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ABSTRACT
With increasing amounts of audio being stored and dis-
tributed electronically, intuitive and efficient access to
large music collections is becoming crucial. To this end
we are developing algorithms for audio feature extraction,
allowing to compute acoustic similarity between pieces of
music, as well as tools utilizing this information to sup-
port retrieval of as well as navigation in music reposito-
ries. This paper provides an overview of our research ac-
tivities in the domain of music IR. It presents the Rhythm
Patterns feature set and demonstrates its suitability for
music genre recognition while also presenting an acous-
tic interpretation by re-synthesizing sound from that fea-
ture set. Furthermore, it outlines the principles of organiz-
ing digital music repositories using Self-Organizing Maps
and presents the novel PlaySOM interface and the Pocket-
SOMPlayer for mobile devices, both providing intuitively
explorable music information spaces.

Keywords: content-based audio retrieval, audio feature
extraction, music genre classification, Self-Organizing
Map, music repository organization, clustering, naviga-
tion, user interfaces, mobile devices

1 INTRODUCTION
The increasing popularity and size of digital music repos-
itories drives the need for advanced methods to organize
those archives for both private as well as commercial use.

The ability to offer users information about songs
or artists that are similar to the ones they were actually
searching for, holds a great market potential as recom-
mendation engines have proven. The linking of similar
products to results of customer searches bears fruits, even
when it is not based on the similarity of products them-
selves, but on the buying behavior of other customers, like
Amazon.com has impressively shown. Therefore com-
mercial music vendors could particularly profit from or-
ganization of music archives based on sound-similarity.

It is an intrinsic need for them to offer high-level user
interfaces to their repositories to satisfy their customers’
needs. Search methods based on track similarity, such
as query-by-example, offer alternatives to keyword based
searches that avoid the downside of having to rely on man-
ually assigned metadata. A system that offers searches
that rely on metadata only, can never meet these more so-

phisticated needs.
The heart of every audio-content-based music retrieval

system is the audio feature extractor. Its purpose is to de-
rive content descriptors from the audio signal that repre-
sent semantics of the musical content. Researchers in the
domain of music information retrieval developed a range
of different audio descriptors. Each of them may perform
different depending on the specific retrieval task. In any
case the result of the feature extractor is fundamental for
tasks like similarity-based retrieval, automatic organiza-
tion or classification of music.

In our work we focus on the Rhythm Patterns feature
set and show its applications in genre classification tasks
as well as automatic organization of large music archives
using Self-Organizing Maps (SOMs).

A question frequently raised, particularly for non-
standard feature sets, is on the cognitive characteristics of
the extracted numbers. Thus, we present an acoustical re-
synthesis of the feature set. With the audible feature set,
one can evaluate the effectiveness of the feature extraction
through asking a human for the same task as the computer,
working only with the substantially reduced information
from the aggregated descriptor, e.g.: Can you discrimi-
nate musical genres provided only with the information
from the feature set?

The motivations for organizing private music collec-
tions are most likely fun and entertainment by overcoming
the limitations of conventional media players. Similarity-
based organization of music archives allows users to ex-
plore pieces of music that are similar to ones they know
and like. Moreover, it provides a clear and easy naviga-
tion for music collections the users are familiar with and
allows users to abstract from manually assigned genre in-
formation which is, at least in private collections, often
inappropriate or simply missing.

Concerning the access to rapidly growing and chang-
ing collections, the similarity-based organization may
prove much more satisfying than conventional search
methods because users do not have to know new songs by
name. This problem gets more important with the grow-
ing size of a collection. Browsing a few hundred songs
a user knows well might not be much of a problem using
metadata, but navigating through thousands of songs one
is not familiar with may lead to restrictions, preventing the
user from gaining access to the majority of songs.

We present two intuitive interfaces for accessing mu-



sic collections. The music tracks are organized spatially
on a two-dimensional map display based on the similar-
ity of the extracted sound features. We will show how this
map metaphor is used to provide convenient access to mu-
sic repositories and how such an organization of songs can
be used for playlist generation and interactive exploration
for both desktop applications and mobile devices.

The remainder of this paper is structured as follows.
Section 2 briefly reviews related work. Section 3 ex-
plains the technical background of the audio content de-
scriptors and mentions the process of re-synthesizing fea-
tures to obtain an audible feature set. In Section 4 we
report the performance of our approach in music genre
classification. Section 5 gives a brief introduction to Self-
Organizing Maps followed by a description of the results
of automatic organization of a music collection. It further-
more describes the novel PlaySOM and PocketSOMPlayer
user interfaces in detail. Finally, Section 6 provides some
conclusions.

2 RELATED WORK
Content-based music analysis and its applications like
similarity-based search and organization experienced a
major boost in the late 1990’s when mature techniques for
the description of audio content became available. From
that time on a range of researchers has been working on
different methods for content-based audio retrieval. Al-
most as manifold as the feature computation approaches
are their subsequent applications.

One of the first works to incorporate psycho-acoustic
modeling into an audio feature extraction process and
using the SOM for organizing audio data is reported
in (Feiten and Günzel, 1994). A first approach to classify
audio recordings into speech, music, and environmental
sounds is presented in (Zhang and Zhong, 1995). Another
work on classification of sounds into different categories
is (Wold et al., 1996), applying loudness, pitch, bright-
ness, bandwidth, and harmonicity features.

(Foote, 1997) presents a search engine which retrieves
audio from a database based on similarity to a query
sound. An early work on musical style recognition is
(Dannenberg et al., 1997), which investigates various ma-
chine learning techniques applied for building style clas-
sifiers.

(Logan and Salomon, 2001) perform content-based
audio retrieval based on K-Means clustering of MFCC
features and define a novel distance measure for compari-
son of descriptors. The MARSYAS system (Tzanetakis and
Cook, 2000, 2002) uses a wide range of musical surface
features to organize music into different genre categories
using a selection of classification algorithms.

(Pampalk et al., 2003) conduct a comparison of sev-
eral content-based audio descriptors on both small and
large audio databases, including a feature set called Fluc-
tuation Patterns, similar to the Rhythm Patterns we use in
our work.

A system performing trajectory matching using SOMs
and MFCCs is presented in (Spevak and Favreau, 2002).

Regarding intelligent playlist generation, an ex-
ploratory study using an audio similarity measure to cre-

ate a trajectory through a graph of music tracks is reported
in (Logan, 2002). Furthermore, many applications can be
found on the Internet that are not described in scientific
literature. An implementation of a map-like playlist in-
terface is the Synapse Media Player1. This player tracks
the user’s listening behavior and generates appropriate
playlists based on previous listening sessions and addi-
tionally offers a map interface for manually arranging and
linking pieces of music for an even more sophisticated
playlist generation. Another example of players offering
automatic playlist generation is the Intelligent Multime-
dia Management System2 which is based on tracking of
the user’s listening habits and recommends personalized
playlists based on listening behavior as well as acoustic
properties like BPM or a song’s frequency spectrum.

A novel interface particuarly developed for small-
screen devices, was presented in (Vignoli et al., 2004).
This artist map interface clusters pieces of audio based
on content features as well as metadata attributes using a
a spring model algorithm. The need for advanced visual-
ization to support selection of audio tracks in ever larger
audio collectionis also addressed in (Torrens et al., 2004),
where different representation techniques grouping audio
by metadata attributes using Tree-Maps and a disc visual-
ization are presented.

3 AUDIO FEATURE EXTRACTION
Audio Feature Extraction is at the core of every query-by-
similarity, music organization or classification task. Its
output is crucial for the subsequently applied methods.
The goal of Audio Feature Extraction is to retrieve se-
mantics from audio, that are able to characterize different
styles of audio. While drastically reducing the amount of
information from the plain audio wave data, feature ex-
traction has to derive sufficient information suitable for
describing the content of the audio. It is a great challenge
to define what audio similarity really is. Even human’s
have great difficulties in agreeing upon various genre tax-
onomies or describing what makes two pieces of music
similar. Thus, a general definition of sound similarity is
not possible. Audio Feature Extraction intends to capture
what a human listener hears when listening to music. Our
approaches incorporate numerous psycho-acoustic trans-
formation steps which are based on studies of the hu-
man auditory system. Still, the computer system is no
equivalence to the human perception, nevertheless, the al-
gorithms prove to be well suited for tasks such as auto-
matic genre classification, similarity queries, organization
of music archives, etc.

3.1 Rhythm Patterns

One of our main contributions to research in Music Infor-
mation Retrieval is the Rhythm Patterns feature set, calcu-
lated from analysis of the spectral audio data, first intro-
duced in (Rauber and Frühwirth, 2001), and later drasti-
cally enhanced by incorporating psycho-acoustic transfor-
mations (Rauber et al., 2002). The algorithm for extract-

1www.synapseai.com
2www.luminal.org



ing the Rhythm Patterns is a two stage process: First, from
the spectral data, the specific loudness sensation accord-
ing to the human auditory system is computed on various
frequency regions, incorporating several psycho-acoustic
phenomena. Second, the specific loudness sensation val-
ues are transformed into a time-invariant domain resulting
in a representation of modulation amplitudes per modula-
tion frequency (i.e. kind of energy or rhythm variation) on
several frequency regions.

We will give an outline of all the steps involved in the
feature extraction process. An overview is provided in
Figure 1, a detailed description of a previous version of
the algorithm was presented in (Rauber et al., 2003).

The algorithm processes audio tracks in standard dig-
ital PCM format with 44.1 kHz sampling frequency as in-
put. Audio compressed with e.g. the MP3 format will
be decoded in a preprocessing step. Each audio track is
segmented into pieces of 6 seconds length. A short time
Fast Fourier Transform (STFT) is applied to retrieve the
energy per frequency band, i.e. the spectrum, every 11.5
ms, resulting in a spectrogram of the 6 second segment.
To reduce the amount of data, the frequency bands of the
spectrogram are summed up to 24 so-called critical bands,
according to the Bark scale (Zwicker and Fastl, 1999).
A further psycho-acoustical phenomenon incorporated is
spectral masking, i.e. the occlusion of one sound by an-
other sound. This phenomenon is coped with a spread-
ing function. Successively, the data is transformed into
the logarithmic decibel scale, equal-loudness curves are
accounted for, resulting in a transformation into the unit
Phon and afterwards into the unit Sone, reflecting the spe-
cific loudness sensation of the human auditory system.
At this point, we retrieved the specific loudness sensation
over time on 24 critical frequency bands. Still, we have
a time-dependent signal, although reduced to 511 sample
values at the time axis due to the window size in the STFT.

In order to obtain a time-independent representation
of the data, another Fourier Transform is applied. The
idea is to regard the varying energy on a frequency band
of the spectrogram as a modulation of the amplitude over
time. With the second Fourier Transform, the spectrum of
this modulation signal is retrieved. It is a time-invariant
signal that denotes the modulation frequency on the ab-
scissa, and the magnitude of modulation on the ordinate.
A high amplitude at the modulation frequency of 2 Hz
for example indicates a strong rhythm at 120 bpm (beats
per minute = modulation frequency * 60). The notion of
rhythm ends above 15 Hz, where the sensation of rough-
ness starts and goes up to 150 Hz, the limit where only
three separately audible tones are perceivable. The algo-
rithm captures modulation frequencies up to 43 Hz, how-
ever we cut off the information above a modulation fre-
quency of 10 Hz. Subsequently, modulation amplitudes in
that range are weighted according to a function of human
sensation depending on modulation frequency, accentuat-
ing values around 4 Hz, followed by the application of a
gradient filter and gaussian smoothing.

The final feature vector contains a time-invariant rep-
resentation of fluctuation strength according to human
sensation between 0.168 Hz and 10 Hz of modulation fre-
quency on 24 critical frequency band regions. A feature

Figure 1: Audio feature extraction block diagram.

vector for each 6 second segment of a piece of music is
calculated. In order to summarize the characteristics of an
entire piece of music we simply average the feature vec-
tors derived from its segments by computing the median.
This approach extracts suitable characteristics of semantic
structure for a given piece of music to be used for music
similarity tasks.

3.2 Re-Synthesizing the Features

it is desirable to obtain a notion of the content of the fea-
tures, in order to be able to assess the quality of the feature
set and its applicability to a specific task. A way to give
insight to the feature set is to make it audible. Apart from
giving insight into the features, it provides a possibility
for monitoring the feature extraction process, and addi-
tionally, it enables the monitoring person to check if he
or she as a human would be able to discriminate between
classes (such as genres) provided only with feature data.

We thus re-synthesize an audio signal from the
Rhythm Patterns representation Lidy et al. (2005). An In-
verse Fourier Transform is used for the synthesis of the
modulation signal. As there is no exact information about
the original signal, we take the centre frequency fi of that
critical band, i.e.

fi = ci−1 + (ci − ci−1)/2 (1)

as the frequency of the base signal of critical band i, where
ci is the upper band limit of critical band i, c0 being 0. The
minimum modulation frequency is 0.168 Hz, so we will



have to re-synthesize a sound of 6 seconds length to ac-
commodate 1 period of the lowest modulation frequency.

The output is the modulation signal of one frequency
band, mi[t], t∈N . This signal can now be used to mod-
ulate the centre frequency of the critical band, fi. We,
however, do not know about the original amplitude of the
signal on that band. We utilize the DC component of the
modulation signal, which in general is >0, as the base am-
plitude Ai of the band signal. Therewith, we can modulate
the band centre frequency fi with the modulation signal.
The same process is accomplished on all 24 critical fre-
quency bands and the modulated signals are heterodyned,
as in Eq. 2.

s[t] =

24∑

i=1

Ai × cos(2πfit) × mi[t] (2)

The resulting signal s[t] reflects the structure of the orig-
inal piece of audio and resembles fluctuations within the
critical bands as captured by the feature extraction pro-
cess.

First evaluations showed, that the rhythmic structure
of audio pieces can be recognized in the re-synthesized
signal. Besides acoustically verifying the sound and com-
paring the rhythm of the re-synthesized sound with that of
the original music through listening, the rhythmic struc-
ture can also be seen in the visualization of the waveform.
Music where strong beats do not play an important role
(e.g. classical music) can clearly be discriminated from
other genres. When a specific rhythm in the form of drums
and beats differs by definition from one genre to another
genre (e.g. Hip-Hop versus Reggae versus Drum’n’Bass),
the genres can easily be distinguished in the acoustical
representation of the feature vectors.

3.3 Statistical Spectrum Descriptor

The Statistical Spectrum Descriptor (SSD) is computed
during calculation of the Rhythm Patterns features. The
spectrum which is available after the transformation into
Bark scale and the appliance of several psycho-acoustic
transformations represents rhythmic characteristics within
the specific frequency range of the 24 critical bands. Ac-
cording to the occurence of beats or other rhythmic varia-
tion of energy on a specific band, statistical measures are
able to describe the audio content. We intend to describe
the rhythmic content of a piece of audio by computing the
following statistical moments on the values of each of the
24 critical bands: mean, median, variance, skewness, kur-
tosis, min- and max-value. The Statistical Spectrum De-
scriptor (SSD) represents a smaller descriptor for rhyth-
mic audio content and can be used as a single feature vec-
tor or in combination with other descriptors in subsequent
tasks.

3.4 Rhythm Histogram Features

The Rhythm Histogram features are a descriptor for gen-
eral rhythmics in a piece of audio. Contrary to the Rhythm
Patterns and the Statistical Spectrum Descriptor, informa-
tion is not stored per critical band. Rather, the magnitudes
of each modulation frequency bin of all 24 critical bands

are summed up, to form a histogram of “rhythmic energy”
per modulation frequency. The histogram contains 60 bins
which reflect modulation frequency between 0.168 and 10
Hz. For a given piece of audio, the Rhythm Histogram
feature set is calculated by taking the median of the his-
tograms of every 6 second segment processed.

4 MUSIC CLASSIFICATION
Audio descriptors derived in the Feature Extraction pro-
cess build the basis for a range of different retrieval
tasks. Besides being applicable directly in similarity
based searches, audio descriptors are often deployed in
artificial intelligence approaches. In that domain, the Mu-
sic Information Retrieval approaches make use of both su-
pervised and unsupervised machine learning techniques.
While unsupervised learning approaches are valuable in
automatic organization of music archives (see Section 5),
supervised machine learning techniques are applied for
automatic classification tasks. From a number of exam-
ples the computer learns how to classify music pieces into
a number of previously defined classes. The taxonomy
can be defined according to specific task requirements. In
our work we performed classification into musical genres.

The advantage of music classification through super-
vised machine learning is, that - provided that annotated
ground-truth data exists - the result of the learning process
can be directly measured in terms of accuracy, precision
and recall percentage values. Direct evaluation is not pos-
sible in unsupervised learning tasks, where the result of
automatic organization is of subjective nature.

In this section we present evaluation results of our al-
gorithms’ performance in music genre classification task.
In Section 4.1 we explain the methods we used for music
classification. Section 4.2 describes the music collections
involved in the genre classification experiments. Section
4.3 presents the results and improvements we made during
experiments with music genre classification.

4.1 Classification Method

We utilize the Weka Machine Learning Software3 as the
environment for our genre classification task. The out-
put from our Feature Extractor is converted to the Weka
data format. As the machine learning algorithm we chose
Support Vector Machines with pairwise classification. In
order to get an assessment of the generalization of the ap-
proach we use a 10-fold cross validation for each experi-
ment: The music collection is divided into 10 subsets, in
each of the 10 iterations a different subset is chosen for
testing and the other 90 % of the data is used for the train-
ing process. The cross validation result is the average of
the 10 runs.

4.2 Music Collections

We conduct our experiments on three diferent music col-
lections, which gives us an indication about the applica-
bility of the approach do various different music repos-
itories and thus different musical styles. The first audio

3http://www.cs.waikato.ac.nz/ml/weka/



collection (abbreviation GTZAN) is the one that was used
by George Tzanetakis in previous experiments, presented
in (Tzanetakis, 2002). It consists of 1000 pieces of audio
equi-distributed among 10 popular music genres. The sec-
ond collection is the one used in the ISMIR 2004 Rhythm
classification contest (ISMIR2004contest), which consists
of 698 excerpts of 8 genres from ballroom dance music.
The third collection is from the ISMIR 2004 Genre clas-
sification contest (ISMIR2004contest) and contains 1458
complete songs, the pieces being unequally distributed
over 6 genres. For details about the genres involved in
each collection and the numbers of documents in each
class we refer to Table 1.

Table 1: Music collections used in genre classification ex-
periments, with genres and number of titles per genre.

GTZAN 1000 ISMIRrhythm 698 ISMIRgenre 1458
blues 100 ChaChaCha 111 classical 640
classical 100 Jive 60 electronic 229
country 100 Quickstep 82 jazz blues 52
disco 100 Rumba 98 metal punk 90
hiphop 100 Samba 86 rock pop 203
jazz 100 SlowWaltz 110 world 244
metal 100 Tango 86
pop 100 VienneseWaltz 65
reggae 100
rock 100

4.3 Genre Classification Results

Table 2 presents results of a range of music classification
experiments. We state accuracy values on each of the three
music collections, i.e. the percentage of music pieces as-
signed to the correct genre. We can see that the assign-
ment among 10 genres (GTZAN collection) generally per-
forms worse than among the 6 genres of the ISMIRgenre
collection. However, the ISMIRrhythm collection deliv-
ered in all experiments the best results, which is a great
indication that our feature extractor are well-suited to dis-
tinguish among different kinds of rhythm. The first row
in Table 2 denotes accuracy measures from the Rhythm
Patterns feature set as it was implemented at the time of
the ISMIR 2004 contest (RP-original). After conducting
a wide range of experiments we found a number of op-
timizations, which led to an improvement of the Rhythm
Patterns algorithm (RP-improved). Specifically, the im-
plementation of spectral masking in the feature extraction
process has been identified to potentially pose issues to
the audio content description, at least regarding specific
types of music. The psycho-acoustic transformations in-
volved in the audio feature extraction have been evaluated
as crucial for the audio description tasks.

We separately evaluated the performance of the Sta-
tistical Spectrum Descriptor and the Rhythm Histogram,
which can be obtained from the rows denoted SSD and
RH. Subsequently, we investigated the performance of
combinations of two or all three feature sets in the ma-
chine learning task. Those experiment results are given
in the remaining rows of table 2. The final experiment
reports an achievement of between 72 % and 84 % clas-
sification accuracy, which is an improvement of between
2.5 and 16.4 percentage points over the previous results of

Table 2: Results from music genre classification on 3 mu-
sic collections with different feature sets and combina-
tions. Accuracy (%).

Feature set GTZAN ISMIRrhythm ISMIRgenre
RP-original 58.5 81.7 71.0
RP-improved 64.4 82.8 75.0
SSD 72.7 54.7 78.5
RH 44.1 79.9 63.2
RP+SSD 72.3 83.5 80.3
RP+RH 64.2 83.7 75.5
SSD+RH 74.9 82.7 79.6
RP+SSD+RH 72.4 84.2 80.0

the original Rhythm Patterns feature set.
Apart from the classification task, this approach has

also been evaluated for pure similarity-based search, eval-
uating the local stability of the feature set over different 30
sec. segments as well as over different collections, yield-
ing a recall in the range of 50-70% within the top-10 for
different segments Leitich and Rauber (2004).

5 APPLICATIONS AND USER
INTERFACES

This section presents applications to organize digital mu-
sic collections based on feature descriptions for audio data
like the one presented in the previous sections. There-
fore the application of the SOM clustering algorithm for
mapping music on a two-dimensional map is described
and two novel user interfaces are introduced. The exper-
imental results described were obtained by clustering the
collection of the ISMIR 2004 Genre classification contest
described in Section 4.2, using the improved Rhythm Pat-
terns feature set.

5.1 Self-Organizing Map

A range of clustering algorithms can be employed to orga-
nize audio by sound similarity based on different feature
sets. One model that is particularly suitable, is the Self-
Organizing Map (SOM), an unsupervised neural network
that provides a mapping from a high-dimensional input
space to usually two-dimensional output space (Kohonen,
1982, 2001). During the mapping process topological re-
lations are preserved as faithfully as possible. A SOM
consists of a set of i units arranged in a two-dimensional
grid, each attached to a weight vector mi ∈ <n. Ele-
ments from the high-dimensional input space, referred to
as input vectors x ∈ <n, are presented to the SOM and
the activation of each unit for the presented input vector is
calculated using an activation function (the Euclidean dis-
tance is a very common activation function). In the next
step the weight vector of the unit showing the highest ac-
tivation (i.e. the smallest Euclidean distance) is selected
as the ‘winner’ and is modified as to more closely resem-
ble the presented input vector. Pragmatically speaking,
the weight vector of the winner is moved towards the pre-
sented input signal by a certain fraction of the Euclidean
distance as indicated by a time-decreasing learning rate α.
Consequently, the next time the same input signal is pre-



(a) Maximum fluctuation strength. (b) Bass.

(c) Non-aggressiveness. (d) Low frequencies dominant.

Figure 2: Different visualizations of Rhythm Patterns in the PlaySOM interface.

sented, this unit’s activation will be even higher. Further-
more, the weight vectors of units neighboring the winner,
as described by a time-decreasing neighborhood function,
are modified accordingly, yet to a smaller amount as com-
pared to the winner. The result of this learning procedure
is a topologically ordered mapping of the presented in-
put signals in two-dimensional space. Accordingly, simi-
lar input data are mapped onto neighboring regions of the
map. A SOM can be trained using all kinds of feature
sets, however, in our experiments Rhythm Patterns is the
obvious choice.

5.2 SOM Visualizations

Due to the fact that the cluster structure of a trained SOM
is not inherently visible, several visualization techniques
have been developed, the most prominent being the U-
Matrix (Ultsch and Siemon, 1990).

Another useful method that provides insight into the
structure of a trained SOM is the visualization of com-
ponent planes, i.e. individual features. Only a sin-
gle component of the weight vectors is used to color-
code the map representation. This information can also
be overlayed onto other visualizations using Gradient
Fields (Pölzlbauer et al., 2005). In other words, the values

of a specific component of the weight vectors are mapped
onto a color palette to paint units accordingly allowing to
identify regions that are dominated by a specific feature.

Since single component planes do not directly trans-
late into psychoacoustic sensation noticed by the human
ear, the Rhythm Patterns uses four combinations of com-
ponent planes according to psychoacoustic characteris-
tics (Pampalk et al., 2002). More precisely, maximum
fluctuation strength evaluates to the maximum value of
all vector components representing music dominated by
strong beats. bass denotes the aggregation of the values
in the lowest two critical bands with a modulation fre-
quency higher than 1 Hz indicating music with bass beats
faster than 60 beats per minute. Non-aggressiveness takes
into account values with a modulation frequency lower
than 0.5 Hz of all critical bands except the lowest two.
Hence, this feature indicates rather calm songs with slow
rhythms. Finally, the ratio of the five lowest and highest
critical bands measures in how far low frequencies domi-
nate. These characteristics can be used to color the result-
ing map, providing weather-chart kind of visualizations of
the music located in different parts of the map. Figure 2
shows examples for all four kinds of visualizations.



(a) Rectangle selection without preserving track order. (b) Trajectory selection preserving track order.

Figure 3: The PlaySOM interface, its selection models and playlist contents.

5.3 SOM-Based User Interfaces

Two interfaces to digital music collections are described
in this section, both are based on the Self-Organizing Map
clustering algorithm and allow interactive exploration of
music collections according to feature similarity of audio
tracks. The PlaySOM and PocketSOMPlayer applications
both enable users to explore and browse music collections,
select tracks, export playlists as well as listen to the se-
lected songs. The PlaySOM is a full interface, offering
different selection models, a range of visualizations, ad-
vanced playlist refinement, export to external player de-
vices or simply playback of selected songs. The Pocket-
SOMPlayer, on the other hand, offers a slim version of
the desktop application and is optimized for the PocketPC
platform, implemented for an iPaq using Java and SWT to
ensure platform independency and to be used in a stream-
ing environment.

A mapped music collection visualizing the previously
described different Rhythm Patterns sub-groups are de-
picted in Figures 2(a)-(d). When discovering a map of mu-
sic, the visualizations can provide important clues to the
overall organization of a specific map and offer starting
points for interactive exploration depending on the char-
acteristics of music one is interested in. For printing pur-
poses we use a linear gray scale comprising 16 colors from
dark gray to white representing feature values from low to
high (For on-screen use, we emphasize the map metaphor
by using a fine-grained color palette ranging from blue via
yellow to green reflecting geographical properties similar
to the Islands of Music (Pampalk et al., 2002)).

The organization of the songs according to the maxi-
mum fluctuation strength feature is clearly visible in Fig-
ure 2(a) where pieces of music having high values are lo-
cated primarily on the left-hand side of the map. Con-
trarily, songs with low values are located on the map’s
right-hand side.

Figure 2(b) shows that the feature bass is concen-
trated on the upper left corner and presents mainly bass-
dominated tracks.

The setting for non-aggressiveness is depicted in Fig-

ure 2(c), the majority of clusters containing high values
can be identified on the right-hand side of the map as one
would expect regarding the distribution of the maximum
fluctuation strength, which represents music dominated by
strong and fast beats.

Finally, a small cluster where low frequencies domi-
nate is located in the upper left of the map as shown in
Figure 2(d) and corresponds to the results of bass setting,
leading to low values in this region.

5.4 PlaySOM

The PlaySOM application allows users to interact with the
map mainly by panning, semantic zooming and selecting
of tracks. Users can move across the map, zoom into areas
of interest and select songs they want to listen to. They can
thereby browse his private collection of a few thousand
songs, generating playlists based on track similarity in-
stead of clicking through metadata hierarchies, and either
listening to those selected playlists or exporting them for
later use. Users can abstract from albums or genres which
often leads to rather monotonous playlists often consisting
of complete albums or many songs from one genre. This
approach enables users to export playlists based on track
not on metadata similarity or manual organization.

The PlaySOM’s largest part is covered by the inter-
active map on the right, where squares represent single
units of the SOM. Controls for selecting different visual-
izations and exporting the map data and the current visual-
ization for the PocketSOMPlayer are part of the menubar
on the top. The left hand side of the user interface con-
tains (1) a playlist of currently selected titles, (2) a birds-
eye-view showing which part of the potentially very large
map is currently depicted in the main view on the right
and (3) controls for the currently selected visualization (as
demonstrated by the different settings of the Rhythm Pat-
terns in Figure 2).

The icons on the upper left allow the user to switch
between the two different selection models and to auto-
matically fit the map to the current screen size. Figure 3
depicts the interaction models that are currently supported



(a) The PocketSOMPlayer’s main panel
showing a trajectory selection.

(b) PocketSOMPlayer user refinement
panel.

Figure 4: The PocketSOMPlayer interface showing different interaction views.

by the PlaySOM. The rectangular selection model allows
the user to drag a rectangle and select the songs belonging
to units inside that rectangle without preserving any order
of the selected tracks. This model is used to select music
from one particular cluster or region on the map. Fig-
ure 3(a) depicts the selection of a cluster of songs located
at the upper left part of the map mainly belonging to the
Electronic genre, comprising single tracks from Rock Pop
and Metal Punk in this example without any specific or-
der. On the other hand, the line selection model allows
users to draw trajectories and select all songs belonging to
units beneath that trajectory. Figure 3(b) shows a selec-
tion of tracks and the according transitions between those
genres along the trajectory. The dark region located at
the beginning of the trajectory at the left middle of the
figure mainly consists of Electronic tracks and represents
high values in the maximum fluctuation strength set of fea-
tures. Further along the trajectory, the playlist continues
with a few more lively and dynamic songs belonging to
the Rock Pop and Metal Punk genres, represented by the
lighter region, before it turns back to rather tranquil mu-
sic from the Classical genre. In this case the sequence
of selected units is of particular importance, because this
line chooses a variety of songs according to their position
on the map, i.e. their similarity. Hence the line selection
model makes it possible to generate playlists including
smooth transitions between clusters of tracks. This might
be of specific interest when browsing very large music
collections or when rather long playlists shall be gener-
ated (for example if a playlist for several hours should be
generated and several changes in musical style shall occur
over time, similar to an auto-dj functionality).

Once a user has selected songs and refined the results
by manually dropping single songs from the selection,

those playlists can be listened to on-the-fly or exported for
later use on the desktop machine or even other platforms
like PDAs or Multimedia Jukeboxes if the collection is
served via a streaming environment.

Furthermore, the main PlaySOM application can eas-
ily and efficiently be used on a Tablet PC and used as a
touch screen application because of its portable Java im-
plementation (a live demo is shown in 5(b)).

5.5 PocketSOMPlayer

The PocketSOMPlayer application offers similar but sim-
plified functionality as the PlaySOM being designed for
mobile devices such as PDAs or Smartphones. There-
fore it only provides the basic functinality of selecting by
drawing trajectories and a simplified refinement section,
omitting means to zoom or pan the map. Its operational
area is likely to be a client in a (wireless) audio streaming
environment for entertainment purposes. Regarding the
current memory restrictions of PDAs, the use of a stream-
ing server as music repository seems even more appealing
than for the desktop application. Nevertheless, the mobile
interface could be synchronized with its desktop pendant
to take the role of a mobile audio player within the PDA’s
memory limits.

Figure 4(a) shows the PocketSOMPlayer’s main inter-
face, a trajectory selection with an underlying map. Its
user refinement view which allows the user to modify the
previously selected playlist before listening to the result is
depicted in Figure 4(b). (Due to the anonymized format
of the ISMIR collection we emphasized on genres instead
on individual track names. In real application scenarios,
filenames or ID3-tag information would be used for dis-
playing information on the map.) The main panel allows



(a) The PocketSOMPlayer application
running on an iPaq PDA.

(b) PocketSOMPlayer running on a Tablet PC.

Figure 5: Both presented interfaces running on an iPaq and Tablet PC respectively.

the user to draw trajectories and to select the units under-
neath those trajectories. All songs mapped to the selected
units are added to the playlist. The user refinement panel
pops up as soon as a selection is finished and provides
similar functionality as the PlaySOM’s playlist controls,
namely the user can delete single songs from the playlist
to refine her/his selection. The resulting playlist can then
be played, retrieving the MP3s either from the local stor-
age or a streaming server.

Figure 5(a) shows the PocketSOMPlayer running on
an iPaq PDA without a trajectory selection. The map de-
scribes a music repository located on a streaming server
running on another machine, accessible via WLAN, in
contrast to keeping the music files locally (note that la-
bels are manually assigned to clusters according to the
most prominent genres in this example). Selecting tracks
via drawing of trajectories on a touch schreen is straight-
forward, easy to learn and intuitive as opposed to clicking
through genre hierarchies and therefore particularly inter-
esting for mobile devices and their handling restrictions.

6 CONCLUSIONS AND FUTURE WORK
We described the extraction of three feature sets for
content-based audio description, namely Rhythm Pat-
terns, Statistical Spectrum Descriptor and Rhythm His-
togram. The feature sets are used for music similarity
tasks such as automatic classification and organization of
music collections. The algorithms’ performance was eval-
uated on a music genre classification task. Throughout
the experiments, the algorithm for the computation of the

Rhythm Patterns has been improved. Together with the
two other feature sets, classification accuracy reaches up
to 74.9 %, 84.2 % and 80.3 % in three different standard
music collections.

The feature sets are applicable to music retrieval tasks
(query by similarity), to classification as well as to per-
forming automatic organization tasks.

We presented intuitive visualizations based on the
Self-Organizing Map, a neural network with unsupervised
learning function. For training of the SOM we used the
automatically extracted feature vectors described before.
Furthermore, we presented the PlaySOM, a novel user in-
terface to map representations of music collections cre-
ated by SOM clustering. The interface allows user inter-
action and interactive exploration based on those maps.
The PlaySOM offers a two-dimensional map with spatial
organization of similar tracks and is especially appealing
for large or unknown collections, which could hardly be
browsed by metadata search only. The application al-
lows users to browse their collections by similarity and
therefore find songs similar to ones they know by name
in contrast to metadata-based approaches. Moreover, we
introduced a PDA application offering similar functional-
ity, showing that alternative approaches to music organi-
zation are feasible for mobile devices as well. Both user
interfaces are well suited for interactive exploration of col-
lections of digital music because of their different levels
of interaction like semantic zooming or on-the-fly playlist
generation.

In the future we will further investigate in detail the
steps of the computation of audio features for further im-



provement of the content-based description of audio. Fu-
ture work will also deal with further development of inter-
faces for mobile devices, especially concentrating on their
use in streaming environments. Therefore the combina-
tion of such clients with centralized music repositories, of-
fering tighter integration of feature extraction and online
exchange of stored information about tracks such as the
well known ID3 tags, is going to be evaluated. Moreover,
the desktop interface may be extended by more sophisti-
cated methods for playlist generation such as automatic
smooth transitions between clusters.

In addition, user studies might be of great help to mea-
sure the quality of the SOM clustering in combination with
the Rhythm Patterns feature extraction as the automated
quality assessment is very difficult as mentioned before.
The current PlaySOM implementation is well suited for
such studies and on-the-fly evaluation of specific areas on
the maps as described in our experiments.
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