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Abstract: Self-Organizing Maps are a prominent tool for exploratory analysis and
visualization of high-dimensional data. We propose a novel method for visualizing the
cluster structure and coherent regions of the Self-Organizing Map that can be displayed
as a vector field on top of the map lattice. Concepts of neighborhood and proximity
on the map is exploited to obtain a representation where arrows point to the most
similar region. The method is especially useful for large maps with a high number of
map nodes. In our experiments, we visualize a data set that stems from applications in
the petroleum industry, and show how to use our method to maximize the gas output.

Key Words: Self-Organizing Maps, Knowledge Visualization, Petroleum Industry

Category: I.5.3

1 Introduction

Self-Organizing Maps (SOMs) [Kohonen 2001] are a valuable tool for exploratory

data analysis and visualization, which map from a high-dimensional input space

to a low-dimensional lattice, preserving the topology of the data set as faithfully

as possible. It is a popular unsupervised neural network algorithm that has been

used in a wide range of scientific and industrial applications. The projection can

be visualized in numerous ways in order to reveal the characteristics of the input

data or to analyze the quality of the obtained mapping. Our method is based on

calculating distances from the SOM codebook with regard to the neighborhood

kernel, introducing a concept of proximity on the map lattice. For each map

unit, we compute a vector pointing in the direction of the most similar region in

output space.

The remainder of this paper is organized as follows. In Section 2, we describe

our data set, which comes from the domain of petroleum industry. Common

SOM visualization techniques are discussed in Section 3. In Section 4, we outline

the gradient field visualization. Section 5 provides experimental results. Finally,

some conclusions are drawn in Section 6.
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Figure 1: 12×6 SOM: (a) U-Matrix, (b) Hit histogram, (c) Variable: “Produced

Gas”, (d) Variable “Stimulation Costs”, (e) Pie Charts “Formation Type”, (f)

Pie Charts “Proppant Type”

2 The Fracture Optimization Data Set

Data mining techniques have been applied in widely different domains. The

petroleum industry with its mass of sensor data is one of the areas where SOMs

can be used [Zangl et al 2003]. The aim is to investigate the characteristics of

the data to find possibilities to optimize the gas production process.

The data set that we use in our experiments stems from an industrial project

and is taken from measurements collected in 199 wells for producing gas. It

consists of 10 variable dimensions and contains metric as well as categorical val-

ues. Two of the variables are target variables, “produced gas” and “stimulation

costs”, which are unknown prior to actually starting the costly production pro-

cess. Although the SOM is an unsupervised algorithm, it can be used by treating

the values to predict as missing values. Regression and machine learning tech-

niques perform better in forecasting target values than the SOM, but the aim

is to learn about the correlation of the individual variables, similar to canonical

correlation analysis, and the cluster structure of the data set rather than pre-

dicting the expected costs and amount of gas. The relationship of the variables

in the data set and its visualization is the primary goal of the method introduced

in this paper. The wells are described by features including geologic data as well

as parameters that determine the technical process of producing gas. The mea-

surements are “proppant mass”, “average rate”, “average pressure”, “pad fluid

volume”, “total fluid volume”, “netpay”, “formation type”, “proppant type”,

“produced gas”, and “stimulation costs”. From an optimization perspective, one

is most interested in obtaining high “produced gas” and low “stimulation costs”.

3 SOM Visualization Techniques

In this section, we briefly describe visualization concepts for SOMs [Vesanto 2002]

related to the gradient field method. The first map we use for our experiments



U−Matrix (whole map)

(a)

Hit Histogram

(b)

Component Plane: produced gas 

(c)

Figure 2: 44 × 44 SOM: (a) U-Matrix, (b) Hit histogram, (c) “Produced Gas”

consists of 12×6 map units, the second one of 44×44 units, where the 199 data

points are outnumbered by the units, both trained on the data set described

in the previous section. In Figure 1, some of the most common visualization

techniques are demonstrated with the 12× 6 SOM. The U-Matrix [Ultsch 1999]

is shown in Figure 1(a), where the distances between prototype vectors from

neighboring map units are calculated, revealing the local cluster structure of

the map. It can be seen that the upper and lower parts of the SOM are clearly

separated by the horizontal border indicated by bright colors (high U-Matrix

values). Another method for displaying SOMs are component planes, each de-

picting a single variable of the prototype vectors. Figures 1(c)–(d) show the two

most important component planes “Produced Gas” and “Stimulation Costs”.

The lower right corner can be identified as having highest costs, and the upper

part as yielding the highest gas output; thus, the upper part of the map con-

tains the most desirable wells. It has to be noted that these variables can not

be known in advance, and it is therefor important to learn which factors lead

to these beneficial outputs. Figure 1(b) shows the hit histogram, which reveals

the distribution of the data samples on the map, where the size of the marker

indicates the frequency of how many times the unit was selected best-matching

unit by data samples. A variant of this especially usefull for depicting categorical

variables is displaying hits as pie charts, counting how often each map unit is

selected by samples of each category level. This is shown in Figures 1(e)–(f) for

the categorical variables “Formation Type” and “Proppant Type”. The map is

clearly divided by both attributes, with “Formation Type” dividing vertically,

and “Proppant Type” separating the two clusters identified by the U-Matrix

horizontally. The visualizations indicate that Proppant Type shown as bright in

the pie charts gives more desirable results.

In Figure 2, different visualizations for the 44 × 44 SOM are shown. When

comparing the U-Matrix in Figure 2(a) and the hit histogram in Figure 2(b),

it is obvious that the U-Matrix draws small borders around each unit that is

occupied by a data sample. The method that we present in the next section



is similar to the U-Matrix in the way that local distances are calculated, but

can be parameterized to negate the effect of sparse data population to identify

more global cluster borders. Another approach to deal with this problem of

local cluster borders overshadowing global ones is the U*-Matrix [Ultsch 2003].

It is computed by weighting the U-Matrix values with the data density in input

space. For maps of this size, which may also be sparsely populated like so-

called Emergent SOMs [Ultsch 1999], methods like the pie charts can not be

applied. One of the aims of our work is to provide further methods of visualization

for large SOMs. Component planes for the two most important components

“produced gas” and “stimulation costs” are shown in Figures 2(c) and 3(d). It

can be seen that due to the increased space on the map lattice, slightly different

structures emerge when compared to the smaller SOM.

4 A Vector Field Visualization

In this section, we describe the gradient field visualization. It is displayed as a

vector field on top of the map lattice, and aims at making the SOM readable for

persons with engineering background who have experience with flow and gradi-

ent visualizations. The information communicated through our visualization is

similar to the U-Matrix, identifying clusters and coherent areas on the map, but

allowing for extending the neighborhood width, and thus showing global dis-

tances. Another goal is to make explicit the direction of the most similar cluster

center, represented by arrows pointing to this center. The method turns out to

be most useful for SOMs with high numbers of map units. One of the concepts

that is required is the neighborhood kernel that is used by the SOM training

algorithm. The commonly used Gaussian kernel has the well-known form of the

Gaussian Bell-Shaped Curve, formally

hσ(dist) = exp

(

−
dist2

2σ

)

(1)

where dist is the distance and sigma a width parameter.

The SOMs discussed in this paper have a two-dimensional output space (map

lattice) with map units pi, where index i is between 1 and M . The map units are

attached to a model vector mi (also codebook or prototype vector) which lives in

the same space as the input samples, and has dimension N . The SOM algorithm

creates an ordering of the model vectors, such that close map units correspond

to similar prototype vectors. We explicitly denote pi as the position vector in

u, v-coordinates of the map unit that represents codebook vector mi, with i

connecting the input and output space representation. The u, v-coordinates of

the map units are denoted as pu
i and pv

i , respectively. Distance can thus be

measured both in input and output space, either between mi and mj or pi and pj ,

where dinput(mi, mj) denotes the Euclidean distance between mi and mj in input



space, and doutput(pi, pj) the distance on the map lattice, i.e. approximately the

number of map nodes between pi and pj .

For each unit pi we compute a two-dimensional vector ai. We distinguish

between u and v coordinates, denoted as au
i and av

i , along the horizontal and

vertical axes of the map lattice. The gradient field method determines these

vectors in two-steps: First, the computations for each map unit are performed

separately for the positive and negative directions of axes u and v, and finally,

these components are aggregated by obtaining the ratio between the positive and

negative directions, and the lengths of the ai are normalized, which can then be

visualized.

First, we define α(pi, pj) as the angle between the direction of pj seen from

pi on the map lattice and the u-axis. We can thus decompose the contribution

of the neighborhood kernel into u and v coordinates given positions pi, pj :

wu(pi, pj) = cos(α(pi, pj)) · hσ(doutput(pi, pj)) (2)

wv(pi, pj) = sin(α(pi, pj)) · hσ(doutput(pi, pj)) (3)

wu and wv serve as a weighting factor for the rest of the computations. The

neighborhood kernel relies on width parameter σ, which determines how far-

away map units are weighted.

Next we split the dissimilarity that can be measured in input space into

positive and negative direction for both axes. This is performed for each pair of

map units pi, pj , formally

conu
+(pi, pj) =

{

dinput(mi, mj) · w
u(pi, pj) if wu(pi, pj) > 0

0 otherwise
(4)

conu
−(pi, pj) =

{

−dinput(mi, mj) · w
u(pi, pj) if wu(pi, pj) < 0

0 otherwise
(5)

Here, conu
+ denotes the contribution of map unit pj ’s distance from pi in positive

direction along u, and conu
− in negative direction. Note that similar calculations

are performed for the U-Matrix, when considering only adjacent map units,

and without the use of the neighborhood kernel. conv
+ and conv

− are defined

analogously. For example, a map unit pj that lies to the lower right of pi results

in conu
−(pi, pj) = conv

+(pi, pj) = 0, and some positive values for conu
+(pi, pj)

and conv
−(pi, pj) according how far these units lie apart on the SOM lattice and

weighted by the neighborhood kernel, and also its distance in input space, which

is directly measured by factor dinput.

Then we aggregate the positive and negative contributions for pi

diss+
u (pi) =

∑

j=1...M,j 6=i

conu
+(pi, pj) (6)



diss−u (pi) =
∑

j=1...M,j 6=i

conu
−(pi, pj) (7)

dissv
+ and dissv

− follow analogously. dissu
+(pi) indicates how much mi is different

from the region that lies to the right of it. In a gradient field analogy, this value

shows how much it is repelled from this direction.

Next, another aggregation is performed for the total possible contribution in

positive and negative directions according to the neighborhood functions

wu
+(pi) =

∑

j=1...M,j 6=i

{

wu(pi, pj) if wu(pi, pj) > 0

0 otherwise
(8)

wu
−(pi) =

∑

j=1...M,j 6=i

{

−wu(pi, pj) if wu(pi, pj) < 0

0 otherwise
(9)

Finally, the coordinates of ai can be computed as the ratio of positive and

negative dissimilarities. The normalization by wu
+ counters the effect that units

close to the borders of the SOM would have dissimilarities of zero in directions

that actually point outside of the map, resulting in a strong bias and long arrows,

which is not desired. The u component of the gradient vector a is computed as

au
i =

dissu
−(pi) · w

u
+(pi) − dissu

+(pi) · w
u
−(pi)

dissu
+(pi) + dissu

−(pi)
(10)

and likewise for the v direction.

5 Examples

In this section, we give examples based on a the 44 × 44 SOM trained on the

Fracture Optimization data. In another publication [Pölzlbauer et al 2005], we

evaluate a standard machine learning data set which more densely populated.

Figure 3(a) shows our visualization technique with a Gaussian kernel of σ = 2. If

compared to the U-Matrix in Figure 2(a), it can be seen that the longest arrows

are observed near the cluster borders, pointing to the interior of their cluster and

away from these borders. It can be seen that adjacent units, for which the arrow

points in different directions, are clearly along a cluster border. The length of

the arrow indicate the sharpness of the border. Between these transitions, arrows

sometimes have no distinguishable length. The corresponding prototype vectors

are likely to be far away from either cluster, and are referred to as interpolating

units, since they do not represent data vectors in a vector quantization sense,

but are only a link connecting two distant data clouds. Cluster centers also have

small dotlike arrows pointing in no distinguishable direction, but the difference

is that the surrounding arrows are pointing in their direction, and not away from

them as is the case with interpolating units. The effects of increasing σ can be
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Figure 3: 44 × 44 SOM: Vector Field with (a) sigma = 2, (b) sigma = 7, (c)

sigma = 15, (d) component plane “stimulation costs”

observed in Figures 3(b), (c) for values 7 and 15, respectively. Higher σ results

in a smoothing effect, emphasizing the global structures over local ones, thus

this parameter has to be selected depending on what the user is interested in.

What can be learned from these plots is that the map is divided into two major

regions on top and bottom, and there is a transition area on the center right,

where very small arrows are located. The cluster centers are close to the top

and bottom edges. Figure 3(d) shows the component plane for the “stimulation

costs” dimension. The center right region corresponds to higher costs than in

its neighboring areas, and when compared to the vector field visualization, this

region is clearly identified as untypical, because it belongs to neither of the

two big clusters on top and bottom of the map. While the “produced gas”

component shows a more monotonic decrease on the map from top to bottom



in Figure 2(c), and the component plane for “stimulation costs” has a more

irregular distribution, both can be aggregated into the vector field visualization

that can be interpreted as having a coherent change of attributes from top to

bottom, with an irregularity in the center right region. The vector field technique

does not know which of the components are important or even beneficial, but

wells located in either location of the map can be identified as belonging to a

more or less typical region. In our case, the stimulation costs should be low and

the produced gas high. Thus, wells on the upper edge of the map combine the

best properties of low costs and high output, while the lower edge represents wells

with high costs and mediocre output. There is a transition in between, and also a

sharp border separating the two main regions, while the center right area holds

undesirable wells with both high costs and very low output. The information

about the coherency of the regions can not be obtained simply by looking on

the two component planes presented here, but since the vector field method

aggregates all the components, this visualization reveals the cluster structure,

while not placing borders where transitions from high to lower values occur

uniformly.

6 Conclusion

In this paper, we have introduced a novel method of displaying the cluster struc-

ture of Self-Organizing Maps. The gradient field method is distantly related to

the U-Matrix. It is based on the neighborhood kernel function and on aggrega-

tion of distances in the proximity of each map node. It requires a parameter σ

that determines the smoothness and the level of detail of the visualization. The

direction of the most similar region is pointed to by an arrow. Our experiments

have shown that this method is especially useful for maps with high numbers of

units and is intended for use in engineering applications, because experts from

these domains are generally accustomed to vector field plots. Usability studies

of our technique are ongoing with experts from the petroleum industry.
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