
A visualization technique for Self-Organizing Maps
with vector fields to obtain the cluster structure at

desired levels of detail

Georg Pölzlbauer
Department of Software Technology

Vienna University of Technology
Favoritenstr. 11-13, Vienna, Austria
E-mail:poelzlbauer@ifs.tuwien.ac.at

Michael Dittenbach
eCommerce Competence Center – ec3

Donau-City-Str. 1, Vienna, Austria
E-mail: michael.dittenbach@ec3.at

Andreas Rauber
Department of Software Technology

Vienna University of Technology
Favoritenstr. 11-13, Vienna, Austria

E-mail:rauber@ifs.tuwien.ac.at

Abstract— Self-Organizing Maps (SOMs) are a prominent tool
for exploratory data analysis. One core task within the utilization
of SOMs is the identification of the cluster structure on the map
for which several visualization methods have been proposed,
yet different application domains may require additional rep-
resentation of the cluster structure. In this paper, we propose
such a method based on pairwise distance calculation. It can be
plotted on top of the map lattice with arrows that point to the
closest cluster center. A parameter is provided that determines
the granularity of the clustering. We provide experimental results
and discuss the general applicability of our method, along with
a comparison to related techniques.

I. INTRODUCTION

The Self-Organizing Map (SOM) [3] is a is a popular
unsupervised neural network algorithm for exploratory data
analysis. It that has been used in a wide range of scientific
and industrial applications [5]. In the research community,
it has received much attention in the contexts of clustering,
data mining, topology preserving vector projection from high
dimensional input spaces (or feature spaces), and visualization.
The SOM algorithm is computationally extremely light [1].
Its projection can be visualized in numerous ways in order
to reveal the characteristics of the underlying input data or to
analyze the quality of the obtained mapping.

In this paper, we propose a novel visualization method that
is based upon vector field plotting. A concept exploited by
the vector field method is the neighborhood kernel, which
determines the mutual influence of nodes based on their
distance on the map lattice. This kernel function is typically
only used for training of the SOM. In our approach we also
use it to create visualizations according to global or local
views of the data clusters on the map. For each map node,
we compute a vector that points towards the closest cluster
center. We propose two methods of visualizing the results, a
gradient field plot, which can be seen analogous to flow and
gradient visualization, and we also derive a dual border-line
representation that emphasizes the cluster structure of the map.
The SOMs used for demonstration purposes and experiments
are trained on the well-known Phonetic data set, consisting

of 1962 samples in 20 dimensions that describe features of
phonemes recorded from human speech.

The rest of this paper is organized as follows. Section 2
describes several visualization techniques for SOMs and re-
lated work, most notably U-Matrix and clustering algorithms.
In Section 3, our novel vector field method is introduced,
along with a description of its properties and interpretations.
Section 4 presents experimental results, where influence of
neighborhood radius and map size are investigated. Finally,
Section 5 gives a short summary of the findings presented in
this paper.

II. RELATED WORK

Over the years, numerous visualization techniques have
been developed for the SOM. Most commonly, component
planes and the U-Matrix, which both take only the prototype
vectors and not the data vectors into account, are applied
to visualize the map. Component planes show projections of
individual dimensions of the codebook vectors. If performed
for each component, they are the most precise and complete
representation available. However, cluster borders cannot be
easily perceived, and high feature space dimensions result
in lots of plots, a problem that many visualization methods
in multivariate statistics, like scatterplots, suffer from. The
U-Matrix technique [10] is a single plot that shows cluster
borders according to dissimilarities between neighboring units.
The distance between each map unit and its neighbors is
computed and visualized on the map lattice, usually through
color coding.

Recently, an extension to the U-Matrix has been proposed,
the U*-Matrix [12], that relies on yet another visualization
method, the P-Matrix [11]. Other than the U-Matrix, it is
computed by taking both the prototype vectors and the data
vectors into account and is based on a concept of data density
around the model vectors. It is designed for use with Emergent
SOMs [10], which are SOMs trained with a high number of
map units compared to the number of data samples. Inter-
estingly, both the U*-Matrix and our novel method, among
other goals, aim at smoothing the fine-structured clusters

(a)

g

(b)

Fig. 1. 30 × 40 SOM: (a) U-Matrix, (b) Hit histogram

(a) (b) (c)

(d) (e) (f)

Fig. 2. Clustering the 30 × 40 SOM: (a–c) k-means (k = 4), the black
dots correspond to the map unit most similar to the cluster center; (d) Ward’s
Linkage Dendrogram for the top 30 merges, (e) Ward’s Linkage: 2 Clusters,
(f) Ward’s Linkage: 4 Clusters

that make the U-Matrix visualization for these large SOMs
less comprehensible, although the techniques are conceptually
totally different.

Methods that rely more heavily on the distribution of the
data on the map are hit histograms and Smoothed Data His-
tograms [6], and recently proposed methods that directly show
the density as graphs on top of the map [7]. Other visualization
techniques include projections of the SOM codebook with
concepts like PCA or Sammon’s Mapping. For an in-depth
discussion, see [13].

Hierarchical clustering [2], [9], [8] is related to our method
with respect to the possibility to parameterize the desired level
of detail. Our method also allows for fine-tuning to visually
emphasize either a more local or global view on the clustering
structure of the SOM.

Figure 1 shows hit histogram and U-Matrix visualizations
for a map consisting of 30×40 map units that has been trained
on the Phonetic data set. This SOM will serve as the main
example throughout this paper. Before training, zero-mean-
unit-variance scaling has been performed. It can be seen from

the U-Matrix that the upper part of the map is very coherent,
while it is difficult to observe a cluster structure from the
lower two thirds. The hit histogram reveals that this SOM is
almost evenly populated, because the number of map units
(1200) is close to the number of data samples (1962). The U-
Matrix is very helpful in providing an initial overview, but it
is limited to comparing dissimilarities only between adjacent
map nodes. We aim to extend this concept such that each map
unit is compared to an area in its vicinity.

Clustering of the SOM codebook itself [14] by either
partitional or hierarchical clustering with different numbers
of clusters along with a graphical representation of the results
can be very beneficial for understanding the map. Figure 2
shows results for clustering algorithms applied to the prototype
vectors of the SOM. Three results are depicted for k-means
performed with k = 4, along with the dendrogram and
partitioning at levels 2 and 4 obtained from Ward’s Linkage.
The k-means visualizations show considerably different results
due to the non-deterministic nature of this algorithm, which
sometimes converges to sub-optimal local minima. However,
some of the regions are within the same cluster in all of the
three figures which indicates a strong contingency in these
areas, such as in the upper left corner. The dendrogram shows
that according to this linkage metric, the choice of either 2 or 4
clusters seems plausible because of the large margin to the next
level of the hierarchy. In some cases, such as Ward’s Linkage
at level 4, the clusters contain non-adjacent areas of the map
resulting from folding of the map during the training process.
The borders obtained from the discussed clustering methods
vary considerably, and in crisp clustering, the borders do not
indicate whether the clusters are very distant or not. It is one
of the aims of the vector field method to visualize the extent
of similarity between regions, such that the coarse cluster
structure can be perceived as well as the fine differences.

Neighborhood kernel functions, which are an integral part
of any SOM training process, are incorporated in the vector
field method for visualization purposes. An example for an
application outside the learning process is the SOM Distor-
tion [4], that has been shown to be the energy function of the
SOM in certain cases.

III. SOM VISUALIZATION BY VECTOR FIELDS

In the previous section, we have hinted at some of the goals
of our visualization technique: To obtain a visualization that
allows fine-tuning between a local and global clustering, and
that is comparable to the U-Matrix family of methods, but
taking more than just the adjacent neighbors into account,
aggregating over a large region. Further, we wish to obtain
a pointer to the most similar units seen from each individual
map node. Drawing these arrows on top of the map lattice
results in a visualization analogous to gradient vector fields
where units are repelled from or attracted to each other.

We begin by defining the formal framework. A two-
dimensional SOM consists of a number M of map units ξi

arranged in an equidistant manner, where the index i lies
between 1 and M . Each of the map units is linked to a

model vector mi of input dimension N . Each of the mi

is linked to the output space by its position on the map.
To distinguish between feature space and map lattice, we
explicitly write ξi for the position vector of map unit that
represents prototype vector mi; the index i connects input
and output space representation. We denote the horizontal and
vertical coordinates of the map unit as ξu

i and ξv
i , respectively.

Thus, the distance between two prototype vectors mi and mj ,
or ξi and ξj , can be determined both in input and output space:

dI(mi, mj) = ||mi − mj ||I (1)

where ||.||I is a suitable distance metric for input space, and

dO(ξi, ξj) =
√

(ξu
i − ξu

j)2 + (ξv
i − ξv

j)2 (2)

is the Euclidean Distance between nodes ξi and ξj . Note
that dI can be used to calculate distances between prototype
vectors and input samples, while dO can only be used to
measure the distance between map nodes.

One of the key differences between the SOM and other
prototype-based unsupervised learning methods such as k-
means is the concept of adjacency in output space. The
usually two-dimensional topology of the map is fixed, and
close regions of the map are expected to represent similar
data samples. This concept of adjacency is introduced through
the neighborhood kernel that determines the influence of
the prototype vectors among each other. Our visualization
technique heavily depends on this kernel as a weighting factor,
which is a parameterized function that takes the distance
between two map units on the lattice as input and returns a
scaling factor that determines by which amount the map unit
is updated for each iteration during training. The parameter
the kernel depends on is the neighborhood radius σ which
controls the width of the kernel function, with high values
leading to flat stretched-out kernels and low values resulting
in sharply peaked functions. It only returns non-negative
real numbers and is monotonically decreasing. We denote
the kernel function as hσ(dO(ξi, ξj)). The Gaussian kernel,
resembling the well-known bell-shaped curve, is probably the
most frequently used kernel for the SOM:

hG
σ (dO) = exp

(
− d2

O

2σ

)
(3)

We will use the kernel function as a weighting factor that
allows us to compute the similarity in terms of input space
distance of map units that are close to each other on the map.
Our technique plots arrows for each map unit like in gradient
field visualizations. A unit’s arrow points to the region where
the most similar prototype vectors are located on the map. The
length of this arrow reflects the ratio of how much the area it
is pointing to is more similar to it than the opposite direction.

For each of the M nodes ξi, the two-dimensional vector ai

is computed. As with the coordinates of the map nodes, ai

can be decomposed into u and v components, denoted as au
i

and av
i , respectively. For both axes, we compute the amount

of dissimilarity along positive and negative directions. Our

method determines these vectors in a two-step process: First,
the computations for each map unit are performed separately
for positive and negative directions of axes u and v, and finally,
these components are aggregated by a weighting scheme to
gather the coordinates of ai.

In the following, we adopt the notation that the i-th vector
ai will be computed, and formulas requiring two input vectors,
i.e. ξi and ξj , always refer to the vector or number with
subscript i to be the one for which the computation is
performed. In the first step, we have to obtain the angle α
that identifies the direction of ξj seen from ξi on the map
lattice. This is defined in basic trigonometry as

α(ξi, ξj) = arctan(
ξv
j − ξv

i

ξu
j − ξu

i

) (4)

Since not only the angle, but also the distance between ξi

and ξj is of interest, this distance is projected onto the u and
v axes, after the neighborhood kernel has been applied to it
to weight the influence of distant units accordingly:

ωu(ξi, ξj) = cos(α(ξi, ξj)) · hσ(dO(ξi, ξj)) (5)

ωv(ξi, ξj) = sin(α(ξi, ξj)) · hσ(dO(ξi, ξj)) (6)

This results in a distribution of the neighborhood kernel values
among the two axes according to the position of ξi and ξj on
the map and serves as a weighting factor in the following steps.
To illustrate the meaning of ω, consider that the ξj is located
directly below ξi. ωu will then be zero, while ωv will absorb
the whole neighborhood kernel value, measured negatively.
The neighborhood kernel relies on the width parameter σ,
which determines the influence of far-away map units. The
importance of this parameter will be investigated in the next
section.

In the next step, the distance in input space is taken into
account. It is decomposed in positive and negative directions
for both axes for each pair of map units ξi, ξj , resulting in
splitting the dissimilarity of mj from mi into four quadrants:

δu
+(ξi, ξj) =

{
dI(mi, mj) · wu(ξi, ξj) if ωu(ξi, ξj) > 0
0 otherwise

(7)

δu
−(ξi, ξj) =

{ −dI(mi, mj) · wu(ξi, ξj) if ωu(ξi, ξj) < 0
0 otherwise

(8)
Here, δu

+ denotes the contribution of map unit ξj’s dissimilarity
in positive direction along u, and δu− in negative direction. The
definition of δv

+ and δv
− follows analogously. For example,

a map unit ξj that lies to the lower right of ξi results in
δu
−(ξi, ξj) = δv

+(ξi, ξj) = 0, and positive values for δu
+(ξi, ξj)

and δv
−(ξi, ξj) according to the distance in output space,

weighted by the neighborhood kernel, and also its distance
in feature space, which is directly measured by the factor dI .

For all of the four quadrants, the sum of contributions δ in
both directions is computed for each node ξi

ρu
+(ξi) =

∑
j=1...M,j �=i

δu
+(ξi, ξj) (9)

ρu
−(ξi) =

∑
j=1...M,j �=i

δu
−(ξi, ξj) (10)

Again, ρv
+ and ρv− are defined analogously. The variable

ρu
+(ξi) indicates how much mi is dissimilar from its neighbors

on the side in the positive u direction. In a gradient field
analogy, this value shows how much it is repelled from the
area on the right side. If, for example, ρu

+ is high compared
to ρu−, the arrow will ultimately be more likely to point to the
left, since a high value ρu

+ indicates that the model vectors in
positive u direction are strongly different from mi.

In the next step, the u and v coordinates of vector ai are
determined by aggregating negative and positive components.
This is performed by computing the ratio between ρ+ and ρ−.
But before this can be done, a non-trivial normalization has to
be performed, because units at the borders of the map lattice
would have components pointing outside of the map equal
to zero, which is not desired. The sums of the neighborhood
kernel weights ωi pointing in positive and negative directions
are

ωu
+(ξi) =

∑
j=1...M,j �=i

{
ωu(ξi, ξj) if ωu(ξi, ξj) > 0
0 otherwise

(11)

ωu
−(ξi) =

∑
j=1...M,j �=i

{ −ωu(ξi, ξj) if ωu(ξi, ξj) < 0
0 otherwise

(12)
At last, the u component of the gradient vector a is

computed as the normalized ratio

au
i =

ρu
−(ξi) · ωu

+(ξi) − ρu
+(ξi) · ωu

−(ξi)
ρu
+(ξi) + ρu−(ξi)

(13)

and analogously for the v direction. The weighting factor ωu
+

is multiplied with the component in the other direction to
negate the effects of units close to the border in which case the
sum of the neighborhood kernel is greater on one side. If this
normalization would be omitted, the vector a would be biased
towards pointing to the side where units are missing, always
preferring to point outside of the map where no dissimilarity
can come from. For map units in the center of the map’s u-
axis, where ωu

+ and ωu− are approximately equal, (13) can be
approximated by this simpler formula

au
i ≈ µ · ρu−(ξi) − ρu

+(ξi)
ρu
+(ξi) + ρu−(ξi)

(14)

where µ is a constant factor equal to
ωu

++ωu
−

2 and is approxi-
mately the same for all units in the middle of an axis.

The key calculations are performed in (9) and (10). Here,
we briefly discuss different scenarios of how ratios and pro-
portions of ρ+ and ρ− influence ai.

• If ρ+ and ρ−, i.e. negative and positive dissimilarity
contributions, are roughly equal, the resulting component
of ai will be close to zero, no matter how large their
absolute values are. The vector is equally repelled from
both sides, resulting in a state of equilibrium.

• If the ρ+ > ρ−, ai will point into the negative direction.
The reason for this is that the prototype vectors on the

negative side of the axis are more similar to the current
map unit than on the positive side.

• If one side dominates, but the second side still has a
high absolute value, the normalization performed in the
denominator of (13) decreases the length of the vector.

• Ultimately, the ratio of ρ+ and ρ− decides the length
of the arrow. If the dissimilarity is distributed to 50%
in each direction, it would be in an equilibrium state; in
the hypothetical example that the codebook vectors in the
positive direction are identical to mi, this would result in
the longest possible arrow in positive direction.

In the previous section, the 30 × 40 SOM trained on the
Phonetic data set has been introduced. Figure 3(a) shows the
gradient field visualization technique with a Gaussian kernel
with σ = 5. If compared to the U-Matrix in Figure 1(a), it
can be seen that the longest arrows are observed near the
cluster borders, pointing to the interior of their cluster and
away from these borders. It can be seen that adjacent units,
for which the arrow points in different directions, are clearly
along a cluster border. The lengths of the arrows indicate
the sharpness of a border. In the middle of these transitions,
arrows are sometimes drawn with almost no distinguishable
length or direction. The corresponding prototype vectors are
likely to be very far away from either cluster, and are referred
to as interpolating units (usually they do not represent any
data vectors in a vector quantization sense, but are only a link
connecting two distant data clouds). Cluster centers also have
small dot-like arrows pointing in no distinguishable direction,
but the difference is that the surrounding arrows are pointing
in their direction, and not away from them as is the case with
interpolating units.

Another property of this visualization is that the units on
the edges of the map never point outside of it, which is desired
and stems from the normalization performed in 13.

The two-dimensional vector representation of ai allows for
a similar visualization with little modification. Instead of the
arrows, the orthogonal hyperplane, which in this case is again
a line, can be computed and visualized, resulting in the so-
called border-line visualization. So instead of plotting arrows
pointing towards the closest cluster center, the borders that
separate adjacent clusters can be shown. The length of the
arrow is maintained and corresponds to the length of the
border. The emphasis of this dual representation is stressing
cluster borders, while information on directions is omitted. The
result is depicted in Figure 3(b), where the most likely clusters
are indicated by markers. Interestingly, these clusters represent
mostly coherent regions of phonemes, for example, the region
labeled with “5” is occupied mainly by the phoneme “S”, and
the vowel “I” is mapped to the lower half of the right border
(indicated as “8”).

Computationally, the method is more expensive than the U-
Matrix. It relies on pairwise distance calculation of all the map
units, resulting in O(M2) complexity, compared to O(M) for
the U-Matrix. In our experience, this has not been a problem,
since the number of map units in the maps we use lies in the
magnitude of 1000, which is computationally reasonable with

(a)

1

2

3

4

 5

6

7

8

9

(b)

Fig. 3. 30 × 40 SOM trained on Phonetic data, depicted with Gaussian
neighborhood kernel and width σ = 5: (a) Gradient field representation that
shows directed similarities, (b) Dual border-line representation that shows
cluster borders, with indicators for likely cluster centers

modern computers, and visualization of much larger vector
fields is limited by displaying capabilities of monitors and
printers anyway. For reducing the number of distance calcula-
tions, the cut-off Gaussian kernel function could be considered.
Since the Gaussian kernel is exponentially decreasing with
higher distance, distance calculations could be omitted outside
a certain radius due to negligible influence on the overall
result, leading to better efficiency.

IV. EXPERIMENTS

The empirical findings from experiments with the vector
field method are presented in this section. We show the effects
of applying it to SOMs of varying size, but the same underly-
ing data set. After that, we investigate how the neighborhood
kernel parameter σ influences the results. Finally, we compare
the vector field method to related techniques that have been
described in Section II. All experiments are performed with

(a) (b)

Fig. 4. 13×17 SOM trained on Phonetic data (a) Gradient field representation
with parameter σ = 2 and Gaussian kernel, (b) U-Matrix

the Phonetic data set.
Our first experiment concerns the number of codebook

vectors, i.e. the size of the map. The smaller version of the
SOM consists of 13× 17 units, and the larger one of 30× 40
units. In the former case, the number of data vectors (1962)
is much larger than the number of map units (221), thus the
vector quantization properties of the SOM are emphasized.
The visualizations for the smaller version are depicted in
Figure 4. The U-Matrix and vector field plots for the larger
map are shown in Figures 1(a) and 4(a), respectively. In the
smaller SOM the gap between the upper part and the lower
part of the map can clearly be distinguished, as in the bigger
SOM. Also, the lower part is also clearly more heterogeneous.
However, the larger version of the SOM gives more insight
into the structure of the data. Transitions and gradual changes
in directions and length can be distinguished more easily at
this higher granularity.

Next, we examine the effects of tuning parameter σ. In
Figures 3 and 5, the large Phonetic SOM is visualized with
three different values for σ. Figures 5(a), (b) show the two
methods for σ = 1. The visualization with this width is the
one most closely related to the U-Matrix technique, since only
direct neighbors are emphasized, while the influence of slightly
more distant units is neglected. Of all the visualizations shown
here, these two are chiseled the most and are least smooth.
The frequent changes in direction of neighboring arrows is
due to the very local nature of this kernel. In Figure 3
the visualization is shown for σ = 5, where the increased
neighborhood radius produces a smoothing effect over the
vector field. Here, changes in direction between close arrows
can be better distinguished and result in a visually more
comprehensible picture. The set of arrows is perceived as a
whole and as less chaotic. It gives the impression of visualizing
a somewhat more global structure. Finally, the visualization for
σ = 15 is depicted in Figures 5(c) and (d), where only big
clusters can be distinguished. The effect of the width parameter
σ can be summarized as follows: For a value of 1, the cluster
representation is very similar to the U-Matrix, which is the
method relying mostly on local differences. With higher values

(a) (b)

(c) (d)

Fig. 5. 30×40 SOM trained on Phonetic data (a) Gradient field representation
with σ = 1, (b) Border-line representation with σ = 1, (e) Gradient field
representation with σ = 15, (f) Border-line representation with σ = 15

of σ, the kinds of perceived cluster structures gradually shift
from local to global. The choice of σ has a very deep impact
on this visualization method and is dependent on the map size.
Further experiments have shown that good choices are close
to one tenth of the number of map units in the axis of the
map lattice with fewer map units, but it also depends on the
desired level of granularity.

Finally, we compare the vector field method to clustering
methods performed on top of the SOM. In Figure 2, three
results for k-means with k = 4 are given, along with results for
Ward’s Linkage at levels 2 and 4. The border representation in
Figure 3(b) shows the most probable cluster centers obtained
by the border-line method. The border outlines are strongest
where k-means and Ward’s Linkage also have bordering
clusters. Higher choices of σ correspond to clustering with
fewer clusters, which can be seen by comparing Figure 2(e)
with Figure 5(d) for an example of coarse clustering. What
the vector field method can not achieve, however, is iden-
tifying similar regions that are outside of the range of the
neighborhood radius, i.e. map units that are close in input
space, but mapped to far-away areas on the map. For example,
the labels “3” and “9” in Figure 3(b) are merged in many of
the clustering examples, for example Figure 2(c). The reason
for this is that clustering of the codebook does not take the
neighborhood on the map into account, and frequently finds

clusters that are not adjacent, while the vector field method
aims at finding dissimilar neighboring regions. The phonemes
mapped to region “3” are mostly “A”s, the area labeled with
“9” is occupied primarily by “U”s, both vowels, with cluster
“4” in between populated by “N”s.

V. CONCLUSION

In this paper, we have proposed and demonstrated the
vector field method of visualizing the cluster structure of
Self-Organizing Maps. Our method is distantly related to
hierarchical clustering methods and the U-Matrix. It is based
on the neighborhood kernel function and on aggregation of
distances in the proximity of each codebook vector. It requires
a parameter σ that determines the smoothness and the level of
detail of the visualization. There are two choices for depicting
it, either as gradient field where arrows point towards the
closest cluster center, or as border-line visualization that indi-
cates how grave a transition is between neighboring regions.
Our experiments have shown that this method is especially
useful for maps with high numbers of units, and that the
neighborhood radius σ has a major impact on the outcome.

ACKNOWLEDGEMENTS

Part of this work was supported by the European Union in
the IST 6. Framework Program, MUSCLE NoE on Multimedia
Understanding through Semantics, Computation and Learning,
contract 507752.

REFERENCES

[1] E. Cuadros-Vargas, R. Francelin Romero, and K. Obermayer. Speed-
ing up algorithms of SOM Family for Large and High Dimensional
Databases. In Workshop on Self organizing Maps (WSOM’03), 2003.

[2] M. Dittenbach, D. Merkl, and A. Rauber. The growing hierarchical self-
organizing map. In Intl. Joint Conf. on Neural Networks (IJCNN’00),
2000.

[3] T. Kohonen. Self-Organizing Maps, 3rd edition. Springer, 2001.
[4] J. Lampinen and E. Oja. Clustering properties of hierarchical self-

organizing maps. Journal of Mathematical Imaging and Vision, 2(2–
3):261–272, 1992.

[5] M. Oja, S. Kaski, and T. Kohonen. Bibliography of self-organizing
map (SOM) papers: 1998-2001 addendum. Neural Computing Surveys,
3:1–156, 2001.

[6] E. Pampalk, A. Rauber, and D. Merkl. Using smoothed data histograms
for cluster visualization in self-organizing maps. In Intl. Conf. on
Artifical Neural Networks (ICANN’02), 2002.

[7] G. Pölzlbauer, A. Rauber, and M. Dittenbach. Advanced visualization
techniques for self-organizing maps with graph-based methods. In Intl.
Symp. on Neural Networks (ISSN’05), 2005.

[8] A. Rauber, D. Merkl, and M. Dittenbach. The growing hierarchical self-
organizing map: Exploratory analysis of high-dimensional data. IEEE
Transactions on Neural Networks, 13(6):1331–1341, 2002.

[9] A. Rauber, E. Pampalk, and J. Paralic. Empirical evaluation of clustering
algorithms. Journal of Information and Organizational Sciences (JIOS),
24(2):195–209, 2000.

[10] A. Ultsch. Data mining and knowledge discovery with emergent self-
organizing feature maps for multivariate time series. In Kohonen Maps.
Elsevier, 1999.

[11] A. Ultsch. Maps for the visualization of high-dimensional data spaces.
In Workshop on Self Organizing Maps (WSOM’03), 2003.

[12] A. Ultsch. U*-matrix: a tool to visualize clusters in high dimensional
data. Technical report, Dept. of Mathematics and Computer Science,
Philipps-University Marburg, 2003.

[13] J. Vesanto. Data Exploration Process Based on the Self-Organizing
Map. PhD thesis, Helsinki University of Technology, 2002.

[14] J. Vesanto and E. Alhoniemi. Clustering of the self-organizing map.
IEEE Transactions on Neural Networks, 11(3):586–600, 2000.

