
A vector field visualization technique for
Self-Organizing Maps

Georg Pölzlbauer1, Andreas Rauber1, and Michael Dittenbach2

1 Department of Software Technology
Vienna University of Technology

Favoritenstr. 11-13, Vienna, Austria
{poelzlbauer,rauber}@ifs.tuwien.ac.at

2 eCommerce Competence Center – ec3
Donau-City-Str. 1, Vienna, Austria

michael.dittenbach@ec3.at

Abstract. The Self-Organizing Map is one of most prominent tools for
the analysis and visualization of high-dimensional data. We propose a
novel visualization technique for Self-Organizing Maps which can be dis-
played either as a vector field where arrows point to cluster centers, or as
a plot that stresses cluster borders. A parameter is provided that allows
for visualization of the cluster structure at different levels of detail. Fur-
thermore, we present a number of experimental results using standard
data mining benchmark data.

1 Introduction

The Self-Organizing Map (SOM) [1] is a valuable tool in data analysis. It is a
popular unsupervised neural network algorithm that has been used in a wide
range of scientific and industrial applications [3], like Text Mining [6], natural
language processing and monitoring of the condition of industrial plants and
processes. It provides several beneficial properties, such as vector quantization
and topology preserving mapping from a high-dimensional input space to a two-
dimensional output space. This projection can be visualized in numerous ways
in order to reveal the characteristics of the input data or to analyze the quality
of the obtained mapping.

Our method is based on the SOM codebook and the neighborhood kernel,
which induces a concept of proximity on the map. For each map unit, we compute
a vector pointing to the direction of the most similar region in output space.
We propose two methods of visualizing the results, a vector field plot, which
can be seen analogous to flow visualization and gradient visualization, and a
plot that emphasizes on the cluster structure of the map. The SOMs used for
demonstration and experiments are trained on Fisher’s well-known Iris data.

The rest of this paper is organized as follows. Section 2 describes several
visualization techniques for SOMs and related work. Section 3 gives an overview
of neighborhood kernel functions and their parametrization. In Section 4, our

U−Matrix (whole map)

(a)

Hit Histogram

(b)

U−Matrix (whole map)

(c)

Hit Histogram

(d) (e)

Fig. 1. 30× 40 SOM: (a) U-Matrix, (b) Hit histogram, 6× 11 SOM: (c) U-Matrix, (d)
Hit histogram, (e) Vector Field with Gaussian kernel (σ = 2), see Section 5

visualization method is introduced, along with a description of its properties and
interpretations. Section 5 presents experimental results, where the the influence
of choices of neighborhood kernel, neighborhood radius and map size are inves-
tigated. Finally, Section 6 gives a short summary of the findings presented in
this paper.

2 Related Work

In this section, we briefly describe visualization concepts for SOMs related to our
novel method. The most common ones are component planes and the U-Matrix.
Both take only the prototype vectors and not the data vectors into account.
Component planes show projections of singled out dimensions of the prototype
vectors. If performed for each individual component, they are the most precise
and complete representation available. However, cluster borders cannot be eas-
ily perceived, and high input space dimensions result in lots of plots, a problem
that many visualization methods in multivariate statistics, like scatterplots, suf-
fer from. The U-Matrix technique is a single plot that shows cluster borders
according to dissimilarities between neighboring units. The distance between
each map unit and its neighbors is computed and visualized on the map lattice,
usually through color coding. Recently, an extension to the U-Matrix has been
proposed, the U*-Matrix [8], that relies on yet another visualization method,
the P-Matrix [7]. Other than the original, it is computed by taking both the
prototype vectors and the data vectors into account and is based on density
of data around the model vectors. Interestingly, both the U*-Matrix and our
novel method, among other goals, aim at smoothing the fine-structured clusters
that make the U-Matrix visualization for these large SOMs less comprehensible,
although the techniques are conceptually totally different. Other visualization
techniques include hit histograms and Smoothed Data Histograms [4], which
both take the distribution of data into account, and projections of the SOM
codebook with concepts like PCA or Sammon’s Mapping, and concepts that
perform labeling of the SOM lattice [6]. For an in-depth discussion, see [9].

In Figure 1, the hit histogram and U-Matrix visualizations are depicted for
SOMs trained on the Iris data set with 30×40 and 6×11 map units, respectively.

The feature dimensions have been normalized to unit variance. The U-Matrix
reveals that the upper third of the map is clearly separated from the rest of
the map. The hit histogram shows the projection of the data samples onto the
map lattice. It can be seen that this SOM is very sparsely populated, because
the number of map units is higher than the number of data samples. When the
two methods are compared, it can be observed that the fine cluster structures
in the U-Matrix occur exactly between the map units that are occupied by data
points. It is one of the goals of this work to create a representation that allows
a more global perspective on these kinds of maps and visualize it such that the
intended level of detail can be configured.

To our best knowledge, the neighborhood kernel that is described in the
next section has not been used for visualization purposes. Apart from the SOM
training algorithm the neighborhood function is applied in the SOM Distortion
Measure [2], which is the energy function of the SOM with fixed radius, where the
neighborhood kernel is aggregated and serves as a weighting factor comparable
to the one we use in this paper.

3 SOM Neighborhood Kernels
A particularly important component of the Self-Organizing Map is the concept of
adjacency in output space, i.e. the topology of the map lattice, and its definition
of neighborhood that affects the training process. Our visualization technique
heavily depends on this neighborhood kernel as a weighting factor. The neigh-
borhood kernel is a parameterized function that takes the distance between two
map units on the lattice as input and returns a scaling factor that determines
by which amount the map unit is updated for each iteration. The parameter the
kernel depends on is the neighborhood radius σ(t), which is itself a monotoni-
cally decreasing function over time t. σ controls the width of the kernel function,
such that high values lead to kernels that are stretched out and low values result
in sharply peaked kernels. In this work, we will not consider the radius as a
function of time as the training process does, but rather as a parameter that has
to be specified before the visualization can be applied.

The kernel function hσ(dinput) has the property of decreasing monotonically
with increasing distance dinput. This distance will be formally defined in the
next section, but can be roughly envisioned as the number of units that lie
between two map units. Examples of neighborhood kernels are the Gaussian
kernel, the bubble function, and the inverse function. The Gaussian kernel is
the most frequently used kernel for the SOM. It has the well-known form of the
Gaussian Bell-Shaped Curve, formally

hG
σ (dinput) = exp

(
− d2

input

2σ

)
(1)

Since the returned value is exponentially decreasing for higher values of dinput,
the effects on the training process are neglegible. Thus, the kernel is frequently
modified to cut off the function at input values greater than σ:

h
c/G
σ (dinput) =

{
hG

σ (dinput) if dinput ≤ σ
0 otherwise (2)

(a) (b) (c)

(d)

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

dist

h σ(d
is

t)
Gaussian
Cut−off Gaussian
Bubble
Inverse

(e)

Fig. 2. Overview of different kernel functions: (a) Gaussian kernel, (b) cut-off Gaus-
sian kernel, (c) bubble function, (d) inverse function, (e) comparison of neighborhood
functions

Another kernel is the bubble function, which exclusively relies on this prin-
ciple of cutting off at radius σ. It is a simple step function, formally

hB
σ (dinput) =

{
1 if dinput ≤ σ
0 otherwise (3)

Another option is the inverse proportional function:

hI
σ(dinput) =

{
1− d2

input

σ2 if dinput ≤ σ
0 otherwise

(4)

which shows a sharper decrease than the Gaussian kernel.
The different kernel functions are depicted in Figure 2, which shows the

values of the kernel for the map unit located in the center, indicated by a black
dot. Figure 2(e) shows a plot of the kernels as function of the distance between
the units and fixed neighborhood radius. All the graphics use the same value of
6 for parameter σ.

4 A Vector Field Based Method for Visualization

In this section, we introduce our visualization technique for the SOM. Similar
to the U-Matrix, only the prototype vectors and their pairwise similarities are

investigated. In the U-Matrix, only the differences between direct neighbors are
considered. We aim to extend this concept to include the region around the
units according to the neighborhood kernel. Furthermore, we wish to obtain the
direction for each unit where the most similar units are located. The resulting
visualization is analogous to gradient vector fields where units are repelled from
or attracted to each other.

First, we have to make some formal definitions. The type of SOM that we
will consider has a two-dimensional lattice, consisting of a number M of map
units pi, where i is between 1 and M . Each of the map units is linked to a
model vector mi of input dimension N . Each of the mi is linked to the output
space by its position on the map. To distinguish between feature space and map
lattice, we explicitly write pi for the position vector of map unit that represents
prototype vector mi; the index i connects input and output space representation.
We denote the horizontal and vertical coordinates of the map unit as pu

i and pv
i ,

respectively. Thus, the distance between two prototype vectors mi and mj , or
pi and pj , can be determined both in input and output space:

dinput(mi,mj) = ||mi −mj ||input (5)

where ||.||input is a suitable distance metric and

doutput(pi, pj) =
√

(pu
i − pu

j)2 + (pv
i − pv

j)2 (6)

which is the Euclidean Distance.
The neighborhood kernel requires the distance between the model vectors’

positions on the map lattice doutput(pi, pj) as its input. This kernel function com-
putes how much the prototype vectors influence each other during the training
process. We will use it as a weighting function that allows us to compute the
similarity (in terms of input space distance) of map units that are close to each
other on the map.

Our technique plots arrows for each map unit like in gradient field visual-
izations. A unit’s arrow points to the region where the most similar prototype
vectors are located on the map. The length of this arrow shows the degree of how
much the area it is pointing to is more similar to it than the opposite direction.

Each arrow is computed for unit pi as a two-dimensional vector ai. It can
be decomposed in u and v coordinates, denoted as au

i and av
i . For each of the

two axes, we compute the amount of dissimilarity along positive and negative
directions. Our method determines these vectors in a two-step process: First, the
computations for each map unit are performed separately for the positive and
negative directions of axes u and v, and finally, these components are aggregated
by a weighting scheme to calculate the coordinates of ai.

The angle α that identifies the direction of pj seen from pi on the map lattice
is defined in basic trigonometry as

α(pi, pj) = arctan(
pv

j − pv
i

pu
j − pu

i

) (7)

The influence of the neighborhood kernel projected onto the u and v axes is
computed as

wu(pi, pj) = cos(α(pi, pj)) · hσ(doutput(pi, pj)) (8)

wv(pi, pj) = sin(α(pi, pj)) · hσ(doutput(pi, pj)) (9)

Here, the influence of the neighborhood kernel is distributed among the two axes
according to the position of pi and pj on the map and serves as a weighting factor
in the following steps. The neighborhood kernel relies on the width parameter
σ, which determines the influence of far-away map units.

Then, we decompose the amount of dissimilarity in its positive and negative
direction for both axes for each pair of map units pi, pj :

conu
+(pi, pj) =

{
dinput(mi,mj) · wu(pi, pj) if wu(pi, pj) > 0
0 otherwise (10)

conu
−(pi, pj) =

{−dinput(mi,mj) · wu(pi, pj) if wu(pi, pj) < 0
0 otherwise (11)

where conu
+ denotes the contribution of map unit pj ’s dissimilarity in positive

direction along u, and conu
− in negative direction. The definition of conv

+ and
conv

− follows analogously. For example, a map unit pj that lies to the lower right
of pi results in conu

−(pi, pj) = conv
+(pi, pj) = 0, and some positive values for

conu
+(pi, pj) and conv

−(pi, pj) according to the distance in output space, which is
weighted through the neighborhood kernel, and also its distance in input space,
which is directly measured by the factor dinput.

Next, the sum of contributions in both directions is computed for each pi

dissu
+(pi) =

∑

j=1...M,j 6=i

conu
+(pi, pj) (12)

dissu
−(pi) =

∑

j=1...M,j 6=i

conu
−(pi, pj) (13)

Again, dissv
+ and dissv

− are defined analogously. The variable dissu
+(pi) indi-

cates how much mi is dissimilar from its neighbors on the side in the positive u
direction. In a gradient field analogy, this value shows how much it is repelled
from the area on the right-hand side.

Next, we aggregate both negative and positive components into the resulting
vector ai. Normalization has to be performed, because units at the borders of
the map lattice would have components pointing outside of the map equal to
zero, which is not intended. The sums of the neighborhood kernel weights wi

pointing in positive and negative directions are

wu
+(pi) =

∑

j=1...M,j 6=i

{
wu(pi, pj) if wu(pi, pj) > 0
0 otherwise (14)

wu
−(pi) =

∑

j=1...M,j 6=i

{−wu(pi, pj) if wu(pi, pj) < 0
0 otherwise (15)

Finally, the u component of the gradient vector a is computed as

au
i =

dissu
−(pi) · wu

+(pi)− dissu
+(pi) · wu

−(pi)
dissu

+(pi) + dissu−(pi)
(16)

and likewise for the v direction. The weighting factor wu
+ is multiplied with

the component in the other direction to negate the effects of units close to the
border in which case the sum of the neighborhood kernel is greater on one side.
If this normalization would be omitted, the vector a would be biased towards
pointing to the side where units are missing. For map units in the center of the
map’s u-axis, where wu

+ and wu
− are approximately equal, Equation (16) can be

approximated by this simpler formula

au
i ≈ µ · dissu

−(pi)− dissu
+(pi)

dissu
+(pi) + dissu−(pi)

(17)

where µ is a constant factor equal to wu
++wu

−
2 and is approximately the same for

all units in the middle of an axis.
The results obtained for different ratios and proportions of diss+ and diss−

are briefly described:
– If negative and positive dissimilarities are roughly equal, the resulting com-

ponent of a will be close to zero.
– If the positive direction is higher than the negative one, a will point into the

negative direction, and vice versa. The reason for this is that the prototype
vectors on the negative side of the axis are more similar to the current map
unit than on the positive side.

– If one side dominates, but the second side still has a high absolute value, the
normalization performed in the denominator of Equation (16) decreases the
length of the vector.
In Figure 3(b), our visualization technique is shown for the 30 × 40 SOM

trained on the Iris data set with a Gaussian kernel with σ = 5. If compared to
the U-Matrix in Figure 1(a), it can be seen that the longest arrows are observed
near the cluster borders, pointing to the interior of their cluster and away from
these borders. Adjacent units, for which the arrow points in different directions,
are clearly along a cluster border. The length of the arrows indicates how sharp
the border is. In the middle of these transitions, arrows are sometimes drawn
with almost no distinguishable length or direction. The corresponding prototype
vectors are likely to be very far away from either cluster, and are referred to
as interpolating units, since they do not represent any data vectors in a vec-
tor quantization sense, but are only a link connecting two distant data clouds.
Cluster centers also have small dot-like arrows pointing in no distinguishable
direction, but the difference is that the surrounding arrows are pointing in their
direction, and not away from them. Another property of this visualization is that

the units on the edges of the map never point outside of it, which is desired and
stems from the normalization performed in (16).

One interesting extension to our visualization method is that the results can
also be depicted to show the cluster borders themselves with a slight modification
in the representation by depicting not the direction of the gradient, but rather
the hyperplane obtained by rotation of 90 degrees in either direction. In our case
of a two-dimensional map lattice, the hyperplane is a one-dimensional line. We
choose to depict this line with length proportional to the original arrow. The
result is visualized in Figure 3(e). The emphasis of this dual representation is
stressing cluster borders, while information on directions is omitted.

We have found that our method is most useful when applied in combina-
tion with other visualization techniques, such as hit histograms and component
planes. What can be learned from comparing the positions of the different Iris
species to our method is that the class membership of the data samples corre-
lates with the cluster structure in case of the Setosa species, while Versicolor
and Virginica do not show a distinguishable separation. This is of course a well-
known fact about the Iris data set, and application of our technique to more
complex data is subject to further research and is addressed in [5].

5 Experiments

In this section, we will investigate the empirical results of our method applied
to SOMs of different sizes, as well as how the choice of parameter σ influences
the visualization, and the effects of different kernel functions.

First, we examine the effect of the map size, i.e. the number of prototype
vectors. The data vectors remain the same for both maps. The smaller version
of the SOM consists of 6×11 units, and the larger one of 30×40 units. In the latter
case, the number of data vectors (150) is much lower than the number of map
units (1200). The visualization for the smaller version is depicted in Figure 1(e).
U-Matrix and vector field plots for the larger map are shown in Figures 1(a)
and 3, respectively. In the smaller SOM the gap between the upper third part
representing the well-separated Setosa species and the lower two-thirds of the
map can clearly be distinguished, as in the larger SOM. However, the larger
version of the SOM gives more insight into the structure of the data. Transitions
and gradual changes in directions and length can be distinguished more easily
at this higher granularity.

In the next experiment, we investigate the influence of the width parameter σ.
In Figure 3, the large Iris SOM is visualized with three different values of σ. Fig-
ures 3(a), (d) show the two methods for σ = 1. The visualization with this width
is the one most closely related to the U-Matrix technique, since only distances be-
tween direct neighbors are regarded, while the influence of slightly more distant
units is neglected. Of all the visualizations shown here, these two are chiseled
the most and are least smooth. The frequent changes in direction of neighboring
arrows is due to the very local nature of this kernel. In Figures 3(b), (e) the visu-
alization is shown for σ = 5, where the increased neighborhood radius produces
a smoothing effect over the vector field. Here, changes in direction between close
arrows can be better distinguished and result in a visually more comprehensible

(a) (b) (c)

(d) (e) (f)

Fig. 3. 30× 40 SOM trained on Iris data (a)-(c) Vector field representation with σ =
1, 5, 15, (d)-(f) Border representation with σ = 1, 5, 15

picture. The set of arrows is perceived as a whole and as less chaotic. It gives
the impression of visualizing a somewhat more global structure. Finally, the vi-
sualization for σ = 15 is depicted in Figures 3(c), (f), where only big clusters
can be perceived. The effect of σ can be summarized as follows: For a value of 1,
the cluster representation is very similar to the U-Matrix, which is the method
relying mostly on local differences. With higher values of σ, the kinds of per-
ceived cluster structures gradually shift from local to global. The choice of σ has
a deep impact on this visualization method and is dependant on the map size.
Further experiments have shown that good choices are close to one tenth of the
number of map units in the axis of the map lattice with fewer map units, but it
also depends on the desired level of granularity.

Finally, we investigate the influence of the type of neighborhood function
on the visualization. The examples in this paper so far are all performed with
Gaussian kernels. Surprisingly, the differences to the inverse function and cut-off
Gaussian kernel are so minimal that they are hardly distinguishable. The only
exception is the bubble function, which is actually a very unusual choice for a
neighborhood kernel during training. Since all the map units are treated equally

within the sphere of this radius, and nodes on the borders of this circle are not
weighted less than near the center, the visualization is harder to interpret than
the other kernels. During training, cluster structures are introduced that are not
present in the data set. We find that the bubble function is not appropriate for
this kind of visualization, and conclude that the neighborhood kernel should be
a continuous function.

6 Conclusion

In this paper, we have introduced a novel method of displaying the cluster struc-
ture of Self-Organizing Maps. Our method is distantly related to the U-Matrix.
It is based on the neighborhood kernel function and on aggregation of distances
in the proximity of each codebook vector. It requires a parameter σ that de-
termines the smoothness and the level of detail of the visualization. It can be
displayed either as a vector field as used in flow visualizations or as a plot that
highlights the cluster borders of the map. In the former case, the direction of the
most similar region is pointed to by an arrow. Our experiments have shown that
this method is especially useful for maps with high numbers of units and that the
choice of the neighborhood kernel is not important (as long as it is continuous),
while the neighborhood radius σ has a major impact on the outcome.

Acknowledgements

Part of this work was supported by the European Union in the IST 6. Frame-
work Program, MUSCLE NoE on Multimedia Understanding through Seman-
tics, Computation and Learning, contract 507752.

References

1. T. Kohonen. Self-Organizing Maps, 3rd edition. Springer, 2001.
2. J. Lampinen and E. Oja. Clustering properties of hierarchical self-organizing maps.

Journal of Mathematical Imaging and Vision, 2(2–3):261–272, 1992.
3. M. Oja, S. Kaski, and T. Kohonen. Bibliography of self-organizing map (SOM)

papers: 1998-2001 addendum. Neural Computing Surveys, 3:1–156, 2001.
4. E. Pampalk, A. Rauber, and D. Merkl. Using smoothed data histograms for clus-

ter visualization in self-organizing maps. In Proc. Intl. Conf. on Artifical Neural
Networks (ICANN’02), Madrid, Spain, 2002. Springer.

5. G. Pölzlbauer, A. Rauber, and M. Dittenbach. A visualization technique for self-
organizing maps with vector fields to obtain the cluster structure at desired levels
of detail. In International Joint Conference on Neural Networks (IJCNN2005),
Montral, Canada, 2005.

6. A. Rauber and D. Merkl. Automatic labeling of self-organizing maps: Making a
treasure-map reveal its secrets. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD’99), Bejing, China, 1999. Springer.

7. A. Ultsch. Maps for the visualization of high-dimensional data spaces. In Proc.
Workshop on Self organizing Maps, Kyushu, Japan, 2003.

8. A. Ultsch. U*-matrix: a tool to visualize clusters in high dimensional data. Technical
report, Departement of Mathematics and Computer Science, Philipps-University
Marburg, 2003.

9. J. Vesanto. Data Exploration Process Based on the Self-Organizing Map. PhD
thesis, Helsinki University of Technology, 2002.

