beethoven, the Toccata and Fugue in D Minor by Bach, which is a voluminous organ piece, 
Brahms' Scherzo in C Minor, or the end credits of the film Back to the Future II. Also on this unit, but not a 
strictly classical piece of music, and kind of announcing the transition to the next island, is the song Love 
Me Tender by Elvis Presley. As we move further down this second part of the island moving again one row 
to the left, we find more titles with vocals, such as Memory by Barbara Streisand, Over the Rainbow by 
Judy Garland, and Three Times a Lady by Lionel Richie. 

Rather than continuing further south along this island, let us take a look at the island on the opposite 
lower right corner of the map. This is a smaller island, representing drastically heavier music, namely four 
titles by the band Bomfunk MCs, In Stereo, Rocking just to make ya move, Sky's the Limit, and Uprocking 
Beats. This music is characterized by the very strong and rhythmic bass beats as the dominant 
characteristic. 

If we move to the left along the lower part of the map, we find two islands that exhibit less strong bass 
beats, but gradually faster beats that spread across a larger range of the spectrum. The first island we come 
across contains the titles Cocojambo by Mr President, Macarena by Los del Rio, and Rock DJ by Robbie 
Williams, while the next island is constituted by more aggressive titles with very fast rhythmic activities, 
especially in the higher frequency domains, by Limp Bizkit, Papa Roaches, and Korn's Freak on a Leash. 

As a last example, we find Samba-Style music on the island in the upper right corner of the map, with 
titles such as From New York to LA by Stephany McKay, or Super Trouper by A-Teens. 

We thus find the resulting SOM to produce a sensible organization and grouping of music according to 
sound similarities. The map can be explored by moving to various islands, each of which contains music of 
largely similar style. Due to the topological representation of the music archive a user can get accustomed 
to the representation, knowing which type of music to expect in which part of the map, and where to go for 
her or his favourite styles. 

 
6.2 Experiment 2: Dance Music 
As opposed to the predominantly qualitative evaluation of the previous small-scale example, we present 

here a partially quantitative evaluation of a large collection of dance music, organized into the 10 different 
IDSF dances. This setting is intended to demonstrate two characteristics of the SOMeJB system, namely its 
basic ability to organize music according to different styles of music, as well as the fact that – for creating 
this organization – the system uses more than the mere beat or dominant rhythm information. The former 
can be evaluated by the degree to which the system organizes the titles according to the pre-defined 
classification scheme, while the latter can be qualitatively verified by analyzing in how far sound similarity 
dominates over pure beat similarity of several pieces of music. 
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Figure 2: Cluster purity for each of the 2x4 units of the top-layer map 

 
Due to the size of the data collection we decided to train a GHSOM rather than a flat map 

representation. The top-layer map of the GHSOM evolved to 4x2 units, with each of the units being 
expanded onto a more detailed second-layer map. Figure 2 depicts the cluster purity of each of the units. 
We find especially the Latin-American dances to be well separated in the right half of the map, with the 
upper and lower corner units having cluster purities of 94% for Cha-Cha-Cha and 96% for Samba music. 
Next to the bottom right corner unit of Samba music we find a unit representing 66 pieces of music, of 
which 88% are Jive, next to the first cluster of Ballroom music, of which 86% percent are Quickstep. This 
clear separation can be attributed to the clear dominance of rhythmic characteristics of each of these 
dances. For the major part of Ballroom music, the separation on the top-level map is not as clean, as these 
dances are not as strongly characterized – from a sound perspective – by their rhythmic characteristics, but 
rather by different styles, instrumentations, etc. Still, we find the upper left corner unit to be made up of 
51% of Waltz music, followed by 13% of Slow Foxtrot and 11% of Viennese Waltz. The neighboring unit 
to the right contains 42% of Slow Foxtrot, followed by 18% of Tango. The neighboring third unit in the top 
row constitutes the border between the Ballroom and Latin-American sections of the map, and thus acts as 
an interpolating unit, containing Tango and Cha-Cha-Cha music with respect to its position in between 
these two dominant clusters to the left and to the right, as well as almost all Paso Doble titles.  

If we drill down this unit, which in total represents 99 titles, and take a look at the corresponding 
second-layer map depicted in Figure 3, we find the individual dances to be well separated, as well as the 
global topology preserved: The upper-left part of the map contains almost exclusively Tango music, 
oriented to the neighboring map to the left, while Cha-Cha-Cha is locate don the lower right part of the 
map, neighboring the pure Cha-Cha-Cha cluster in the top-right corner of the first layer map. The Paso-
Doble is spread across the upper right quarter of the map. 
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Figure 3: Cluster purity for each of the 4x3 units of the second-layer map 

 
Apart from evaluating the cluster purity of the individual units, we can also take a look at how the 

individual dances are distributed across the various map units, as shown in Figure 4.  Again, we can find a 
strong grouping of the individual dances on the map, following largely the trends observed during the 
evaluation of cluster purity, with most dances being located predominantly on one unit, with a few titles 
spread onto the neighboring units. An exception to this is Quickstep, which is distributed to almost equal 
shares across two neighboring units in the lower left corner. 

 
 

 
Figure 4: Distribution of the 10 Dances across 2x4 Top-Layer GHSOM map 
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However, two dances, namely Samba and Cha-Cha-Cha, are spread to notable degrees across two non-

neighboring units. This raises the question, why titles from the same dance genre should be split far apart in 
spite of their identity in the dominant beat structure, hinting at the existence of subgroups within each of 
these dances. Analyzing a few titles from each of the sub-maps reveals that this is in fact the case. While 
typical Samba music is located on the bottom right corner unit, we find Samba titles interpreted and played 
with an instrumentation that makes them almost indistinguishable from Rumba music, with which these 
titles are co-located on a second layer map originating from the bottom left corner unit. In fact, the Samba 
rhythm is only faintly audible, while the dominant melodic part prevails in a Rumba style. 

This situation becomes even clearer with a second example from the Jive genre, where a Jive, played in 
Big-Band instrumentation, is collocated with some Quickstep music, and which could, or possibly even 
should, be considered as a Quickstep both from the melodic as well as rhythmic point of view. 

 
7. Conclusions 
Experiments have demonstrated the capability of the SOM-enhanced JukeBox (SOMeJB) system to 

organize music according to sound similarities, offering a convenient interface to music repositories. It 
facilitates interactive exploration and navigation through the holdings of the collection, and can thus serve 
both as an interface to collections of audio files on portable devices, as well as for on-line music portals. It 
can be used to locate music according to ones likings by projecting preferred pieces of music onto the map 
space, where similar style music will be found in the immediate neighborhood. It can also serve as a 
convenient way of playlist generation by selecting a region containing a certain style of music on the map, 
rather than manually constructing playlists based on artist names or coarse and disputed genre metadata 
tags. 

While the current system provides remarkable quality, the incorporation of additional features, 
specifically aiming at the capture of sound texture information, should offer room for further improvement 
and are currently under investigation. Additionally, while the focus of the proposed system definitely is on 
content-based features, i.e. features extracted directly from the sound signal of a piece of music, the 
integration of metadata information as well as social indexing is possible and may offer additional 
fascinating possibilities. 
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