
Noname manuscript No.
(will be inserted by the editor)

HS3 - A Hybrid Semantic Search System

Gärtner Markus · Rauber Andreas ·
Seidel Ingo · Berger Helmut

Received: date / Accepted: date

Abstract In this paper we present the Hybrid Semantic Search System HS3.
Following a review of semantic search systems we identify existing common
components influencing the architecture of HS3. The system operates on an
arbitrary ontology and related knowledge base providing a search service for
a specific domain. The system uses the ontology and knowledge base to au-
tomatically acquire and integrate related domain-specific data from various
Web resources. Annotation and indexing components of the system relate tex-

Gärtner Markus
Department of Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstr. 9-11 / 188
A - 1040 Vienna, Austria
Tel.: +43 676 8200 1966
E-mail: gaertner@ifs.tuwien.ac.at

Rauber Andreas
Department of Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstr. 9-11 / 188
A - 1040 Vienna, Austria
Tel.: +43 1 58801 18826
E-mail: rauber@ifs.tuwien.ac.at

Seidel Ingo
max.recall information systems OG
Pulverturmgasse 17/3
A - 1090 Vienna, Austria
Tel.: +43 720 978603
E-mail: ingo.seidel@max-recall.com

Berger Helmut
max.recall information systems OG
Pulverturmgasse 17/3
A - 1090 Vienna, Austria
Tel.: +43 720 978603
E-mail: helmut.berger@max-recall.com

2 Gärtner Markus et al.

tual representations of concepts and instances in documents to concepts and
instances contained in the knowledge base, creating a Combined Index for
information retrieval. This Combined Index is used by search and ranking ser-
vices to perform a hybrid semantic search that amalgamates keyword-based
and concept-based search strategies. Furthermore, we present the system’s
interface layer comprising the GWT-based Web UI that interactively assists
the user during the search process. Finally, we present results of a usability
evaluation and performance tests that have been conducted with HS3.

Keywords Information Extraction · Information Retrieval · Ontologies ·
e-Tourism · Semantic Web · Semantic Search · Annotation · UI Design

1 Introduction

The main advantage of domain- specific search engines is that they operate on a
very specific and information rich data corpus that is created and maintained
by domain experts. Their disadvantage is that they only have a small data
corpus compared to general-purpose search engines that use Web crawlers to
fetch and index documents. Furthermore, the documents indexed by general-
purpose search engines tend to reflect the opinion of many different people
compared to a few people who maintain the data corpus of domain-specific
search engines. Another difference between domain-specific search engines and
general-purpose search engines is the timeliness of information. While general-
purpose search constantly fetch the latest information most domain-specific
search engines rely on information that has been extracted and maintained by
domain experts.

Yet, when using automatically fetched data it is harder to distinguish valu-
able information from information that is not related to the domain or lacks
significant information value. When large amounts of automatically fetched
data need to be analyzed, mechanisms to automatically identify valuable in-
formation need to be applied. To identify domain information, the domain
needs to be encoded in such a way that the system can match a document
against the domain’s encoding to check its relevancy. One possibility is to en-
code the domain as a list of keywords that represent the most common terms
of the domain and use text or summarization-based classification to decide
upon the relevancy of a document for a certain domain [32]. A common way
to represent a domain is an ontology. Ontology knowledge can be used to
identify relevant documents and encode relevant domain knowledge. A knowl-
edge base (KB) stores instances of ontology concepts and their relations. The
ontology and the KB can be used to support the identification of relevant
data, the Information Extraction process and Information Retrieval process.
To identify relevant data for a specific domain, ontology-focused Web crawlers
have been developed [15,27]. Algorithms that automatically widen the lexical
coverage of textual representations of concepts, have been developed to help
increase the capability of semantic applications to identify concepts related

HS3 - A Hybrid Semantic Search System 3

to a certain document [5,14]. To extract relevant information in the crawled
data, ontology-based Information Extraction techniques can be used [9,35].

The unique feature of concept-based search in contrast to keyword-based
search is that it is not bound to occurrences of keywords in documents but
rather uses abstract concepts such as people, countries or accommodations to
search for relevant information. Most general-purpose search engines still adopt
keyword-based search approaches that do not make use of domain knowledge
encoded in an ontology or a KB. Systems that leverage ontologies and KBs
to assist the search process are generally known as semantic search systems.
These systems either solely rely on the KB or use a KB and a document corpus
that is annotated with concepts from the ontology and instances from the KB.
Even though the information contained in the document corpus can be used
to support the search process, most systems solely rely on the KB to conduct
searches and do not use a hybrid approach that leverages information from
the KB and the document corpus to aid the search process.

In this paper we present HS3, a hybrid search system, which makes use of
semantic (concept-based) and document-related (keyword-based) information.
It addresses shortages of current semantic and hybrid search systems, specif-
ically concerning the index structure, data acquisition, query generation and
result presentation.

Many hybrid search systems conduct their concept-based searches upon
Triple Stores, which maintain structured data as RDF triples, and use an in-
verted index to conduct keyword-based searches in addition. The results are
merged afterwards. Our approach uses an actual Combined Index structure
based on SIREn [12], which stores structured data as triples and unstructured
data as full text data and contextual data, which is related to entities encoded
in the structured data. This index structure offers the advantage that informa-
tion can be searched conjointly on the index-level without the need to merge
it afterwards.

Another shortcoming of hybrid search systems is that document data, com-
plementing the semantic information in the KB, needs to be acquired manually
or semi-automatically. We propose a mechanism and supporting architecture
to automatically fetch relevant unstructured document-based information from
the World Wide Web to complement the semantic information stored in the
KB. The system is designed in such a way that it can create a document cor-
pus from scratch provided with an arbitrary ontology, corresponding KB and
extraction rules.

A considerable shortage of current semantic search systems and hybrid
search systems is their lack of usability. Most systems are only accessible via
a rather complex structured query language such as SPARQL, RDQL or a
proprietary query language, rendering them unusable for the average Internet
user and even for some expert users. The interfaces are either overcrowded,
use non-intuitive input methods or do not efficiently amalgamate concept-
based and keyword-based search in case of hybrid search systems. To address
these shortages we introduce a novel input mechanism for hybrid semantic
search that combines the clean and concise input mechanisms of keyword-based

4 Gärtner Markus et al.

search engines with the expressiveness of the input mechanisms provided by
semantic search engines. Furthermore, it is common practice for document-
based search systems to use result ranking approaches. In contrast, semantic
search systems hardly use ranking mechanisms to sort their results. HS3 uses
a ranking approach for the combined structured and unstructured data that
is based on the user’s query formulation and relevant data in the KB and
document corpus.

HS3 has been applied to two very different domains: the highly focused
and specialized tourism domain and the more generic and open news domain.
We used our e-Tourism ontology which is based on the Harmonise Ontology
[17] for the tourism domain and the publicly available KIM Ontology and KB
provided by OntoText1 for the news domain. We applied the system to two
different domains to test its flexibility and generality.

The remainder of this paper is structured as follows. In Section 2 we present
related work and give an overview of semantic search systems. The shortcom-
ings of current search systems are demonstrated by a scenario from the tourism
domain in Section 3. In Section 4 we present the Hybrid Semantic Search
System in detail. We present an overview of the architecture and discuss its
components. Special focus is laid on the Combined Index structure and the
Search & Ranking components. This is followed by a description of the User
Interface that implements an interactive ontology-aware keyword-based input
mechanism. In Section 5 the results of HS3’s precision and recall evaluation
on two different datasets followed by the results of a usability evaluation and
performance test are presented. The paper is concluded in Section 6.

2 Related Work

The following Section summarizes related work in the area of Web mining,
Information Extraction (IE), Information Retrieval (IR) and Semantic Search.
We start with a general overview of work in this area, followed by a detailed
presentation of recent semantic search systems and their capabilities.

2.1 Web Mining, Information Extraction & Retrieval and Semantic Search

Kosala and Blockeel [26] suggest three categories for Web mining: Web content
mining, Web structure mining and Web usage mining. The system presented
in this paper uses techniques that belong to the Web content mining category.
Besides the traditional Web mining, Semantic Web mining has emerged as
part of the Semantic Web. Berendt et al. [2] describe the two main approaches
in this area, namely to improve traditional Web mining by exploiting the
new semantic structures in the Web; and to use Web mining for building up
the Semantic Web. Li and Zhong [28] discuss two models that can be used
to bridge the gap between Web mining and the effectiveness of using Web

1 http://www.ontotext.com/

HS3 - A Hybrid Semantic Search System 5

data. The pattern taxonomy model uses patterns instead of single words and
techniques of sequential pattern mining to enhance the mining process. In
contrast to the pattern taxonomy model where a pattern is a set of terms,
the ontology mining model uses patterns that are groups of objects. Zhou et
al. [36] used mining techniques to gather information from annotations and
resources that a user has bookmarked to expand the user’s search query. They
present a query expansion framework which makes use of the data obtained
from annotations and bookmarked resources.

Wimalasuriya and Dou [35] developed an approach that uses multiple on-
tologies to assist the Information Extraction process. Several Ontology-Based
Information Extraction (OBIE) systems have been implemented so far but
all of them use only a single ontology. They identified two major scenarios
for using multiple ontologies in the same domain which are the specialization
in sub-domains and the support of different perspectives by multiple ontolo-
gies. Cimiano and Staab [10] present a semi-automatic approach to generate
metadata by using the Google API. Their approach is based on studies that
show that collective knowledge of certain communities is often superior to
individual knowledge. Dittenbach et al. [14] present an approach to automati-
cally discover concepts from Web resources. The authors developed the system
ConceptWorld to identify semantic concepts which relate to a particular source
concept. Missikoff et al. [30] present the system OntoLearn that uses text min-
ing techniques to automatically enrich an ontology. Berger et al. [3] developed
an adaptive Information Retrieval system that is based on associative net-
works and demonstrated its application in the tourism domain. The system
uses a knowledge representation model facilitating the definition of semantic
relations between information items exemplified by terms of the tourism do-
main. Wang et al. [34] developed CE2, which combines information retrieval
and database technologies to realize a large scale hybrid search. Query exe-
cution times of CE2 with ranking enabled are within one second while high
precision and recall is maintained.

2.2 Semantic Search Systems

Castells et al. [7] developed a semantic search system that is capable of per-
forming keyword-based and concept-based searches. Their main intent was to
develop a semantic search system that retains precision and recall of keyword-
based search when information in the KB is incomplete or even not available.
A disadvantage of the system is the computational complexity of query pro-
cessing, resulting in long response times. Bast et al. [1] developed a semantic
search system named ESTER (Efficient Search on Text, Entities, and Rela-
tions) that leverages keyword-based search to speed up the retrieval process.
The system can be used with an arbitrary ontology and corresponding KB.
Nevertheless, only the usage of the YAGO [33] ontology and a KB, created from
semi-structured information extracted of Wikipedia, has been documented so
far. ESTER, similar to HS3, uses a query suggestion mechanism. Kato et

6 Gärtner Markus et al.

System name Features Characteristics

KIM

NAGA

AVATAR

Vector Space- based
system of Castells et al.

(2007)

* Can cope with missing information
* Usage of arbitrary domain model
* Extracts implicit knowledge from the
 KB

* Uses a strict Boolean model
* Supports only RDQL
* Response are up to 30 seconds

ESTER

* Response times that are fraction of a
 second
* Interactive User Interface
* Can operate with very big data sets

* Only application with data from
 Wikipedia demonstrated
* Not clear how results are ranked

* Builds upon freely available
 components
* Uses established standards
* Comes with a pre-populated KB
* Provides very good results on NER
* System is available for research from
 the developers’ Website
* API for keyword-based and
 concept-based search

* Tightly coupled to the KIM
 Ontology and KB
* No complex semantic queries
 supported out of the box
* No combined search available out of
 the box
* Ranking is based on entity popularity
 timelines analysis

* Uses an advanced scoring model that
 makes use of confidence, informative
 -ness and compactness of information
* Demonstration system available

* Only application with data from
 Wikipedia demonstrated
* Demonstration system has high
 response times even for simple
 queries

* Uses the freely available UMIA
 framework for IE
* System is specialized in the
 identification of entities in user
 queries to derive user’s intent

* Only entity class recognition is
 performed but no annotation to
 specific entity instances
* Demonstrated application of the
 system is bound to a corpus of
 email messages

Fig. 1 Overview of features and characteristics of the presented semantic search systems

al. [24] analyzed the usage of query suggestions by using three different data
sets that were obtained form a commercial search engine. Their findings were
that suggestions are used often if the main query is a rare query or a sin-
gle term query. Furthermore users tend to use suggestions often if they are
unambiguous or are generalizations or error corrections of the original query.
Finally, the analysis implies that users use suggestions if they have clicked on
several URLs in the first search result page.

The semantic annotation platform KIM developed by [31] also provides
a semantic search functionality. However, KIM’s main area of application is
the extraction and annotation of entities in documents. GATE [11], a Natural
Language Processing (NLP) and IE platform, is used by KIM for Informa-
tion Extraction. Kasneci et al. [23] developed a semantic search system named
NAGA. NAGA, similar to ESTER, uses the YAGO ontology, but is not lim-
ited to knowledge extracted from Wikipedia. NAGA’s KB contains data de-
rived from a number of semi-structured and unstructured Web sources such
as Wikipedia and the Internet Movie Database (IMDB). Demartini et al. [13]
use a set of algorithms that make use of the Wikipedia structure, page links
and categories, to achieve a relatively high effectiveness of the Entity Rank-
ing system. Similar to ESTER, the Entity Ranking System makes use of the

HS3 - A Hybrid Semantic Search System 7

YAGO Ontology. The proposed algorithms are currently limited to Wikipedia
and cannot be applied to the Web at large. Ganesan and Zhai [18] use opin-
ion data to rank entities such as people, businesses and products based on
existing opinions about those entities. Their results show that the usage of
opinion expansion is effective for improving the ranking of entities according
to a user’s preferences. AVATAR is a semantic search engine that is based on
a database approach [22]. The main intent of AVATAR is to explicitly model a
user’s intent encoded in a keyword query by using annotations. AVATAR uses
the publicly available UIMA framework [16]. Figure 1 depicts an overview of
features and characteristics of the discussed semantic search systems.

3 Why yet another Semantic Search System?

In this section we present examples of information needs that are common
in the e-Tourism domain and suggest how these can be satisfied more accu-
rately when using a hybrid semantic search system as an example of deploying
such systems to support highly domain-specific search. An example of apply-
ing it in a more general news search domain is provided in Section 5. Consider
the following scenario. A tourist who wants to travel to Tyrol with her son
is searching for a suitable accommodation, preferably a child-friendly guest-
house, which offers an indoor swimming pool and is located in a place where
she can go canyoning. Additionally, she heard from a friend that Mayrhofen
is a beautiful place in Tyrol and would prefer to have the guesthouse located
there. Therefore, her query to a general-purpose search engine might look like
child-friendly guesthouse in-door swimming pool mayrhofen canyoning . The
search engine will return documents that include these terms. In case there
are documents that contain all terms they will be returned among the top doc-
uments for this search query. If there are no documents that contain all terms,
documents that contain a subset of the query terms or are frequently refer-
enced by documents deemed to be relevant will be among the top documents.
The presented approach neglects that other documents might contain infor-
mation about suitable accommodations as well, but do not explicitly contain
these specific terms. Examples are documents that mention guesthouses by
their actual name rather than the term guesthouse or documents that do not
contain explicitly the term mayrhofen even though the guesthouses mentioned
in the documents are located in Mayrhofen. Another drawback of the tradi-
tional search approach is that the semantics in the query cannot be exploited
to find similar accommodations that might also be of interest for a tourist.
In the presented scenario the tourist might also be interested in hotels, youth
hostels, bed and breakfast accommodations and other accommodations which
are located near Mayrhofen or at least in Tyrol even though she did not ex-
plicitly state it. A comprehensive description of traditional search approaches
and new search approaches is given by [20].

Domain-specific search engines such as Tiscover have the advantage that
they offer specific information that is maintained by domain experts. Further-

8 Gärtner Markus et al.

more, the User Interfaces of domain-specific search engines often assist the
user in her search for information by offering drop-down lists and check boxes
to express her search intent accurately. However, domain-specific search en-
gines have the major drawback that they can only leverage information that
is stored in their data storage, which is little compared to the information
available via general-purpose search engines. In case of the given scenario the
user would get no or only approximate results if the data storage holds no
information about guesthouses in Mayrhofen that are child-friendly and offer
an in-door swimming pool, even though there are accommodations that have
these characteristics but mention them only on their Website.

Semantic search systems that rely entirely on their KB suffer from the
same drawback as domain-specific search engines. In case the requested infor-
mation is not contained in the KB, they cannot leverage any complementing
data source to acquire it. Semantic search systems that use complementing
data sources such as annotated document corpora for the search process are
sparse and use the complementing data source only in case the information is
not contained in their KB, even though the complementing data source holds
additional information that can be used to perform a more specific search.
Considering the given scenario, such a system will return information about
appropriate accommodations if it is contained in the KB or in the comple-
menting data source. However, in case part of the information is contained in
the KB and part of it in the complementing data source, the corresponding
documents will not be among the top ranked documents.

During literature review and the evaluation of semantic search systems
we identified characteristics of current semantic search systems that possibly
hinder the realization of the defined use case which are summarized in the
following.

Even though for most semantic search systems it is stated that they can
be used with an arbitrary ontology all of them have only been tested with one
specific domain ontology. KIM is tightly coupled to the KIM Ontology and its
KB. ESTER and NAGA are tightly coupled to the YAGO ontology and the KB
that was generated from the Wikipedia corpus. To the best of our knowledge
ESTER, the semantic search system proposed by [7], the system presented
by [4] and the system presented by [19] are the only systems that provide a
search service that can use a combination of keyword-based and concept-based
search out of the box. However, techniques to exploit the information available
in a document corpus in combination with the semantic information of a KB
for conducting hybrid searches are still unexplored to a great extent. None
of the presented semantic search systems provides an end-to-end process that
includes all steps that are needed to automatically build a document corpus
from Web resources, a KB and a Combined Index to conduct hybrid searches
upon. The majority of semantic search systems use custom or complex input
mechanisms, which are simply not applicable for the average Internet user and
hinder the widespread adoption of these types of systems.

By creating HS3 we aim to i) create a semantic search system that can use
arbitrary ontologies, ii) automatically fetch and maintain related and relevant

HS3 - A Hybrid Semantic Search System 9

information from Web resources, iii) utilize this information to enhance the
search process by combining keyword-based and concepts based search and
iv) interactively assist the user during the search process with an intuitive
UI. Wherever possible, HS3 uses components which are freely available and
established standards such as Sesame [6], SIREn [12] and SwiftOWLIM [25].
The OWL dialect used by HS3 is OWL Horst [21] which is fully supported by
SwiftOWLIM, the semantic repository that is used by HS3.

4 Hybrid Semantic Search System (HS3)

In the following section the Hybrid Semantic Search System is presented. We
briefly introduce the system’s architecture, followed by a detailed discussion
on how the semantic search capabilities are implemented. The architecture of
the system is depicted in 2. The system consists of five main sets of compo-
nents, namely the Persistence components, the Data Fetching components, the
Annotation & Indexing components, the Search & Ranking services and the
Interface Layer. The Persistence components are provided with data from the
Ontology Enricher and the Transformation Engine. The Ontology Enricher
adds textual representations of concepts to the ontology and the Transforma-
tion Engine transforms custom data structures to RDF and stores the RDF
triples in the KB.

The Ontology Enricher issues a query to the WordNet API [29] for every
concept in the ontology, creates a textual representation and stores it as part
of the ontology. A textual representation of a concept contains one or more
terms that describe a concept. For example terms such as canyoning and raft-
ing are textual representations of the concept Canyoning. The Transformation
Engine is an integral part of the system, because it is used to create the initial
data set of the KB and can deal with different custom data structures. There-
fore, the knowledge generated from this data is trusted and suits the same
purpose as the pre-populated KB of KIM. We share the opinion of [31] that
in case it is possible to engineer basic knowledge in advance with reasonable
effort, it should be preferred over extracting and inferring basic knowledge
with uncertain methods. The Persistence components comprise the ontology,
the KB and the Document Store. The Document Store holds copies of fetched
documents and the respective metadata. Annotations of documents are stored
in the Document Store and can be modified or extended by Annotators or In-
dexers. Work queues are used by the Work Queue Managers to distribute work
packages consisting of documents to the different components of the system.
Any component exposes services that can be used by other components.

The Data Fetching components use services of the Persistence components.
Data Fetchers and Metadata Fetchers read data from the KB and write fetched
document data to the Document Store. The Metadata Fetcher is used to fetch
metadata for instances of concepts that are stored in the KB. This informa-
tion is subsequently used by the Data Fetcher to fetch data such as HTML
documents and store them in the Document Store for further processing. The

10 Gärtner Markus et al.

Document Store

Combined Index

Transformation

Engine

Persistence

Components

Ontologies

Ontology

Enricher

Data Fetching

Components

Meta Data Fetchers

Data Fetchers

Annotation &

Indexing Components

Annotators

Indexers

Search & Ranking Services

Search

Services

Interface Layer
GWT: HTML /

AJAX Web Service
Autonomous

Agent

Work

Queues

Knowledge

Base(KB)

Concept & Instance

Suggestor
Ontology Wrapper

Fig. 2 System Architecture Overview

Metadata Fetcher can be equipped with plug-ins that are specialized in re-
trieving results for a specific concept.

The Annotation & Indexing components use data that was fetched by
the Data Fetching components. Annotators use the ontologies and the KB to
annotate documents in the Document Store.

Indexers operate on the ontology, KB and the Document Store which holds
the annotated documents. The system includes a Semantic Indexer out of the
box, but custom Indexers can be added to the system as well. The Semantic
Indexer creates a Combined Index that consists of a full text index and a
concept index that holds concepts, instances and their relations.

The Search & Ranking Services hold services such as the Search Services,
Instance Suggestor and Ontology Wrapper, which are accessed via the Interface
Layer. The Instance Suggestor service can be used to get all instances of the
KB that match a certain textual representation. The Ontology Wrapper is a
service to access the ontologies managed by the system. The Interface Layer
offers three different types of interfaces: a GWT based Web User Interface, a
Web Service Interface that enables access to the Semantic Search Service and
a communication facility for autonomous software agents, which is realized as
Web Service as well.

In Figure 3 an overview of the main components that are needed to create
the Combined Index is presented by means of a simplified example. Consider

HS3 - A Hybrid Semantic Search System 11

Input Output

RDF triples persisted in RDF Triple store.

Data Fetcher

Annotator

Indexer Combined Index

Component
name

Transformation
Engine

Access to relational database holding information

about the entities Elisabeth Hotel and

Mayrhofen

OWL based tourism ontology

RDF triples describing the entities Elisabeth

Hotel and Mayrhofen

Persistence
Components

RDF triples describing the entities Elisabeth

Hotel and Mayrhofen

Metadata
Fetcher

Textual descriptions of the entities Elisabeth

Hotel and Mayrhofen

Metadata such as the URLs, the size and the format of

documents that hold information about the entities

Elisabeth Hotel or Mayrhofen or both

URLs of documents that hold information about the

entities Elisabeth Hotel or Mayrhofen or

both that should be fetched

GATE documents created from HTML documents that

hold information about the entities Elisabeth

Hotel and Mayrhofen

GATE documents created from HTML documents

that hold information about the entities Elisabeth

Hotel and Mayrhofen

KB holding information about Elisabeth Hotel

and Mayrhofen

GATE documents that hold annotations of

Elisabeth Hotel or Mayrhofen or both

Annotated GATE documents containing information

about Elisabeth Hotel or Mayrhofen or both

KB holding information about Elisabeth Hotel

 and Mayrhofen

Fig. 3 Overview of HS3’s components and their input and output by means of an example

a simple relational database that just contains information about the entity
Hotel and the entity Mayrhofen where Elisabeth Hotel is located. First, the
Transformation Engine reads the data from the relational database and uses
the OWL-based tourism ontology to generate RDF triples that describe the
entities Elisabeth Hotel and Mayrhofen. Second, the Transformation Engine
uses the Persistence components to store these triples. Third, the Metadata
Fetcher reads the textual representations of the entities Elisabeth Hotel and
Mayrhofen from the Persistence components and fetches related metadata via
the Yahoo BOSS API2 or the Microsoft BING API3. This metadata holds in-
formation such as the URLs, the size and the format of documents that contain
information about Elisabeth Hotel or Mayrhofen or both. Subsequently, the
Metadata Fetcher stores the metadata as XML Files. Fourth, these XML files
are used by the Data Fetcher to fetch the actual documents and convert them
to the GATE document format. Fifth, the Annotator annotates the GATE
documents with annotations referring to the instances of Elisabeth Hotel and
Mayrhofen that are stored in the KB. Finally, the Indexer uses the GATE doc-
uments that hold annotations of Elisabeth Hotel and Mayrhofen, as well as
the information about Elisabeth Hotel and Mayrhofen stored in the KB to
create or update the Combined Index.

2 http://developer.yahoo.com/search/boss/
3 http://msdn.microsoft.com/en-us/library/dd251056.aspx

12 Gärtner Markus et al.

In the following we present the Search & Ranking Services in detail and
showcase how the Google Web Toolkit (GWT) based UI is used to imple-
ment the interactive ontology-aware keyword-based input mechanism. This is
followed by a comprehensive evaluation of the system and its hybrid search
approach.

4.1 Search & Ranking Services

The Search Services use the Combined Index, the ontology and the KB to
handle search queries. The default search service is the Semantic Search Ser-
vice which supports three different types of queries. The simplest type is the
keyword-only query. This query does not contain any concepts or instances
that are part of the KB. In case a keyword-only query is issued the keyword
index alone is used to retrieve appropriate documents. A more complex type
of query is the one that contains only concepts, instances and relations among
them. In case the query contains no keywords, only the index holding the in-
dexed sub-graphs, henceforth referred to as Index Graphs, is used. The most
complex type of query contains keywords, concepts, instances and their rela-
tions. For these queries a hybrid search on the Combined Index, consisting of
the Index Graphs, the context data and full text data, is performed.

4.1.1 The Combined Index Structure

One purpose of the Combined Index is to relate documents to the concepts and
instances which are mentioned within these documents. SIREn [12] offers the
possibility to encode arbitrary tuples and store them in an index. We transform
any Index Graph into a specific tuple structure and use SIREn to encode and
store it to the Combined Index. An Index Graph is a star shaped graph that
is transformed to its tuple representation and stored to the Combined Index.
Searching these encoded graphs forms the basis for the concept-based part
of the hybrid search approach. Furthermore, keywords which either describe
concepts more specifically in the query are incorporated as tuples as well.
For example the keyword child-friendly can be used to describe the concept
Hotel more specifically. A keyword that describes a concept more specifically
is transformed into a tuple that consists of three entries: the concept that is
modified, whether it occurs in the left or right context of the concept and the
keyword itself. By transforming the query into tuples that match the structure
of the Combined Index, a fast retrieval of documents matching the query can
be accomplished.

Multiple Index Graphs which have one of these concepts or instances as
root node are indexed and related to the document where the root concept
or instance is referenced via an annotation. An Index Graph is a pattern
describing relevant structures and information for a specific domain in terms
of concepts and their relations.

HS3 - A Hybrid Semantic Search System 13

+RootConcept

+RelevanceMarker

+ID

IndexGraph

+ID

+URL

+Summary

+Concepts

+Instances

Document
contains

IndexGraphContext

1 0..*

+Value

Keyword
contains

IndexGraphTuple

1 *

+Concept

+Instance

Object

+Concept

+Instance

Subject

+Property

Predicate

1 1

1

1

1

1

IndexGraphContextTuple

1 *

contains

contains

*

*

+leftOrRight

SubjectContext

1 1

*

*

contains

Index

1

*

has

has

has

indexes

+StartIndex

+EndIndex

Annotation

*

1

1

*

has

references

annotates

Fig. 4 The Combined Index structure

Therefore, the purpose of an Index Graph is to encode relevant information
for a specific instance that is mentioned (annotated) within a document. It is
a sub-graph of the instance’s complete graph in the KB that is relevant for
the retrieval process. Every concept can be equipped with an Index Graph. A
knowledge engineer or domain expert defines the Index Graph for a concept,
knowing what concepts and properties are relevant to users. Index Graphs

build a central part of the Combined Index. The Combined Index structure is
depicted in Figure 4. Every concept in the ontology may carry an Index Graph

that defines the graph that should be indexed for this specific concept. This
graph is used by the search mechanism to conduct searches for the specific
concept. The Index Graph is attached as an RDF Construct Query to the
concept. To store an Index Graph in the Combined Index it is transformed
into Index Graph Tuples. The Index Graph Tuples are similar to a set of
rows with columns. Every Index Graph Tuple has a Subject, an Object and
a Predicate. The Subject contains the URI of an instance and the URI
of the concept of this instance. The Object has the same attributes. The
Predicate contains the URI of a property. An example is an Index Graph

Tuple that has a Subject which contains the instance URI of “Hotel Elisabeth”
and the concept URI of the concept Hotel, a Predicate which contains the
property URI of the property located In and an Object that contains the
instance URI of “Mayrhofen” and the concept URI of the concept Location. The
Index Graph Root Concept is stored in the Index Graph class. The Index

14 Gärtner Markus et al.

Graph Root Concept is used to realize a grouping mechanism that is needed
to conduct efficient approximate searches upon the index.

For example, the Index Graph Root Concept for the concepts Hotel and
GuestHouse is Accommodation, which is their super-concept in the ontology
as well. Therefore, if a user searches for a hotel the search algorithm would
look in the field Accommodation instead of Hotel, because it is the Index

Graph Root Concept of Hotel. Since the Index Graphs for guesthouses are
also stored in this field, the algorithm is able to return approximate matches
containing guesthouses in case no hotels exist that match the user’s search
criteria. Another reason for the usage of an Index Graph Root Concept is
that an Index Graph needs to be defined only for a super-concept and can
be inherited by all sub-concepts. Therefore, to continue the previous example,
the Index Graph is only defined for the concept Accommodation and inherited
to the concepts Hotel and GuestHouse. Every Index Graph Tuple holds in-
formation that is usually encoded in an RDF statement consisting of subject,
predicate and object. But, in addition, the subject and object concept types
are also included. In RDF this would be accomplished by using two additional
RDF statements.

For efficiency reasons and to maintain a smaller index this information is
encoded in a single tuple in the Combined Index. Any RDF graph is converted
into Index Graph Tuples before it is indexed via SIREn. A document may be
related to multiple Index Graphs if the root nodes of these Index Graphs are
referenced via an annotation in the corresponding document. The root node
of an Index Graph is the one that is not referenced by any other node within
the graph The context of an instance is defined as the terms which surround
the instance’s annotation in a specific document. All terms to the left and to
the right of an instance’s annotation, within a specified window, are consid-
ered as context. These terms are indexed as Index Graph Context Tuples.
Every Index Graph Context Tuple may contain multiple Keywords and has
one Subject Context which defines the instance and corresponding concept
that are surrounded by the contained Keywords. The parameter LeftOrRight
defines whether the Keywords occur to the left or to the right of the subject.
It can either have the value Left Context or Right Context. However, the
current implementation does not differentiate between the Left Context and
Right Context, but rather searches both contexts. The differentiation was de-
signed for future use. For simplicity reasons we will refer to the Left Context

and Right Context as describedAs.

The Relevance Marker of the Index Graph reflects the relevance of the
instance, described by the Index Graph, in the specific document. The rele-
vance of an instance in a specific document is calculated by multiplying its
annotation’s score with its annotation’s position in the document (e.g. the
value 10 for title or the value 1 for body) and its annotation frequency in the
document. The Relevance Marker is used during the search process to restrict
searches only to the most relevant instances of concepts within a document.
This approach helps to reduce noise in the result, because common instances
may be mentioned in many documents, even though the documents are mainly

HS3 - A Hybrid Semantic Search System 15

about completely different instances. Documents from the tourism domain of-
ten contain names of several tourism destinations such as Salzburg, Kitzbühel
or France which are annotated by the Annotation components. However, the
documents that contain these terms might mainly hold information about ho-
tels, guesthouses or apartments that are located in these tourism destinations.
Consider a document that holds mainly information about the hotel Kitzhof in
Kitzbühel. In that case the Relevance Marker for the instance Kitzhof needs
to be higher than the Relevance Marker for the instance Kitzbühel for this
specific document. However, instances of lower relevance for a specific docu-
ment need to be kept in the index, because these are used for approximate
matches in case no exact matches can be found. Furthermore, instances of lower
relevance might just be of low relevance because the Information Extraction
processes were not able to extract accurate information. Still, these instances
can be useful in combination with keyword-based searches, which leverage in-
formation missed by the Information Extraction process or information which
cannot be represented with the used ontology.

4.1.2 The Search & Ranking Mechanism

The Search & Ranking mechanism uses the Combined Index generated by the
Indexers of the Indexing component. All queries are transformed and issued
against the Combined Index. Instead of just translating the concept-based and
combined queries into high-level query languages such as SPARQL or SeRQL,
the query is transformed into tuples and issued against the Combined Index.
During the transformation process the ontology is used to expand the query
with sub-concepts and similar concepts, to return approximate results in case
no exact matches have been found. The query expansion mechanism leverages
so-called Realms to pick only meaningful concepts for the query expansion.
A Realm holds concepts that are semantically related and are of interest to
the user (e.g. similar concepts). To illustrate the query transformation process
consider the query depicted in Figure 5. The keyword query could be some-
thing such as “child-friendly hotel providing steam bath located in mayrhofen
offering rafting”.

The GWT-based Web UI, described in the next section, implements the
interactive ontology-aware keyword-based input mechanism that assists a user
in formulating a query. In the first box of Figure 5 the query that was cre-
ated by using the interactive ontology-aware keyword-based input mechanism
is presented. Subsequently, this query is transformed into the graph query de-
picted in the second box of Figure 5. This graph representation is transformed
into a tuple query, depicted in the third box of Figure 5 that consists of a
disjunction of conjunctions and is issued against the Combined Index. Figure
4, depicts the transformation mechanism that is used to transform the user
query graph into its tuple representation. As shown in Figure 5 the user query
graph is transformed into four tuples. Whereas three tuples (nr. 1 - 3) are
important for the concept-based part of the Combined Index and one tuple
(namely nr. 4) is important for the keyword-based of the Combined Index. The

16 Gärtner Markus et al.

<< Concept >>

GuestHouse

<< Instance >>

Mayrhofen
<< Property >>

located in

<< Instance >>

Rafting

<< Property >>

offers attraction

<< Keyword >>

family-friendly

User Query Graph of the User Query Input:

<< Concept >>

Location

<< Concept >>

Attraction

Tuple Translation of the User Query Graph:

IndexGraph<Accommodation><Instance_1>:

GuestHouse --- located in Location Mayrhofen

SUBJECT OBJECTPREDICATE

Location Mayerhofen offers attract. Attraction Rafting

SUBJECT OBJECTPREDICATE

describedAS family-friendlyGuestHouse

Tuple 1 :

Tuple 2 :

Tuple 1 :

IndexGraph<Accommodation><Instance_1>Context:

<< Property >>

provides

<<Instance>>

Steam Bath
<< Concept >>

Facility

GuestHouse Facility Steam Bath

SUBJECT OBJECTPREDICATE
Tuple 3 : --- provides

User Query Input:

Fig. 5 Visual presentation of the query transformation process

transformation algorithm expects an ordered set of Resources as input. The
ordered set of Resources is generated by the query formulation mechanism.
Every Resource is either an instance of a concept, a concept, a property or a
keyword, which can be related to other Resources in the query.

The transformation mechanism iterates through all Resources and checks
whether the Resource is of type concept or keyword. In case the Resource is
a concept or instance, all related Resources are retrieved, which can either
be keywords that modify the current concept or other concepts or instances.
Related concepts and instances are always related via a property. Therefore,
the generated conjunction is a tuple that consists of the current Resource’s

concept or instance, the related Resource’s concept or instance and the prop-
erty that connects them. In case the related Resource is a keyword the tu-
ple will contain the current Resource’s concept or instance, a property that
states that the keyword belongs to the concept’s or instance’s context and
the keyword itself. The Resources and their relations are stored in a Tuple

Conjunction object, as described in the algorithm depicted in Algorithm 1.

HS3 - A Hybrid Semantic Search System 17

ALGORITHM 1: Simplified version of the query transformation mech-
anism
Input: Ordered Set OS of Resources
Output: Disjunction List DL of conjunctions
DL = new DisjunctionList();
foreach Resource r in OS do

type = r.Type();
if type == Concept then

rR = r.getRelatedResources();
tCList = createTupleConjunctions(r,rR);
foreach TupleConjunction tC in tCList do

DL.add(tC);
end

else if type == Keyword then
DL.add(r);

else
skip current r;

end

end

Every generated Tuple Conjunction is equipped with a score. The score
is used by the ranking mechanism to calculate the relevance of every matched
document to the user’s query. The base score of a Tuple Conjunction in
the query is determined by the types of the two Resources that are con-
nected via the property. The highest score is assigned to a Tuple Conjunction

that contains two instances of a concept and a property, because this Tuple

Conjunction expressed the information need of the user in the most specific
way. The next higher score is assigned to a Tuple Conjunction that con-
tains an instance of a concept and a concept. The lowest score is given to a
Tuple Conjunction that contains just two concepts and a property. There-
fore, Tuple Conjunctions which represent the user’s information need in the
most specific way get assigned the highest score in the query. For example,
consider a tourism ontology, where a Tuple Conjunction that consists of
the instance “Hotel Elisabeth”, the property located in and the instance
“Mayrhofen”, would express the information need of a user for a specific hotel
in a specific city. According to this Tuple Conjunction the user would be
looking for information about the hotel named “Elisabeth” which is located
in Mayrhofen. Therefore, those documents which are about this specific hotel
should be ranked the highest and all other hotels in Mayrhofen that might
also be of interest to the user ranked lower.

However, a Tuple Conjunction that consists of the concept Hotel, the
property located in and the instance “Mayrhofen”, expresses the informa-
tion need of a user in a much broader sense. Therefore, the user is not looking
for a specific hotel, but rather for any hotel that is located in Mayrhofen.
Hence, the user is invariant about the ranking of documents describing ho-
tels as long as the described hotels are located in Mayrhofen. Any other ho-
tel that is not located in Mayrhofen is of little interest to the user and is
ranked lower. An example for a least specific Tuple Conjunction would be

18 Gärtner Markus et al.

one that contains the concept Hotel, the property located in and the con-
cept Near River. In this case any hotel that is located near a river would be
part of the result but ranked arbitrarily. In terms of query expansion, every
Tuple Conjunction is extended with all possible concept and instance combi-
nations. Therefore, the Tuple Conjunction “Hotel Elisabeth” - located in

- “Mayrhofen” is extended with the Tuple Conjunctions Hotel - located

in -“Mayrhofen”, “Hotel Elisabeth” - located in - Location and Hotel -
located in - Location. All Tuple Conjunctions get assigned a score accord-
ing to their information specificity. Therefore, in the result those documents
that are about the hotel named Elisabeth which is located in Mayrhofen are
ranked first, followed by those about hotels in Mayrhofen, followed by other
hotels that are named Elisabeth but are not located in Mayrhofen, and finally
any hotel that is located in any location is listed.

Furthermore, the position of a Tuple Conjunction in the query graph is
incorporated into its score. The farther away a Tuple Conjunction is from
the root Tuple Conjunction of its query graph, the lower is its impact on the
overall score of the query graph. Therefore, those Tuple Conjunctions which
are stated first in the query graph are considered as more relevant than those
at the outer border of the query graph. Consider the query graph depicted
in the central box of Figure 5. In this query graph the root Concept of the
graph is GuestHouse which is modified by the property located in and the
instance “Mayrhofen”. The instance “Mayrhofen” is modified by the property
offers attraction and the instance “Rafting”. Since “Mayrhofen” modifies
the root concept of the graph and Rafting only modifies “Mayrhofen”, the
Tuple Conjunction containing the instance “Rafting” gets assigned a lower
query score than the Tuple Conjunction containing “Mayrhofen”.

However, this is an experimental feature of HS3 which can be disabled
by the user. If the user chooses to not use this feature all scores of the Tuple

Conjunctions objects are multiplied by a factor of 1 and not by a diminishing
factor that is calculated based on the concept’s position in the query graph. To
demonstrate the ranking functionality consider the query presented in Figure
5 and the simplified Combined Index depicted in Figure 6 which holds index
information of only four documents.

As depicted in Figure 5 the user’s query is transformed into the query
graph and subsequently into tuples via the algorithm depicted in Algorithm 1.
Subsequently, the tuples of the query are used to identify those documents that
contain part or all tuples of the query in the Combined Index. In the Combined
Index depicted in Figure 6 all documents hold at least one tuple that is also
contained in the query. As HS3 uses a query expansion mechanism, the query
is expanded to consider not only the concept GuestHouse but also similar
concepts such as Apartment, Hotel or Farm via the Realm functionality. For
this reason Document 1 is also considered as relevant by the search mechanism.
In terms of ranking Document 4 will be ranked first, because the tuples that
are encoded in the Combined Index for Document 4 match all query tuples
and therefore the score of the document is the highest. Document 2 will be
ranked second, because it matches all but one tuple of the user query.

HS3 - A Hybrid Semantic Search System 19

Fig. 6 A simplified Combined Index holding the index data of four documents

Document 1 will be ranked third, because it matches also all but one tuple
of the user query, but gets assigned a lower score because it only contains the
concept Farm and not GuestHouse. However, due to the expansion function-
ality, this match, which is pretty close to the user’s query, is also returned.
Finally, Document 3 will be ranked fourth, because in the Combined Index
only one tuple is encoded for Document 3 that matches one of the tuples
of the user’s query. In case the user would have stated a specific guesthouse
instance in the query, documents that hold tuples that describe this specific
guesthouse would have been ranked higher than those documents that hold
tuples of arbitrary guesthouses with the same criteria.

4.1.3 Conducting hybrid searches with the HS3

Consider the scenario where a tourist wants to go for a trip to Tyrol and is
looking for a child-friendly guesthouse which is located in Mayrhofen prefer-
ably. We will use the GWT-based Web UI to showcase the usage of HS3. As
one of the main issues of current semantic and hybrid search systems is their
lack of usability, we developed the GWT-based Web UI, which implements
an interactive ontology-aware keyword-based input mechanism. The average
Internet user is used to simple input mechanisms such as the ones provided
by major search engines using a simple text field and search button as in-
put. A problem specific to hybrid search systems is that keyword-based and
concept-based input needs to be supplied in separate input fields. With the
GWT-based Web UI we seek to overcome this issue by providing the user with
the possibility to explicitly state what terms should be treated as keywords
in the query via the suggestion mechanism. The standard input mechanism

20 Gärtner Markus et al.

of the GWT-based Web UI looks similar to the input mechanism offered by
most search engines, where a user types keywords into a text field.

Even though the input mechanism looks similar, it offers substantial help to
the user by recognizing and annotating concepts and instances while the user
is typing. For every recognized concept or instance in the text field the system
opens a list beneath the term to let the user choose a more detailed or broader
representation of a concept, hence a sub-concept or super-concept. In case the
user did not intend to search for the concept or instance and was rather looking
for the term in a document she can chose the Keyword concept from the list.
Therefore, to search for a child-friendly guesthouse the user will start to type
the term child-friendly into the text field depicted in Figure 7 (1). While the
user is typing the client application checks if the lightweight ontology model,
which was returned by the Ontology Wrapper service, contains any concept
that is equipped with a textual representation matching the current input.
Since the ontology does not contain a concept representing child-friendliness,
the client application issues a call to the Instance Suggestor service to check if
there is an instance in the KB with a textual representation matching the term
child-friendly. As there is no such instance the term is automatically identified
as keyword indicated by a light gray box surrounding the term child-friendly.

Next, the user types the term guesth and the suggestion mechanism sug-
gests the concept GuestHouse as appropriate match. The GuestHouse concept
has a super-concept Accommodation. Therefore, the client application displays
a drop-down list below the current term, depicted in Figure 7 (2), that contains
the concepts Accommodation, GuestHouse, similar concepts (such as Hotel

and YouthHostel) and Keyword. The Keyword concept is always part of a
drop-down list, because a user might be looking for the actual occurrence of
this term as keyword in a document rather than for the concept itself. In
this case the user chooses the GuestHouse concept which is shown as a blue
box holding the corresponding concept. A user might choose a super-concept
such as Accommodation instead of the actual concept when interested in other
accommodation types as well.

When the user has chosen the concept the system consults the lightweight
ontology model again and displays a drop-down list of properties that belong
to the chosen concept depicted in Figure 7 (3). A user might either discard
the suggestions by hitting the ESC key or choose a suitable property to ex-
press the information need in more detail. If the user chooses a property, it is
displayed via a yellow box next to the concept. Since the user is looking for a
guesthouse in Mayrhofen preferably, she will choose the located in property
and type the term Mayrhofen. The client application checks the lightweight
ontology again for textual representations of Mayrhofen. As there is no such
textual representation it issues a call to the Instance Suggestor and gets in re-
turn the instances that have textual representations that equal or partly equal
the term Mayrhofen. Now the user can choose the according instance from the
list. In brackets the concept of the instance is depicted. Now the user either
hits the return button or clicks the search button to issue the search request to
the HS3 server. The client application sends the query to the corresponding

HS3 - A Hybrid Semantic Search System 21

2

3

1

4

5

6

Fig. 7 Interactive GWT-based Web UI

22 Gärtner Markus et al.

service in the Interface Layer on the server which transforms the query ac-
cordingly so it can be interpreted by the Semantic Search Service. Now HS3

has all information it needs to conduct a search. Since the structure includes
a keyword (child-friendly), a concept (Accommodation), a relation (located
in) and an instance of a concept (Mayrhofen) the hybrid semantic search is ex-
ecuted. First, the Semantic Search Service uses the index generated by SIREn
to retrieve all documents that have been annotated with the Accommodation

concept and where the instance of the mentioned accommodation is related to
the instance “Mayrhofen” of the concept type BroadLocation via the located
in property.

In addition the Semantic Search Service uses the keyword child-friendly
to identify those documents that contain the keyword child-friendly and rank
them accordingly. The result list contains links to the appropriate documents
and every entry is equipped with a list of concepts and instances that are
mentioned in the specific document. Interested users can click on a concept
or instance which will result in a popup window displaying the RDF triples
included in the KB for detailed information. Expert users may also chose the
advanced input mechanism by clicking the advanced tab depicted in Figure 7
to issue SERQL or SPARQL queries to the KB. In return the user gets all
RDF triples that match the query and in addition all documents that mention
a concept or instance that is included in the result.

5 Evaluation of HS3

We performed a 3-fold evaluation of HS3, focusing on performance, efficiency
and usability. For the performance evaluation we instructed HS3 to automati-
cally fetch documents to create a document corpus and Combined Index based
on the KIM KB. We measured the time needed by each component of the sys-
tem to perform its task. This was followed by performance tests with queries
of different complexity on document corpora of different size. This gave us
information about the system’s scalability and the correlation between query
complexity, the document corpus’ size and the resulting response time. To
determine the efficiency of the system we conducted a precision and recall
evaluation. Finally, we conducted a usability test with 22 participants to eval-
uate the system’s usability and user acceptance. We were mainly interested
whether users of the system are able to use the novel interactive ontology-aware
input mechanism that combines keyword-based and concept-based input effec-
tively. To evaluate the applicability of the mechanism and its user acceptance
we created 5 search queries, formulated in natural language, and asked the
participants to formulate the search queries with the novel user interface. The
data and query sets used in the evaluations are available from our project
homepage4 to serve as benchmark for further evaluations.

4 http://www.ifs.tuwien.ac.at/ir/hybridsearch

HS3 - A Hybrid Semantic Search System 23

5.1 Performance

For the purpose of evaluating the performance of the Metadata Fetcher, Data
Fetcher, Annotator and Indexer components we used the KIM KB to create a
corpus consisting of 167,029 unique news documents. We configured HS3 to
use one Metadata Fetcher, five Data Fetchers, one Annotator and one Indexer.
We configured HS3 to sequentially execute the metadata fetching, data fetch-
ing, annotating and indexing tasks to identify the time needed per component
to perform its task. The performance tests were conducted on a commodity
notebook with a 2 Gigahertz Dual Core Processor and 4 GB of RAM. It took
the Metadata Fetcher about 20 minutes to fetch the metadata of approxi-
mately 200,000 news documents via the Microsoft Bing News API containing
information about one or more entities stored in the KIM KB. Of the approxi-
mately 200,000 news documents that were identified by the Metadata Fetcher
some were duplicates and others not available anymore, resulting in 167,029
unique documents that had been actually fetched, parsed and saved as GATE
Documents to the hard disk. The five Data Fetchers needed approximately 8
hours to perform the fetching, parsing and storing of documents to the hard
disk. The Annotator needed approximately 20 hours to annotate all documents
and the Indexer approximately 10 hours to index all documents. In summary
it took HS3 approximately 38 hours to generate the document corpus and cor-
responding Combined Index when the components were running sequentially.
By using more than one Annotator and Indexer the tasks can be distributed to
reduce the time needed for annotating and indexing documents. Furthermore,
it is possible to use computers with higher processing power or distribute the
components of HS3 to different servers to reduce the time even more.

5.2 Precision and Recall

The difficulty of evaluating precision and recall for semantic search systems
and hybrid search systems arises from the fact that no public test-datasets
are available that can be used for an unbiased performance comparison among
competing systems. For the evaluation of precision and recall of traditional
IR systems the widely accepted TREC dataset, which includes a document
collection, a set of queries and judgments representing the ground truth, can
be used. However, the TREC dataset is only of limited use to compare se-
mantic systems because a related and publicly available ontology and KB as
well as a corresponding ground truth would be needed. Even though precision
and recall can be evaluated by using a system’s primary dataset, the precision
and recall results are not directly comparable to the results of other seman-
tic search systems as long as they use different datasets. For an accurate and
unbiased comparison the systems that are compared need to operate on the
same document corpus, the same ontology and KB, use the same queries and
need to have the same relevance judgments (ground truth) for documents.
Even though there are some public ontologies available such as the KIM On-

24 Gärtner Markus et al.

Query Nr. Ontology Query
8 e-Tourism Give me information about hotels in Salzburg that are

equipped with a whirlpool
9 e-Tourism Give me information about guesthouses in Mayrhofen that

are located near a mountain
17 News (KIM) Give me news about organizations that are located on the

Cayman Islands and are traded on the NASDAQ
18 News (KIM) Give me news about market research reports of organiza-

tions that are located on the Bermudas

tology or the YAGO Ontology, either a publicly available document corpus or
a corresponding ground truth data is missing.

However, to be able to evaluate precision and recall of HS3 we decided
to make use of two different datasets. The first dataset, henceforth named
the e-Tourism dataset, was created by using our e-Tourism ontology which is
based on the Harmonise Ontology [17] and the KB which was created from
the Tiscover database. We instructed HS3 to automatically fetch documents
that contain information about tourism accommodation and destinations from
the World Wide Web. To actually compare precision, recall and the overall
performance of HS3 to other hybrid search systems we had to ensure that we
use a publicly available ontology, KB and document corpus that is used by at
least one other hybrid search system for the second dataset. Furthermore, we
had to ensure that the systems we compare are able to cope with similar type
of queries. We chose the system presented by [7], because they make use of
the publicly available KIM Ontology and KB and their system can cope with
queries of similar type. The authors also linked to a document corpus that
consists of 145,316 news documents which they have used for the precision
and recall evaluation of their approach. Unfortunately, the referenced news
document corpus is not available anymore. Therefore, we instructed HS3 to
automatically build a corpus containing news documents, using the Microsoft
Bing Service. As Bing only returns documents within a certain date range,
HS3 were able to fetch only about 167,029 unique documents. However, the
generated corpus exceeds the news corpus used by [7] in size and should be
sufficient to compare the performance of both systems.

Another reason for choosing two datasets was that the ground truth for a
small dataset can be determined more accurately than the ground truth for
a large dataset. To generate an accurate ground truth for a large dataset a
multitude of documents would need to be evaluated manually regarding their
relevance for multiple queries. This is somewhat impossible for big datasets
and therefore different automatic or semi-automatic algorithms need to be used
to identify relevant documents in this datasets to get an approximate ground
truth. However, for reasonably small datasets the ground truth can be gen-
erated manually. Therefore, we choose a small dataset, namely the e-Tourism
dataset and a big dataset, namely the news dataset, and took the average of
both precision and recall evaluations to get a more accurate prediction of the
overall precision and recall of HS3.

HS3 - A Hybrid Semantic Search System 25

Fig. 8 Precision and Recall e-Tourism Dataset

We defined 18 queries for the e-Tourism dataset and the news dataset in
total. The four queries that are discussed in more detail are listed in Table 5.2
and the rest is available on the project homepage5. Figure 10 (a) depicts the
average precision and recall curve of the e-Tourism dataset. Furthermore, the
precision and recall curves (b, c) of two specific queries out of the set of 10
queries are depicted in Figure 10 and discussed in the following.

e-Tourism Dataset : Query # 9 (Figure 10 b). The standard com-
bined query executed on the e-Tourism dataset contains the information need
“reviews about guesthouses that are located in Mayrhofen and that are nearby
a mountain”. As the ontology does not contain the concept mountain, the
hybrid semantic search of HS3 leverages the contextual and full text infor-
mation in the Combined Index as complement to retrieve documents. The
hybrid semantic search of HS3 maintains a high precision for the given in-
formation need, because most guesthouses in Mayrhofen have been correctly
annotated by the Annotator. Some have been incorrectly annotated and oth-
ers where missed due to mutated vowels in their name. However, due to the
combined approach the documents mentioning guesthouses which were missed
by the annotator are still returned because they contain the terms “guest-
house”, “mayrhofen” and “mountain” in the full text section of the Combined
Index. The keyword-based search delivers poor results for higher recall val-
ues. The reason is that the keyword-based search is not able to retrieve most
of the documents mentioning guesthouses, because they are mentioned with
their actual name such as “Länderhof” or “Eckartauerhof”. However, since
the query also includes the terms “guesthouse”, “mountain” and “mayrhofen”
the keyword-based approach can still leverage this information to return some
relevant documents.

e-Tourism Dataset : Query # 8 (Figure (Figure 10 c). The stan-
dard query executed on the e-Tourism dataset contains the information need
“reviews about guesthouses that are located in Salzburg and that have a
whirlpool”. The hybrid semantic search provides not all relevant results be-

5 http://www.ifs.tuwien.ac.at/ir/hybridsearch

26 Gärtner Markus et al.

Fig. 9 Precision and Recall News Dataset

cause some guesthouses matching the criteria have not been annotated due to
a mutated vowel as part of their name or encoding problems in the fetched
documents. However, those documents that where correctly annotated and
contain guesthouses matching the criteria are returned. Even documents that
are relevant but do not hold information about the facilities of a guesthouse
are returned among the top ones in case the KB states that the specific guest-
house has a whirlpool. As most documents mention guesthouses with their
actual name or do not contain the term whirlpool the keyword-based ap-
proach returns only those documents that contain the terms “guesthouse”,
“whirlpool” and “salzburg”, which explains the high precision values at low
recall levels. However, in this scenario the hybrid semantic search approach
cannot benefit from the full text information in the index to still return all
relevant documents.

Figure 9 (a) depicts the average precision and recall curve of the news
dataset. Furthermore, the precision and recall curves (b, c) of two queries out
of a set of 8 queries are depicted in Figure 9 and discussed in the following.

News Dataset : Query # 17 (Figure 9 b). The standard query exe-
cuted on the news dataset contains the information need “News about orga-
nizations that are traded on NASDAQ and that are located on the Cayman
Islands”. The corresponding precision and recall curve shows that the hybrid
semantic search approach is superior for this type of information need. The
keyword-based search retrieves no relevant documents. The keyword-based ap-
proach will return documents that contain the terms NASDAQ, organization
and Cayman Islands. However, these documents are not relevant. The rele-
vant documents in the corpus do not contain any of these terms. The relevant
documents just contain the name of the organization such as “Garmin Ltd”.
However, the keyword-based approach returns documents mentioning compa-
nies that are traded on NASDAQ because both terms occur in the document,
but these companies are not located on the Cayman Islands.

The hybrid semantic search approach returns relevant documents because
the Combined Index holds information such as that the annotation of the

HS3 - A Hybrid Semantic Search System 27

Fig. 10 Precision and Recall e-Tourism Dataset

phrase “Garmin Ltd” in a specific document refers to the public company
Garmin Ltd, which is located on the Cayman Islands and traded on NASDAQ.
Still, some documents are missed because the companies are not part of the
KB.

News Dataset : Query # 18 (Figure 9 c). The standard combined
query executed on the news dataset contains the information need “News
about market research reports from organizations that are located in Bermuda”.
As the ontology does not contain the concept market research report, the hy-
brid search of HS3 leverages the contextual and full text information in the
Combined Index to retrieve documents that are relevant. It can be seen that
the hybrid search approach of HS3 returns relevant documents at low recall.
However, since not all companies that are located in Bermuda are contained in
the KB the precision drops at higher recall. The keyword-based approach, on
the other hand, benefits from the fact that several relevant documents contain
the phrase “market research report” and “Bermuda”. In addition, documents
that contain the phrase “market research report” contain mainly information
about specific organizations and eliminate the need for the term organization
to be part of the document. Hence, also relevant documents that mention
organizations with their actual names are returned. In this specific case the
keyword-based approach has the same precision and recall as the hybrid se-
mantic search approach. However, if the information of all companies located
in Bermuda would be stored in the KB, the hybrid search approach of HS3

could still maintain a high precision at higher recall rates.

The average precision and recall curve of the e-Tourism dataset (Figure 10
a) and the news dataset (Figure 9 a) shows that the hybrid semantic search
approach is in general superior to the keyword-based approach. The high pre-
cision of the hybrid search approach on the e-Tourism dataset results from the
combined search approach and the sophisticated annotation and extraction
rules that have been specifically tailored to the tourism domain.

28 Gärtner Markus et al.

Query Nr. Query Type Query Instructions
1 CSI Search for an Apartment.
2 CST Search for a Hotel located in Mayrhofen.
3 CC Search for a Farm located in a Location where English is

spoken.
4 CC Search for a Hotel located in Retz that offers a Telephone

Service.
5 CC & K Search for a Farm where English is spoken and that has a

Garden. Furthermore, the Farm should be described as quiet
on the Webpage where it is mentioned.

Figure 10 depicts the average precision and recall curve that is obtained by
combining the average precision and recall curve of the e-Tourism and news
dataset. Comparing the precision and recall curve of the news dataset to the
average precision and recall curve presented by [7], which was also determined
by using the KIM Ontology, the corresponding KB and a news document
corpus as dataset, it can be seen that HS3’s approach can compete with their
approach in terms of precision and recall. However, the distinction between
the two systems is that HS3 needs at most 0.618 seconds and on average only
0.218 seconds to return the result for a query on a corpus of 167,029 annotated
news documents, but the approach presented in [7] needs up to 30 seconds on
a corpus of 145,316 annotated news documents. However, as discussed earlier,
the precision and recall comparison should be treated with caution, because
even though the systems use the same ontology and KB, the content of the
document corpus used for the evaluation is different and not exactly the same
queries and relevance judgments (ground truth) were used for both systems.
Furthermore, the accuracy of the ground truth of the news corpus is not as
accurate as the one used for the e-Tourism corpus because semi-automatic
approaches have been used to create it. For an accurate comparison the same
publicly available document corpus, ground truth and queries need to be used.

5.3 Usability and User Acceptance

We defined different queries in natural language and asked the test persons
to formulate them using the system’s interactive ontology-aware input mecha-
nism. For this purpose we used our e-Tourism ontology and the corresponding
KB. Table 5.3 lists the queries in natural language. The query type abbrevi-
ation CSI stands for a Concept Simple query, CST for a Concept Standard
query, CC for a Concept Complex query, CC & K for a Concept Complex
query including keywords and CSI & K for a Concept simple query including
keywords. The test persons were asked to rate the difficulty of formulating a
query with the interactive ontology-aware input mechanism with either “very
easy”, “easy”, “OK”, “hard” or “very hard”.

The participants got a short introduction in form of a tutorial before they
started with the evaluation. Of the 22 test persons who participated in the
evaluation 16 were male and 6 were female. They were between 22 and 52

HS3 - A Hybrid Semantic Search System 29

Fig. 11 Usability Evaluation Results

years old and stated that they use the Internet on a moderate or regular ba-
sis. The majority of participants were either working in software development,
customer service, consulting, research, management, logistics or enrolled as
students at a university. Figure 10 depicts the results of the usability evalua-
tion. Every query is represented as one bar in the diagram and separated into
distinct areas according to the difficulty ratings stated by the participants.

For example, 17 participants stated that the formulation of Query 1 was
“very easy”, 4 that it was “easy” and one that it was “hard”. The results
suggest that the majority of participants had no difficulties using the interac-
tive ontology-aware interface. Most participants rated the difficulty of query
formulation with either “very easy”, “easy” or “OK”.

In addition to the query formulation tasks the test persons were asked
what the liked about the interactive interface, what they did not like and
what they would improve. The majority of test persons stated that they liked
the sleek and thin design of the interface which is not overloaded and suits the
purpose of performing semantic searches well. Furthermore, they stated that
it is intuitive to use and very powerful due to its suggestion mechanism and
structured query formulation mechanism. A couple of test persons stated that
they found the different coloring schemes very helpful, because they knew at
the first glance whether they deal with a concept, an instance, a property or a
keyword. All participants found the concept, instance and property suggestion
mechanism either very helpful or helpful.

Asked about what they did not like about the interface a couple of test
persons stated a technical problem which can be attributed to specific charac-
teristics of the Internet Browser used.

6 Conclusion & Future Work

In this paper we have presented the Hybrid Semantic Search System and
its application in two different domains. We pointed out the advantages and
disadvantages of general-purpose search engines and domain-specific search

30 Gärtner Markus et al.

engines. Based on a scenario from the tourism domain we identified shortcom-
ings of current search engines, which do not leverage semantic information to
enhance Information Extraction and Retrieval. Furthermore, recent semantic
search systems, their features and drawbacks have been presented and applied
to the scenario. We identified the main components of existing semantic search
systems, which also influenced the architecture of HS3. This was followed by
a presentation of the actual implementation of HS3.

We then introduced the Combined Index and Index Graphs, which are
used by the Semantic Search Service to conduct hybrid searches that can be
either keyword-based, concept-based or a combination of both. We showcased
how hybrid semantic searches are conducted by using the GWT-based Web UI
of HS3. We presented the results of performance tests, a precision and recall
evaluation and a usability evaluation. The majority of test persons was able
to use the novel interactive ontology-aware interface without difficulties and
liked its intuitive interface as well as its suggestion mechanisms.

Regarding future work, we plan to demonstrate the application of HS3 to
additional domains and extend the suggestion mechanism of the interactive
ontology-aware interface with a context-aware suggestion mechanism. Finally,
we plan to give users the possibility to annotate their query with concepts and
instances, which are not part of the suggestion list, to provide the system with
additional information. This information can be used by the Annotation &
Indexing components to annotate occurrences of previously unknown instances
or identify known instances more accurate. Furthermore, we would like to
apply HS3 to a publicly available Ontology, KB and related document corpus
with according relevance judgments (ground truth) to do a more accurate
prediction of HS3’s precision and recall and compare it with other systems.

References

1. Bast, H., Chitea, A., Suchanek, F., Weber, I.: Ester: efficient search on text, enti-
ties, and relations. In: Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’07, pp.
671–678. ACM, New York, NY, USA (2007). DOI 10.1145/1277741.1277856. URL
http://doi.acm.org/10.1145/1277741.1277856

2. Berendt, B., Hotho, A., Stumme, G.: Towards semantic web mining. In: Pro-
ceedings of the First International Semantic Web Conference on The Semantic
Web, ISWC ’02, pp. 264–278. Springer-Verlag, London, UK, UK (2002). URL
http://dl.acm.org/citation.cfm?id=646996.711414

3. Berger, H., Dittenbach, M., Merkl, D.: An adaptive information retrieval system
based on associative networks. In: Proceedings of the first Asian-Pacific con-
ference on Conceptual modelling - Volume 31, APCCM ’04, pp. 27–36. Aus-
tralian Computer Society, Inc., Darlinghurst, Australia, Australia (2004). URL
http://dl.acm.org/citation.cfm?id=976297.976301

4. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid search:
effectively combining keywords and semantic searches. In: Proceedings of the 5th
European semantic web conference on The semantic web: research and applica-
tions, ESWC’08, pp. 554–568. Springer-Verlag, Berlin, Heidelberg (2008). URL
http://dl.acm.org/citation.cfm?id=1789394.1789446

5. Bonino, D., Corno, F., Pescarmona, F.: Automatic learning of text-to-concept mappings
exploiting wordnet-like lexical networks. In: Proceedings of the 2005 ACM symposium

HS3 - A Hybrid Semantic Search System 31

on Applied computing, SAC ’05, pp. 1639–1644. ACM, New York, NY, USA (2005).
DOI 10.1145/1066677.1067050. URL http://doi.acm.org/10.1145/1066677.1067050

6. Broekstra, J., Kampman, A., Harmelen, F.v.: Sesame: A generic architecture for storing
and querying rdf and rdf schema. In: Proceedings of the First International Semantic
Web Conference on The Semantic Web, ISWC ’02, pp. 54–68. Springer-Verlag, London,
UK, UK (2002). URL http://dl.acm.org/citation.cfm?id=646996.711426

7. Castells, P., Fernandez, M., Vallet, D.: An adaptation of the vector-space
model for ontology-based information retrieval. IEEE Trans. on Knowl.
and Data Eng. 19(2), 261–272 (2007). DOI 10.1109/TKDE.2007.22. URL
http://dx.doi.org/10.1109/TKDE.2007.22

8. Chakrabarti, S., van den Berg, M., Dom, B.: Focused crawling: a new approach
to topic-specific web resource discovery. Comput. Netw. 31(11-16), 1623–1640
(1999). DOI 10.1016/S1389-1286(99)00052-3. URL http://dx.doi.org/10.1016/S1389-
1286(99)00052-3

9. Cimiano, P., Handschuh, S., Staab, S.: Towards the self-annotating web. In: Pro-
ceedings of the 13th international conference on World Wide Web, WWW ’04, pp.
462–471. ACM, New York, NY, USA (2004). DOI 10.1145/988672.988735. URL
http://doi.acm.org/10.1145/988672.988735

10. Cimiano, P., Staab, S.: Learning by googling. SIGKDD Explor.
Newsl. 6(2), 24–33 (2004). DOI 10.1145/1046456.1046460. URL
http://doi.acm.org/10.1145/1046456.1046460

11. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: Gate: A framework and
graphical development environment for robust nlp tools and applications. In: Proceed-
ings of the 40th Anniversary Meeting of the Association for Computational Linguistics
(2002)

12. Delbru, R.: Siren: entity retrieval system for the web of data. In: Proceedings
of the Third BCS-IRSG conference on Future Directions in Information Access,
FDIA’09, pp. 29–35. British Computer Society, Swinton, UK, UK (2009). URL
http://dl.acm.org/citation.cfm?id=2227296.2227302

13. Demartini, G., Firan, C.S., Iofciu, T., Krestel, R., Nejdl, W.: Why finding entities in
wikipedia is difficult, sometimes. Information Retrieval 13(5), 534–567 (2010). DOI
10.1007/s10791-010-9135-7. URL http://dx.doi.org/10.1007/s10791-010-9135-7

14. Dittenbach, M., Berger, H., Merkl, D.: Automated concept discovery from web resources.
In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intel-
ligence, WI ’06, pp. 309–312. IEEE Computer Society, Washington, DC, USA (2006).
DOI 10.1109/WI.2006.45. URL http://dx.doi.org/10.1109/WI.2006.45

15. Ehrig, M., Maedche, A.: Ontology-focused crawling of web documents. In: Pro-
ceedings of the 2003 ACM symposium on Applied computing, SAC ’03, pp. 1174–
1178. ACM, New York, NY, USA (2003). DOI 10.1145/952532.952761. URL
http://doi.acm.org/10.1145/952532.952761

16. Ferrucci, D., Lally, A.: Uima: an architectural approach to unstructured information pro-
cessing in the corporate research environment. Nat. Lang. Eng. 10(3-4), 327–348 (2004).
DOI 10.1017/S1351324904003523. URL http://dx.doi.org/10.1017/S1351324904003523

17. Fodor, O., Werthner, H.: Harmonise: A step toward an interoperable e-
tourism marketplace. Int. J. Electron. Commerce 9(2), 11–39 (2005). URL
http://dl.acm.org/citation.cfm?id=1278095.1278098

18. Ganesan, K., Zhai, C.: Opinion-based entity ranking. Information Retrieval 15(2), 116–
150 (2012). DOI 10.1007/s10791-011-9174-8. URL http://dx.doi.org/10.1007/s10791-
011-9174-8

19. Giunchiglia, F., Kharkevich, U., Zaihrayeu, I.: Concept search. In: Proceedings of the 6th
European Semantic Web Conference on The Semantic Web: Research and Applications,
ESWC 2009 Heraklion, pp. 429–444. Springer-Verlag, Berlin, Heidelberg (2009)

20. Grossmann, D.A., Frieder, O.: Information Retrieval: Algorithms and Heuristics (The
Information Retrieval Series) (2004)

21. ter Horst, H.J.: Completeness, decidability and complexity of entailment for
rdf schema and a semantic extension involving the owl vocabulary. Web
Semantics 3(2-3), 79–115 (2005). DOI 10.1016/j.websem.2005.06.001. URL
http://dx.doi.org/10.1016/j.websem.2005.06.001

32 Gärtner Markus et al.

22. Kandogan, E., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Zhu, H.: Avatar
semantic search: a database approach to information retrieval. In: Proceedings of the
2006 ACM SIGMOD international conference on Management of data, SIGMOD ’06,
pp. 790–792. ACM, New York, NY, USA (2006). DOI 10.1145/1142473.1142591. URL
http://doi.acm.org/10.1145/1142473.1142591

23. Kasneci, G., Suchanek, F.M., Ifrim, G., Elbassuoni, S., Ramanath, M., Weikum, G.:
Naga: harvesting, searching and ranking knowledge. In: Proceedings of the 2008
ACM SIGMOD international conference on Management of data, SIGMOD ’08, pp.
1285–1288. ACM, New York, NY, USA (2008). DOI 10.1145/1376616.1376756. URL
http://doi.acm.org/10.1145/1376616.1376756

24. Kato, M.P., Sakai, T., Tanaka, K.: When do people use query suggestion? a query
suggestion log analysis. Information Retrieval pp. 1–22 (2013). DOI 10.1007/s10791-
012-9216-x. URL http://dx.doi.org/10.1007/s10791-012-9216-x

25. Kiryakov, A., Ognyanov, D., Manov, D.: Owlim – a pragmatic semantic repos-
itory for owl. In: Proceedings of the 2005 international conference on Web Information
Systems Engineering, WISE’05, pp. 182–192. Springer-Verlag, Berlin, Heidelberg (2005)

26. Kosala, R., Blockeel, H.: Web mining research: a survey. SIGKDD Ex-
plor. Newsl. 2(1), 1–15 (2000). DOI 10.1145/360402.360406. URL
http://doi.acm.org/10.1145/360402.360406

27. Kumar, M., Vig, R.: Design of core: context ontology rule enhanced focused web crawler.
In: Proceedings of the International Conference on Advances in Computing, Commu-
nication and Control, ICAC3 ’09, pp. 494–497. ACM, New York, NY, USA (2009).
DOI 10.1145/1523103.1523201. URL http://doi.acm.org/10.1145/1523103.1523201

28. Li, Y., Zhong, N.: Ontology based web mining for information gathering. In: Pro-
ceedings of the 1st WICI international conference on Web intelligence meets brain in-
formatics, WImBI’06, pp. 406–427. Springer-Verlag, Berlin, Heidelberg (2007). URL
http://dl.acm.org/citation.cfm?id=1778453.1778481

29. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41
(1995). DOI 10.1145/219717.219748. URL http://doi.acm.org/10.1145/219717.219748

30. Missikoff, M., Velardi, P., Fabriani, P.: Text mining techniques to automatically
enrich a domain ontology. Applied Intelligence 18(3), 323–340 (2003). DOI
10.1023/A:1023254205945. URL http://dx.doi.org/10.1023/A:1023254205945

31. Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: Kim a
semantic platform for information extraction and retrieval. Nat. Lang.
Eng. 10(3-4), 375–392 (2004). DOI 10.1017/S135132490400347X. URL
http://dx.doi.org/10.1017/S135132490400347X

32. Shen, D., Chen, Z., Yang, Q., Zeng, H.J., Zhang, B., Lu, Y., Ma, W.Y.: Web-page
classification through summarization. In: Proceedings of the 27th annual international
ACM SIGIR conference on Research and development in information retrieval, SIGIR
’04, pp. 242–249. ACM, New York, NY, USA (2004). DOI 10.1145/1008992.1009035.
URL http://doi.acm.org/10.1145/1008992.1009035

33. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A large ontology from wikipedia and
wordnet. Web Semant. 6(3), 203–217 (2008). DOI 10.1016/j.websem.2008.06.001. URL
http://dx.doi.org/10.1016/j.websem.2008.06.001

34. Wang, H., Tran, T., Liu, C., Fu, L.: Lightweight integration of ir and db for scalable
hybrid search with integrated ranking support. Web Semant. 9(4), 490–503 (2011). DOI
10.1016/j.websem.2011.08.002. URL http://dx.doi.org/10.1016/j.websem.2011.08.002

35. Wimalasuriya, D.C., Dou, D.: Using multiple ontologies in information extraction.
In: Proceedings of the 18th ACM conference on Information and knowledge man-
agement, CIKM ’09, pp. 235–244. ACM, New York, NY, USA (2009). DOI
10.1145/1645953.1645985. URL http://doi.acm.org/10.1145/1645953.1645985

36. Zhou, D., Lawless, S., Wade, V.: Improving search via personalized query expansion
using social media. Information Retrieval 15(3-4), 218–242 (2012). DOI 10.1007/s10791-
012-9191-2. URL http://dx.doi.org/10.1007/s10791-012-9191-2

