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Abstract - The Self-Organizing Map has been successfully applied in numerous industrial
applications. An important task in data analysis is finding and visualizing multiple dependen-
cies in data. In this paper, we propose a method for visualizing the Self-Organizing Map by
decomposing the feature dimensions into groups with high correlation or selections by domain
experts. Using Gradient Visualization we plot a vector field for each of these groups on top
of the map lattice, with arrows pointing towards the nearest cluster center. We provide a
real-world example from the domain of petroleum engineering and point out our technique’s
usefulness in understanding mutual dependencies hidden in the data.
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1 Introduction and related work

The Self-Organizing Map is a popular tool for exploratory data analysis and visualization.
The key qualities of SOMs are vector quantization, which is related to clustering, and vec-
tor projection, which is done by mapping from a high-dimensional feature space to a low-
dimensional output space. Self-Organizing Maps have been used in a wide variety of industrial
and scientific applications [3].
The SOM is frequently used for clustering tasks, and thus it is important to know how
the feature variables are actually responsible for forming cluster boundaries. In this paper,
we investigate the influence of groups of variables on the cluster structure, selecting either
correlated variables by clustering of the component planes, or choosing semantically similar
ones based on domain knowledge. For visual inspection, we propose a method to plot the
results on top of the map lattice so the observer can get a feeling on how and where each
group contributes to the cluster structure. Since the SOM is so popular partly due to its
powerful visualization methods, we aim to maximize the information communicated through
a single visualization by combining different plots.
SOM visualizations [6] either show the map in relation to the data set, or they are derived from
the model vectors. The most commonly used technique for showing the distribution of the
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# Variable Name Type Description

1 Proppant in Formation param Amount of propp. pressed into formation (lbm)

2 Average Pressure geo Pressure in Reservoir (psi)

3 Average Rate param Rate of pumping into formation (bbl/m)

4 Pad Fluid Vol. Pumped param Total volume required to pump proppant (bbl)

5 Total Volume Pumped param Total of fluids pumped (bbl)

6 Produced Gas out Quantity of gas obtained (MSCF)

7 NetPay geo Depth of gas reservoir (ft)

8 Formation geo One of two ground formation types

9 Proppant Type param One of two proppant types

10 Stimulation Costs out Total cost of operation ($)

Table 1: Description of variables for Fracture Optimization data set

data are hit histograms, where the number of data points that are mapped to each map unit is
counted and plotted on top of the map grid. Recently, we have proposed an advanced graph-
based method [4] that plots the connectivity of the data vectors after projection, creating
strongly connected graphs on the map for densely populated areas in input space.
The second category of visualization methods, which are based solely on the SOM’s model
vectors, aim mainly at showing clusters and their boundaries. Most notably, distance matri-
ces, like the U-Matrix, indicate how close neighboring map units are in input space. Another
commonly used method which will be used extensively in this paper are component planes,
which plot the value of an individual dimension of each map unit’s model vector. Clustering
of the model vectors themselves can be applied to visualize regions that are close in input
space by any clustering method like k-means or hierarchical clustering. Another approach
has been pursued in [1, 2], where color coding is used to find clusters.
Our work is also concerned with finding and visualizing correlation in data, thus it is related
to canonical correlation analysis. Correlation is often measured by the Pearson Correlation
Coefficient, a normalized value based on the covariance matrix. Other methods include
the ranking correlation, which are more robust regarding outliers, most notably Kendall’s
and Spearman’s Ranking Coefficients, and partial and multiple correlation, which measure
complex interrelationships between more than two variables. For the visualization of groups
of component planes presented in this paper we use a different technique, namely the gradient
field method [5] which will be discussed in Section 3.
The data set that we use in the rest of this paper is collected from the domain of petroleum
engineering [8]. It has been collected to analyze the effects of pumping fluids and proppants
into the gas field on the amount of gas produced. It consists of 199 samples, which correspond
to gas wells, for which measurements of geological factors, parameters set by engineers, and
performance indicators are taken in a total of 10 variable dimensions. We call it the “Fracture
Optimization” data set. Table 1 provides a description of the variables, where the column
“Type” indicates whether the variable describes a geological measurement, a parameter, or
a result of the process. The SOM we use for experiments consists of 7 × 10 map nodes1.

1The experiments have been performed with the Matlab SOM Toolbox
(http://www.cis.hut.fi/projects/somtoolbox/). For training of the SOM, we used default parameters.
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The feature dimensions are weighted equally, we thus do not distinguish between geological,
parameter and output variables, since the goal of this work is to find correlations rather
than predict output values. Some of the variables are mutually dependent and correlated,
for example “Total Volume Pumped” is the sum of “Pad Fluid Vol. Pumped” and other not
explicitly measured fluids.
The rest of this paper is organized as follows: In Section 2, we discuss several options on how
to find groups of similar feature variables. Section 3 introduces our method of visualizing
the cluster structure of a SOM. In Section 4, we provide experimental results. Section 5
summarizes our work.

2 Groups of components

In this section, we will investigate how to obtain groups of variables and describe what we
intend to do with them.
We begin with some formal definitions: The feature space V = <d contains the normalized
data samples x and model vectors m; M denotes the set of model vectors (the codebook).
The i-th component plane Ci of M is the projection of the codebook onto its i-th variable.
Groups of component planes can be grouped and we denote S as the set that includes the
indices of the selected components. We further need multiple groups of component planes,
i.e. a partitioning of the available variable dimensions. Let g be the number of groups, and
S1...g the corresponding sets of component plane indices, then Si ∩ Sj = ∅, i, j ≤ g, ∀i 6= j,
i.e. a component plane must not be contained in more than one group, and

⋃g
i=1 Si ⊆ S

must hold. The union of the groups does not necessarily need to contain all the indices,
thus not all of the component planes must be included. Further, we denote by m(Si) the
coordinates of model vector m of dimensions Si. The codebook M (Si) is then the set of all
model vectors m(Si). Note that M (Si) is itself a Self-Organizing Map, and thus the U-Matrix,
for example, can be computed and visualized. The projection is performed after the SOM
has been trained, hence the same set of model vectors is decomposed into reduced sets of
model vectors of the same map.
In the method proposed in Section 3, we investigate the correlation of groups of components,
and aim at finding out how these groups contribute to the cluster structure. We further
want to localize where the clusters differ, if only a subset of the components is considered.
Thus, we need to find meaningful subsets of variable dimensions. There are mainly two ways
component planes can be selected and pooled to be further investigated, either by picking
variables that are highly correlated, or by choosing variables that are similar in terms of
the domains where they have been measured. In the following subsections, we explain these
choices in more detail.

2.1 Correlated variables

One way of obtaining interesting combinations of variables is selecting them based on high
pairwise correlation. This can be performed either manually or automatically, either on the
dimensions of the original data or of the SOM’s component planes. In this paper, we choose
the latter approach, since it allows visual inspection. The problem here is that the variables
are usually not ordered and comparison becomes increasingly difficult with higher number of
variables. An interesting approach [7] applies reorganization of the component planes such
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(a) Component
planes clustering

(b) U-Matrix
(whole map)

(c) U-Matrix
(SG1)

(d) U-Matrix
(SG2)

(e) U-Matrix
(Sgeo)

(f) U-Matrix
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(g) U-Matrix
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Figure 1: 7× 10 SOM trained on Fracture Optimization data

that similar component planes are located close to each other. This is performed by yet
another SOM, where the input samples are component planes from the original SOM. The
measure of distance between component planes i and j can be defined, for example, as the
absolute value of the correlation of each map position, formally

dcomp(i, j) = −‖γ(Ci, Cj)‖ (1)

where γ is a suitable measure of correlation, usually the Pearson correlation coefficient. Be-
cause positive and negative correlation are not distinguished, the absolute value is taken. An
advantage of this method is that an ordered presentation of similar components is automat-
ically generated and provided to the observer. A disadvantage, however, is that the actual
choice of grouping variables is left to the user.
A more thorough approach [2] includes comparing component planes and scatter plots. An-
other method would be to apply hierarchical clustering with the above defined distance mea-
sure dcomp. In this paper, however, we have chosen the interactive approach by reorganizing
component planes. An example of this is depicted in Figure 1, where a SOM trained on
the Fracture Optimization data set is shown. Figure 1(a) shows the results of reorganizing
the component planes according to mutual similarity. We identified two clusters of compo-
nent planes, the first one consisting of 4 variables in the lower left corner of the reorganized
plane, the second one with 2 components in the upper left part. We are not interested in
the remaining component planes due to their high dissimilarity from each other and the two
clusters. The index sets are SG1 = {1, 3, 4, 5} and SG2 = {7, 8}. The U-Matrix can be applied
to show the decomposition of local dissimilarities of map units on any of the reduced SOMs,
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(a) (b)

Figure 2: Gradient visualization with parameters (a) σ = 1.5, (b) σ = 3

as depicted in Figures 1(c,d). The U-Matrix of the whole map can be seen in Figure 1(b).
Please note that it is not the simply the sum of the 2 matrices, since the number of variables
differs in each group, and some variables are not included in the groups. However, a good
impression is given on which variables are responsible for each of the cluster boundaries.

2.2 Semantically similar variables

Another option for choosing groups of variables is selecting variables that belong semantically
together. Since the data is collected from real-world domains, groups of measurements from
related sources may be of interest while these are not necessarily correlated.
For example, consider the three categories from the Fracture Optimization data set, where
variables either describe geological factors, parameters applied during the engineering pro-
cess, and output variables. The corresponding index sets are Sgeo = {2, 7, 8}, Sparam =
{1, 3, 4, 5, 9}, and Sout = {6, 10}. U-Matrices are visualized in Figure 1(e)–(g). When com-
pared to the groups found by the clustering selection of variables, the boundaries of the
semantic groups seem less clearly drawn. In the former case, choosing correlated variables
implicitly stresses the cluster boundaries. The semantics-based grouping, however, is more
interesting in context of analyzing industrial data. For example, analysts are interested in
comparing effects of geologic and engineering parameters independent from the output, to
find out whether it is necessary to further optimize the engineering process given certain ge-
ological factors, or whether it is more important to carefully select the position of the well in
the first place. Naturally, the clusters found in the previous subsection have a certain degree
of similarity and overlap with the semantic classes.

3 Linking gradient field visualizations

In this section, we describe the gradient field method [5] for visualizing cluster structures.
The key components are vectors computed and plotted on top of the SOM lattice. Each map
node i is assigned an arrow ai that points to the nearest cluster center. The length of ai is
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the ratio between the dissimilarity of the model vector mi to the area it points to and the
dissimilarity to the area it points away from. Thus, long arrows indicate that the map node
is close to a cluster boundary, while short arrows are found either in cluster centers or in
rare cases directly between two clusters with approximately equal distances to both clusters.
The algorithm takes into account the neighborhood kernel and the width parameter σ, that
specify the influence of nearby and distant nodes on the map. Higher levels of σ emphasize
the global cluster structure by weighting a relatively large region surrounding the map units,
while lower values stress the fine details of the clusters. The resulting visualization gives an
overview on the cluster structure, where centers and interpolating units are located, and the
degree of similarity of nodes to its surrounding area.
An example of the gradient field method is shown in Figure 2 for σ = 1.5 and σ = 3. The
lower value of σ considers mostly direct neighbors and thus corresponds closely to the U-
Matrix visualization, which depicts distances between adjacent map units. From Figure 2(b)
it can be seen that there is a major boundary separating the map horizontally, and several
minor clusters with centers most probably located in the corners. The differences to the
U-Matrix are that a wider region is taken into account for computing distances in feature
space, and that the vectors of the gradient field point to nearby cluster centers.
In the previous section, we have seen U-Matrices of groups of variables. We wish to extend
and combine the gradient field method by linking two such visualizations that show the
clustering structure to maximize the amount of information communicated through a single
plot. By depicting two vector fields simultaneously, we intend to determine in which regions
of the SOM discrepancies between the vectors occur to aid data exploration. In [5], for each
model vector mi a vector ai is computed. The computation depends solely on the model
vectors, thus we extend this definition to subsets S1, S2 of the variables. The gradient field
algorithm is performed on maps with codebooks M (S1) and M (S2). We denote a

(S1)
i as the

vector derived for model vector m
(S1)
i , and analogously for S2. Then, the result can be

visualized by plotting two gradient fields with different colors. A normalization has to be
performed to adjust the length of the arrows according to the number of underlying variables
to weight larger sets heavier that smaller ones:

â
(S1)
i = a

(S1)
i

|S1|
|S1|+ |S2| (2)

and analogously for S2. |S| denotes the cardinality of set S. Experimental results and a
thorough discussion of the properties are provided in the next section.

4 Experiments

In this section, we discuss our combined gradient field method with both types of partitions
of the input variables as shown in Section 2. Figure 3 shows the results for a gradient field
visualization with kernel width σ = 2, which is a moderate choice, emphasizing mainly local
cluster structures, but still a wider range than the U-Matrix. In Figure 3(b), Groups 1 and
2 are shown. It can be seen that the variables SG1 are responsible for the horizontal division
of the map, while SG2 split the map vertically. This was also visible in the U-Matrices in
Figures 1(c,d), but here it is combined in a single plot. Orthogonal angles between arrows
from different groups, as in Figure 3(b), indicate that the groups are almost independent.
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(a) (b)

(c) (d) (e)

Figure 3: (a) Component Plane: “Produced Gas”; (b)–(e) Gradient visualization with parameters
σ = 2 on pairs of variable groups; in the following enumeration, the first group is indicated by black,
and the latter by gray vectors: (b) SG1 vs SG2, (c) Sout vs Sgeo, (d) Sout vs Sparam, (e) Sgeo vs Sparam

The visualizations for the semantic groups show less defined cluster boundaries, but the
results are more interesting for the fracture optimization process. By looking at Figure 3(e),
it can be seen that the geological factors are divided vertically, thus the changes occur in
the horizontal direction. For the engineering parameters, the changes occur mostly in the
vertical direction. The important component plane “Produced gas”, depicted in Figure 3(a)
shows that the highest gas output can be expected from wells which map to the upper
left corner of the SOM, which is thus the most desirable position. It can be derived that
the engineering parameters can influence the position of a well in vertical directions, so the
knowledge gathered from this visualization is that a well with certain geologic conditions can
be moved “up” with right choices of parameters, but not to the left or right. When plotting
the output variables Sout against either Sparam or Sgeo, no such rule can be derived directly.
Clusters of Sout can be observed on the left and lower edges, and slightly to the right of the
center of the map. Figure 3(d) plots the output dimensions against the parameter dimensions.
The vectors are diametrically opposed in the lower half of the map, and orthogonal in the
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upper part, hinting at more complex non-linear relationships.
One property of our combined gradient field method that due to clarity reasons cannot be
shown in black-white print, the combination with yet another visualization. A grayscale
background visualization can be used and red and blue arrows for groups of variables. The
background can be any of the typical SOM plots, like U-Matrix or hit histogram, or an
important component plane, like “produced gas” as in the example discussed above thus
combining several different views of the SOM in a single plot.

5 Conclusion

In this paper, we have introduced a method for visualizing pairs of group of variables with a
gradient field visualization. The goal of this technique is to get insight into the contribution
of these groups to the cluster structure. We have seen an application on data collected from
the petroleum industry, where variables have been grouped either according to correlation
or by similar context. The results have shown the decomposition such that the engineering
tasks can be adjusted to maximize the gas output. Further work will be directed in applying
and evaluating our method to further industrial domains and benchmarking it against other
statistical and visualization methods.
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