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ABSTRACT

For tasks like musical genre identification and similarity
searches in audio databases, audio files have to be de-
scribed by suitable feature sets. Since these feature sets
usually try to capture diverse discriminative characteris-
tics, it is interesting and desirable to create an acoustic
representation of the feature set to support intuitive eval-
uation. In this paper, we present an approach for making
a specific feature set, namely Rhythm Patterns, instantly
human comprehensible by re-assembling sound from the
numerical descriptors. The re-synthesized audio chunks
represent clearly perceivable rhythmical characteristics on
critical frequency bands of the original music.

1. INTRODUCTION

The Music Information Retrieval research domain gained
increasing attention in recent years. The sheer amount of
music titles available in repositories calls for sophisticated
search, retrieval and organization techniques. These, in
turn, require representative descriptors for pieces of mu-
sic in order to measure similarities between music titles. It
is, however, unclear, what constitutes the essential ”mean-
ing” of music. Most approaches thus focus on perceptu-
ally relevant features of music. The descriptors, or fea-
tures, are derived from the plain audio signal. Although
substantial reduction of data is desired, the descriptors
have to contain sufficient information from the data to rep-
resent some kind of semantics of the music.

Content-based descriptors build the basis for many in-
formation retrieval tasks, such as similarity based searches
(query-by-example, query-by-humming, etc.), organiza-
tion and clustering tasks, classification tasks, etc. Numer-
ous different types of descriptors have been proposed. All
these descriptors are more or less suitable as a representa-
tion of the content of audio, frequently depending on the
specific application. The performance of features in sim-
ilarity retrieval or classification tasks has been evaluated
in numerous experiments, some of which showed that a
combination of several feature sets improves the results.

In our work we concentrate on Rhythm Patterns as fea-
tures, describing the loudness amplitude modulation in
different frequency bands. The feature set does not merely

represent rhythm, or beat, it describes fluctuations in nu-
merous frequency regions covering the complete audible
frequency range.

A question frequently raised, particularly for non-stan-
dard feature sets, is on the cognitive characteristics of the
extracted numbers. What is it, that the features actually
represent? For humans it is sometimes difficult to get a
notion of the feature set as a whole, as the feature space is
often high-dimensional. Relations between the attributes
can be elusive, thus the chance for insight into the data
is diminished. Since this issue of acoustic interpretation
of the feature set has been raised several times since the
feature set’s inception [10], in this paper we present an
acoustical re-synthesis of the feature set. We thus seek
to make the numerical descriptors instantly comprehensi-
ble to humans allowing to verify characteristics present in
the feature set intuitively. Furthermore, the synthesized
sound can serve as a control technique for the feature ex-
traction process and provides a notion of the suitability
of the feature set for content-based description of musi-
cal data. With the audible feature set, one can evaluate the
effectiveness of the feature extraction through asking a hu-
man for the same task as the computer, working only with
the substantially reduced information from the aggregated
descriptor, e.g.: Can you discriminate musical genres pro-
vided only with the information from the feature set?

In the evaluation of the re-synthesized “audible vec-
tors” we experienced, that the rhythmical structure (i.e.
amplitude modulation) on all frequency regions is satis-
factorily reassembled. This serves as an indication, that
the Rhythm Patterns we chose for content description prove
suitable to represent characteristics of a given piece of au-
dio, thus appearing appropriate for classification, organi-
zation and retrieval tasks.

The remainder of the paper is structured as follows: In
Section 2 we give an overview of related work. Section 3
introduces the feature extraction algorithm that forms the
base of the sound synthesis approach. The synthesis pro-
cess is outlined in Section 4. Section 5 states evaluation
results, followed by conclusions in Section 6.

2. RELATED WORK

In recent years, audio analysis received by far more atten-
tion than audio synthesis. As stated in the introduction,



this is due to the currently strong interest in music infor-
mation retrieval tasks. Approaches for deriving content-
based audio descriptors are manifold and include the ex-
traction of tempo, beat [2, 5], rhythm [3], pitch [7, 14],
and melody [4], to just name a few.

In the music information retrieval domain, clearly, there
is little work on synthesis of audio. Recently, sound syn-
thesis is applied in computer music and in conjunction
with animation and art. A work about additive synthe-
sis using the Inverse Fast Fourier Transformation, both of
which is used in our approach, dates back to 1992 [12]. In
[9] the authors present a method for preventing artefacts
in the re-synthesis of a signal that was previously anal-
ysed using the Short Time Fourier Transform with win-
dow functions.

A recent method from the music information retrieval
domain applies signal synthesis during automatic drum
detection [15]. Drum sound is iteratively derived and re-
synthesised for progressive detection of further percussive
sound in the input signal. Signal analysis and subsequent
synthesis is also applied in [1, 8], modelling the timbre of
a musical instrument.

3. FEATURE EXTRACTION

The feature set our work is based on is denominated as
“Rhythm Patterns”. Describing amplitude modulations
on various frequency bands covering the complete human
audible frequency range, it contains far more than what
is commonly considered as rhythm. The Rhythm Pat-
terns features are derived analysing the spectral data of
the music signal plus incorporating psycho-acoustic phe-
nomenons. At the final stage they represent fluctuations
per modulation frequency on 24 frequency bands accord-
ing to human perception. The algorithm is described in
detail in [11]. In the following, we give a brief outline of
the extraction process, depicted in Figure 1.

The algorithm processes audio tracks in standard digi-
tal PCM format with 44.1 kHz sampling frequency as in-
put. First, the audio track is segmented into pieces of 6
seconds length.1 Then, a short time Fast Fourier Trans-
form (STFT) is used to retrieve the energy per frequency
bin, i.e. the spectrum, every 11.5 ms, resulting in a spec-
trogram of the 6 second segment. To reduce the amount of
data, the frequency bins of the spectrogram are summed
up to 24 so-called critical bands, according to the Bark
scale [16]. A further psycho-acoustical phenomenon in-
corporated is spectral masking, i.e. the occlusion of one
sound by another sound. This phenomenon is coped with
a spreading function [13]. Successively, the data is trans-
formed into the logarithmic decibel scale, equal-loudness
curves are accounted for [16], resulting in a transforma-
tion into the unit Phon and afterwards into the unit Sone,
reflecting the specific loudness sensation of the human
auditory system. At this point, we computed the spe-
cific loudness sensation over time on 24 critical frequency

1 The duration of the segment is actually 5.94 seconds, which has an
appropriate number of samples (218) for effective processing through
the two Fast Fourier Transforms. Nevertheless, we denote the segment
“6 second segment” throughout the paper.

Figure 1. Block diagram of the feature extraction process. Ar-
rows with broken lines do not form part of the feature extrac-
tion, but indicate typical post-extraction approaches. Our new
approach is the re-synthesis of extracted feature sets.

bands. Still, we have a time-dependent signal, although
reduced to 512 sample values at the time axis due to the
window size in the STFT.

In order to obtain a time-independent representation of
the data, another Fourier Transform is applied. The idea
is to regard the varying energy on a frequency band of the
spectrogram as a modulation of the amplitude over time.
With the second Fourier Transform, the spectrum of this
modulation signal is computed. It is a time-invariant sig-
nal that denotes the modulation frequency on the abscissa,
and the magnitude of modulation on the ordinate. A high
amplitude at the modulation frequency of 2 Hz for exam-
ple indicates a strong rhythm at 120 bpm (beats per minute
= modulation frequency * 60). The abscissa ranges from
0.168 Hz to 43 Hz, with 43 Hz corresponding to 2580
bpm, which is far beyond what any auditory system is
able to perceive as rhythm. The notion of rhythm already
ends above 15 Hz where the sensation of roughness starts
and goes up to 150 Hz, the limit where only three sepa-
rately audible tones are perceivable. For that reason, the
data used for the derived features is cut after a modula-
tion frequency of 10 Hz, which means, that on each of the
24 critical bands, only 60 values are preserved. The fi-
nal feature vector thus has 24*60 dimensions, containing
a time-invariant representation of fluctuation strength be-
tween 0.168 Hz and 10 Hz. Subsequently, modulation am-
plitudes in that range are weighted according to a function
of human sensation depending on modulation frequency,
accentuating values around 4 Hz.

The 1440-dimensional feature vector represents a de-
scriptor for rhythmical content of the musical signal. We
retrieve one feature vector for each 6 second segment.
It was shown [11], that averaging all feature vectors re-
trieved from a musical piece by using the median pre-
serves sufficient characteristics of semantic structure for
that given piece.

The resulting Rhythm Patterns feature set proved to be
a reliable music descriptor in a number of different ap-
plications. Unsupervised learning is applied to the fea-
ture vectors to automatically produce a semantic organi-
zation on a map upon which intuitive visualization tech-



niques are applied (SOMeJB, the SOM-enhanced Jukebox
[11]). The vectors have also successfully been used in mu-
sic genre classification. A slightly adapted version of the
algorithm achieved 82 % accuracy in the ISMIR 2004 Au-
dio Description Contest on rhythm classification [6].

4. SOUND SYNTHESIS FROM FEATURES

Feature sets derived from audio signals represent an ag-
gregation of the original audio data and are usually com-
posed of a number of attributes, that should be mutually
independent. In our approach the descriptor is a feature
vector with 1440 dimensions. The challenge for classifiers
is to find a possible separation between several classes
within the feature space. In a high-dimensional space it
is nearly impossible for humans to figure out the impor-
tant attributes in the feature vectors, those best suitable to
represent the semantics of the music. Nevertheless, it is
desirable to obtain a notion of the content of the features,
in order to be able to assess the quality of the feature set
and its applicability to a specific task. A way to give in-
sight to the feature set is to make it audible. Apart from
giving insight into the features, it provides a possibility
for monitoring the feature extraction process, and addi-
tionally, it enables the monitoring person to check if he
or she as a human would be able to discriminate between
classes (such as genres) provided only with feature data.

The process of re-synthesizing sound from the feature
vectors seems quite straight-forward. Nevertheless, it faces
a number of challenges. The original audio data has a fre-
quency range of 20 to 20000 Hz. The feature vectors rep-
resent only 24 critical bands of that data, which is an enor-
mous reduction of information. Moreover, the distribution
of energy on frequency bands within a specific critical
band is unknown, which means that the only frequency
information that we can use as the base for re-synthesis
are the centre frequencies of each critical band. During
the feature extraction process, the major part of the mod-
ulation amplitude information is discarded, only 60 val-
ues per band according to modulation frequencies from
0.168 Hz to 10 Hz are retained. From those 60 descrip-
tors of the 24 critical bands we now want to synthesize
a sound signal, that resembles the rhythmical structure of
the original piece of audio. As the numbers were derived
using an FFT, an Inverse Fourier Transform qualifies as a
proper method for the synthesis of the modulation signal.
As there is no exact information about the original signal,
we take the centre frequencyfi of that critical band, i.e.

fi = ci−1 + (ci − ci−1)/2 (1)

as the frequency of the base signal of critical bandi, where
ci is the upper band limit of critical bandi, c0 being 0.
The minimum modulation frequency is 0.168 Hz, so we
will have to re-synthesize a sound of 6 seconds length
to accommodate 1 period of the lowest modulation fre-
quency. The final signal thus contains218 samples. In
order to apply the Inverse Fourier Transform, we create a
“virtual” spectrum withN = 218, with all spectrum bins
being zero, except the first 60 values, where the spectrum

Figure 2. Feature representation: left column: Rhythm Patterns
descriptor plot, right column: re-synthesized waveform, for a)
pop music, b) reggae, c) classical music.

data of the preserved feature values are used. Addition-
ally, bins(N − 59) to N are generated by mirroring bins
2 through 60 and building the complex conjugates of their
values (bin 1 contains the DC component). On that spec-
trum, we apply the inverse Fourier Transform. The out-
put is the modulation signal of one frequency band,mi[t],
t∈N . This signal can now be used to modulate the centre
frequency of the critical band,fi. We, however, do not
know about the original amplitude of the signal on that
band. We utilize the DC component of the modulation
signal, which in general is>0, as the base amplitudeAi

of the band signal. Therewith, we can modulate the band
centre frequencyfi with the modulation signal. The same
process is accomplished on all 24 critical frequency bands
and the modulated signals are heterodyned, as in Eq. 2.

s[t] =
24∑

i=1

Ai × cos(2πfit)×mi[t] (2)

The resulting signals[t] reflects the structure of the orig-
inal piece of audio and resembles fluctuations within the
critical bands as captured by the feature extraction pro-
cess. Figure 2 shows plots of three Rhythm Patterns de-
scriptor sets derived from content-based analysis of three
music titles from the genres pop, reggae and classics, and
the respective waveform plots of the re-synthesized au-
dio. The waveform also reflects the rhythmical structure
contained in the descriptor and the audible counterpart es-
tablishes the beat of the original piece of music, at least
in beat-intensive titles such as pop and reggae songs, as
well as modulations of amplitude on all freqof theuency
regions. Also, the low modulation of the classical tune is
perceivably re-synthesized.



5. EVALUATION

First evaluations showed, that the rhythmic structure of
audio pieces can be recognized in the re-synthesized sig-
nal. Besides acoustically verifying the sound and compar-
ing the rhythm of the re-synthesized sound with that of
the original music through listening, the rhythmic struc-
ture can also be seen in the visualization of the waveform
(see Figure 2). Music where strong beats do not play an
important role (e.g. classical music) can clearly be dis-
criminated from other genres. When a specific rhythm in
the form of drums and beats differs by definition from one
genre to another genre (e.g. Hip-Hop versus Reggae ver-
sus Drum’n’Bass), the genres can easily be distinguished
in the acoustical representation of the feature vectors. This
result argues in favor of the Rhythm Patterns approach we
chose for our feature extraction algorithm and confirms its
strong performance in music IR tasks. We emphasize, that
(although much of information is cut away) the Rhythm
Pattern features contain far more than the conventional
definition of rhythm. The features reflect variation (fluctu-
ation) on numerous specific audible frequency regions, up
to very high modulation frequencies. This is an explana-
tion why during the evaluation of re-synthesized feature
sounds we found, that it is possible to even perceive the
voice of a singer in a re-synthesized 6 second sound.

6. SUMMARY AND FUTURE WORK

Content-based descriptors of music are the core of every
music information retrieval task. Many of the established
descriptors, or features, typically differ heavily regarding
both their dimensionality and the kind of semantics they
try to capture. We present an unconventional way for the
evaluation of content-based descriptors used in music in-
formation retrieval tasks. Making the feature sets audible
enables a person to instantly get a notion of the content of
the feature set. We perform a re-synthesis of the Rhythm
Patterns feature set. Re-synthesis faces a number of chal-
lenges as a direct reversal of the feature extraction process
is not possible. Nevertheless, we show that it is possible
to synthesize sound from the feature set, that still con-
tains sufficient information in order to enable recognition
of typical characteristics in the audio.

Future work will include investigation on how to cope
with the non-linear transformations performed throughout
the feature extraction. Some frequency bands currently
are too dominant in the signal, producing a metallic sound.
Further investigation in how to calculate the appropriate
relation between magnitudes of the modulation signal and
the centre frequency signal should improve the perceived
quality of the re-synthesized signal.
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