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Abstract— The Self-Organizing Map (SOM) is a very popular
neural network model for data analysis and visualization of
high-dimensional input data. The Growing Hierarchical Self-
Organizing Map (GHSOM) – being one of the many architectures
based on the SOM – has the property of dynamically adapting its
architecture during training by map growth as well as creating
a hierarchical structure of maps, thus reflecting hierarchical
relations in the data. This allows for viewing portions of the
data at different levels of granularity. We review different SOM
quality measures and also investigate alternative strategies as
candidates for guiding the growth process of the GHSOM in
order to improve the hierarchical representation of the data.

I. INTRODUCTION

The Self-Organizing Map (SOM) [1], [2] has shown to be
exceptionally successful in mapping high-dimensional input
data to a two-dimensional output space such that similar
inputs are mapped onto neighboring regions of the map. In
other words, the similarity of the input data is preserved as
faithfully as possible within the representation space of the
SOM. However, its static nature in terms of map size and
the fact that the size must be determined prior to training
usually implies multiple runs until optimal results are reached.
Especially when large data sets are to be clustered at a fine-
grained map resolution, i.e. the map consists of a large number
of units, this can be very a time consuming task. Furthermore,
the two-dimensional map representation inherently disregards
potential hierarchical characteristics of the data.

Among the large number of research publications discussing
the SOM (see [3] and [4]), different variants and extensions
have been introduced. Some of the extensions of the SOM
algorithm and architecture address the disadvantages of fixed
size and missing hierarchical representation. One of the SOM-
based models implementing an algorithm dealing with both
issues is the Growing Hierarchical Self-Organizing Map (GH-
SOM) [5], [6], [7]. The GHSOM is a neural network archi-
tecture combining the advantages of two principal extension
of the Self-Organizing Map, dynamic growth and hierarchical
structure. Basically, this neural network model is composed
of independent SOMs, each of which is allowed to grow in
size during the training process until a certain quality criterion

regarding data representation is met. This growth process is
further continued to form a layered architecture such that
hierarchical relations between input data are further detailed
at lower layers of the hierarchy. Consequently, the structure of
this adaptive architecture automatically adapts itself according
to the structure of the input space during the training process.

So far, the quantization error has been used as a measure
to automatically guide the growth process of the architecture,
both in terms of map and hierarchical growth. In other words,
the single maps are allowed to grow until a certain quality
criterion depending on the quantization error of a higher-layer
unit is reached. Moreover, the expansion of the hierarchy into
further layers also depends on the quantization errors of the
single units on a map. Consequently, each layer deeper in the
hierarchy contains maps that represent the data at a higher
level of granularity. Depending on the main parameter that
guides the training process, the resulting structure is either a
flat hierarchy with rather large maps or a deep hierarchy with
rather small maps.

However, in the case of the GHSOM being used as a
tool for providing hierarchically structured access to, e.g. a
text document collection, it would be more beneficial to
create rather small maps in the upper layers of the hierarchy
providing a very coarse overview of the main topics and larger
maps in the lower layers for a fine-grained distinction between
the data points. In this paper we investigate various SOM
quality measures reported in literature for their suitability to
be used for controlling the growth process of the GHSOM
as an alternative to the quantization error. We also discuss
the necessity of more complex criteria for certain application
domains where the GHSOM can be used for visualization. We
report on their effects of representation quality as well as on
the structure of the architecture by comparing the character-
istics of trained GHSOMs using an inherently hierarchically
structured artificial data set.

The remainder of this paper is structured as follows. In
Section II we discuss related growing, as well as hierarchical
neural network models also being based on the SOM. The prin-
ciples of the original Growing Hierarchical Self-Organizing



Map algorithm are reviewed in Section III followed by a
discussion of alternative quality measures and strategies to
guide map and hierarchy growth in Section IV. In Section V
the effects on different growth strategies on the outcome of
the training process are shown. Finally, some conclusions are
drawn in VI.

II. RELATED WORK

SOM-based neural networks that grow during map training
have in common that the training process starts with a rather
small number of units. New units are inserted into the network
at certain iterations until a stopping criterion, e.g. a predefined
number of iterations or level of mapping quality, is reached.
In some models, links between units are being added or
removed during training, thus, influencing their neighborhood
relations and allowing for a stronger separation of clusters. The
Incremental Grid Growing [8], for example, initially consists
of four connected units in a rectangular grid structure. During
the training process, the structure as well as the connectivity
of the network is dynamically adapted by adding new units
at the border of the network adjacent to the unit having the
maximum quantization error, in order to provide more map
space for a better representation of the input data in this
specific area of the network. Similarly, during the training of
the Growing Cell Structures introduced by Fritzke [9], units
are added and the state of connections changed, but with more
freedom regarding the topology of the map space. Growing
Neural Gas [10] uses a similar algorithm but implements
a different learning rule. A dynamically growing network
model, again adhering to a rectangular grid structure, is the
Growing Grid [11]. Complete rows and columns of units are
added to the network maintaining a rectangular grid until the
training process is terminated by reaching a certain number of
map units or if a certain quality criterion is met. New units
are inserted periodically after a number of training iterations
between the unit with the highest number of “hits” and its
most dissimilar direct neighbor in terms of weight vector
distance. The connections between the units remain untouched.
A growing network model with an adaptive hyper-cubical
output space is presented in [12].

A second type of SOM variants are hierarchical models such
as the Hierarchical Feature Map [13]. This model consists
of a pyramidal hierarchy of SOMs with one map at the top
layer and for each of its units, a map is present at the second
layer. This principle is repeated with the third and any further
layers. Map training is performed top-down according to the
standard SOM training algorithm, but the input for maps in the
second and subsequent layers are only the respective portions
of the data which have been mapped onto the according
upper-layer units. Despite the computational advantage of this
architecture, the size of the single maps and the hierarchical
structure itself has to be determined prior to training. Hence,
the structure of the representing hierarchy is imposed on the
data rather than vice versa. The Tree Structured SOM [14]
is a hierarchical model primarily with computational speed-
up in mind in order to train large maps in shorter time by

exploiting the hierarchy for efficient fast winner search. Quite
recently the Evolving Tree has been introduced, a SOM-based
network overcoming the constraints of map-like topologies
with the units being arranged in a growing tree topology [15].
An architecture based on the GHSOM and Growing Neural
Gas with parameter self-adjustment focusing on robustness
regarding clustering of non-stationary data is the Dynamic
Adaptive Self-Organizing Hybrid Model [16].

III. GHSOM ARCHITECTURE AND TRAINING

The key idea of the GHSOM is to use a hierarchical
structure of multiple layers where each layer consists of a
number of independent SOMs. One SOM is used at the first
layer of the hierarchy. For every unit in this map a SOM might
be added to the next layer of the hierarchy. This principle is
repeated with the third and any further layers of the GHSOM.

Since one of the shortcomings of SOM usage is its fixed
network architecture we preferred to use an incrementally
growing version of the SOM similar to the Growing Grid. This
relieves us of the burden of predefining the network’s size,
which is rather determined during the unsupervised training
process. We start with a layer 0 consisting of only one single
unit. The weight vector of this unit is initialized as the average
of all input data. The training process then basically starts with
a small map of ����� units in layer 1 that is self-organized
according to the standard SOM training algorithm.

This training process is repeated for a number � of training
iterations. � is determined by the number of input data to be
trained on the map. Ever after � training iterations the unit
with the largest deviation between its weight vector and the
input vectors represented by this very unit is selected as the
error unit � . In between the error unit � and its most dissimilar
neighbor � in terms of the input space either a new row or a
new column of units is inserted. The weight vectors of these
new units are initialized as the average of their neighbors.

An obvious criterion to guide the training process is the
quantization error �	��
 , calculated as the sum of the distances
between the weight vector of a unit � and the input vectors
mapped onto this unit. It is used to evaluate the mapping
quality of a SOM that is based on the mean quantization error
(MQE) of all units on the map. A map grows until its MQE is
reduced to a certain fraction �� of ����
 of unit � in the preceding
layer of the hierarchy. Thus, the map now represents the data
mapped onto the higher layer unit � in more detail.

As outlined above, the initial architecture of the GHSOM
consists of one SOM. This architecture is expanded by another
layer in case of dissimilar input data being mapped on a
particular unit. These units are identified by a rather high
quantization error �	��
 which is above a threshold �� . This
threshold basically indicates the desired granularity of data
representation as a fraction of the initial quantization error
at layer 0. In such a case, a new map will be added to
the hierarchy and the input data mapped on the respective
higher layer unit are self-organized in this new map, which
again grows until its MQE is reduced to a fraction �� of the
respective higher layer unit’s quantization error ����
 .
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Fig. 1. GHSOM reflecting the hierarchical structure of the input data.

A graphical representation of a GHSOM is given in Fig-
ure 1. The map in layer 1 consists of � � � units and provides
a rough organization of the main clusters in the input data.
The six independent maps in the second layer offer a more
detailed view on the data. Two units from one of the second
layer maps have further been expanded into third-layer maps
to provide a sufficiently granular data representation.

Depending on the desired fraction  � of MQE reduction,
we may end up with either a very deep hierarchy consisting
of small maps, a flat structure with large maps, or – in the
most extreme case – only one large map, which is similar to
the Growing Grid. The growth of the hierarchy is terminated
when no further units are available for expansion. It should be
noted that the training process does not necessarily lead to a
balanced hierarchy in terms of all branches having the same
depth. This is one of the main advantages of the GHSOM,
because the structure of the hierarchy adapts itself according
to the requirements of the input space. Therefore, areas in
the input space that require more units for appropriate data
representation create deeper branches than others.

The growth process of the GHSOM is mainly guided by
the two parameters �� and 	� , which merit further considera-
tion. Parameter  � controls the minimum granularity of data
representation, i.e. no unit may represent data at a coarser
granularity. If the data mapped onto one single unit still has
a larger variation, a new map will be added originating from
this unit representing this unit’s data in more detail at a sub-
sequent layer. This absolute granularity of data representation
is specified as a fraction of the inherent dissimilarity of the
data collection as such, which is expressed in the MQE of the
layer 0 map that is effectively equal to the quantization error
of its single unit. If we decide after the termination of the
training process that a yet more detailed representation would
be desirable, it is possible to resume the training process from
the respective lower level maps, continuing to both grow them
horizontally as well as adding new lower level maps until

a stricter quality criterion is satisfied. This parameter thus
represents a global termination and quality criterion for the
GHSOM.

Parameter �� controls the actual growth process of the
GHSOM. Basically, hierarchical data can be represented in
different ways favoring either (a) lower hierarchies with rather
detailed refinements presented at each subsequent layer or (b)
deeper hierarchies, which provide a stricter separation of the
various sub-clusters by assigning separate maps. In the first
case we will prefer larger maps in each layer that explain larger
portions of the data in their flat representation, allowing less
hierarchical structuring. In the second case, however, we will
prefer rather small maps, each of which describes only a small
portion of the characteristics of the data, and rather emphasizes
the detection and representation of hierarchical structure.

Thus, the smaller the parameter  � , the larger will be
the degree to which the data has to be explained with one
single map. This results in larger maps as the map’s mean
quantization error (MQE) will be lower the more units are
available for representing the data. If �� is set to a rather
high value, the MQE does not need to fall too far below
the quantization error of the upper layer’s unit it is based
upon. Thus, a smaller map will satisfy the stopping criterion
for the horizontal growth process, requiring the more detailed
representation of the data to be performed in subsequent
layers.

In a nutshell we can say, that the smaller the parameter
value �� , the more shallow the hierarchy, and that the lower
the setting of parameter  � , the larger the number of layers in
the resulting GHSOM network will be.

Apart from the advantage of automatically determining the
number of units required for data representation and the re-
flection of the hierarchical structure in the data, a considerable
speed-up of the GHSOM training process as compared to
standard SOM training has to be noted. The reasons for this
are twofold. First, at the transition from one layer to the
next, vector components that are (almost) identical for all
data items mapped onto a particular unit can be omitted for
training of the according next layer map, because they do
not contribute to differentiation between them. Hence, shorter
input vectors lead directly to reduced training times because of
faster winner selection and weight vector adaptation. Secondly,
a considerable speed-up results from smaller map sizes, as the
number of units that have to be evaluated for winner selection
is smaller at each map. This results directly from the fact
that the spatial relation of different areas of the input space is
maintained by means of the network architecture rather than
by means of the training process.

IV. QUALITY MEASURES AND ENHANCED GROWTH

STRATEGY

Because of the determining characteristic of the SOM to
provide a topology-preserving mapping from some input data
space to a usually two-dimensional output space, most quality
measures assess the degree of topological ordering of the map.
The topographic error [17] is calculated as the number of data



points for which the best-matching unit and the second best-
matching unit are not adjacent divided by the total number of
data points. Hence, a value of zero means that no topological
distortions are present on the map. Trustworthiness as intro-
duced in [18], quantifies the mapping quality by measuring if
the neighborhoods in the output space are properly preserved
in the input space. The topographic product [19] only takes
the units’ weight vectors into account but also determines the
degree of topology preservation of the mapping from input
to output space. This measure can be used to determine the
optimal size of the map as well as the appropriate dimension of
the output space. Villmann et al. present an improvement of the
topographic product in [20]. Contrary to most other measuring
approaches, the topographic function takes the topology of
the input data space into account. For an in-depth theoretical
review of quality measures specifically for Self-Organizing
Maps we refer to Polani [21] and for topographic mappings
in general to Goodhill and Sejnowski [22]

However, these quality measures have in common that infor-
mation about quantization is not taken into account. Moreover,
since the estimation of an initial quality value (layer 0) needed
as a starting point for GHSOM training, the measure has to be
computable for single units. Hence, it is not possible to use
the topology preservation measures mentioned above.

To reach the desired property of a coarse overview in higher
layers and a fine-grained representation in lower layer maps,
we introduce an additional factor modifying parameter  � . In
order to reach an even higher resolution at lower layers,  �
is multiplied by a factor ��������� that decreases with each
level of the hierarchy. Consequently, the mean quantization
error a specific map has to reach is smaller than compared to
the standard algorithm.

V. EXPERIMENTS

A. Data Set

In order to effectively demonstrate the effects of the dif-
ferent growth strategies, we have created an artificial data
set with obvious hierarchical structure. The application of
the Growing Hierarchical Self-Organizing Map for organizing
a real-world document collections has been shown in [7].
The data set, as depicted in Figure 2, consists of 3,250 two-
dimensional data points that have been drawn from different
normal distributions. These 65 small clusters consisting of
50 data points each, are grouped to form larger clusters at
various levels of granularity constituting six large clusters at
the coarsest level. The six large clusters have been labeled with
numbers 1 to 6 consisting of 400, 150, 950, 1000, 200 and 500
data points, respectively. Additionally, 26 second-level labels
have been assigned to the data points in order to be able to
evaluate the cluster quality of the second-layer maps.

B. Results

We have trained different Growing Hierarchical Self-
Organizing Maps setting to show the effects of parameter
selection as well as the proposed extension of the growth
strategy. The mapping quality itself, i.e. the purity of class

Fig. 2. Artificial two-dimensional data set.

distribution on each node, is nearly optimal, because the input
space is of the same dimensionality as the output space.
Figures 3 and 4 show the resulting hierarchy of maps with
�� set to a high and a low value respectively. The GHSOM in
Figure 3 consists map of size � � � , of which all units have
been expanded to the second layer. This number of units on
the top-layer map matches exactly the six main clusters of the
data set which is desirable in this case. When operating on
real world data, such as in document clustering, the inherent
number of clusters is of course not that clear, since the data
is usually more noisy and clusters are potentially overlapping.
Boxes shaded gray denote units that have been expanded to the
next layer. Furthermore, the percentages indicate the cluster
purity of the map units, i.e. the number of data points from
the predominant class on the unit divided by the total number
of data points on the unit.

The second-layer maps are, again, rather small and most
of the units have further been expanded into the third layer.
Please note that the cluster purity values are based on the
second-level class labels.

Contrary, the second hierarchy as shown in Figure 4 has
grown into a larger map, which explains the data in more
detail, but the number of data points per unit is still too high for
a fine-grained representation. Nevertheless, the quantization
errors of most units are low enough, so that only five second-
level maps have been created showing the respective parts of
the data in more detail. Here, the coarse overview in the top
level is not optimally provided as the main clusters are already
distributed over different numbers of units.

Consequently, using a factor � to increase the required
quality criterion defined by  � provides the solution for an
optimal display of the complete data set in a convenient and
concise manner as shown in Figure 5.
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Fig. 3. GHSOM hierarchy with small maps. Percentages denote cluster purity
values of the units.
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Fig. 5. GHSOM with enhanced growth strategy. All units in the second an
subsequent layers have a cluster purity of 100%.

VI. CONCLUSIONS

In this paper we have revisited the Growing Hierarchi-
cal Self-Organizing Map (GHSOM), a dynamically growing,
hierarchical neural network architecture based on the Self-
Organizing Map. We have found that most of the quality
measures found in literature are not suitable for the purpose of
improving the growth process due to their nature of focusing
on measuring topology preservation rather than quantization
properties of such maps. Hence, we have considered a different
strategy regarding the determination of the desired level of
data representation granularity at the different levels of the
hierarchy again based on the quantization error only. This
strategy improves the quality of data representation especially
for the task of providing an interface for visual data inspection
where a rough classification at the top level and a more fine-
grained representation at the lower layers is desired as it
is the case for hierarchically organizing large text document
collections. Nevertheless, the combination of a quality measure
for map growth and a different measure for expanding units
to subsequent layers merits further consideration.

However, it is clear that an additional parameter is the
downside of an improved outcome of the GHSOM training
process for certain application domains, such as document
clustering. Additionally, it has to be noted that quantitatively
assessing the proposed improvement is difficult, because a
large real-world data set – which justifies using the GHSOM
because of the number of data points, e.g. documents – that
includes class labels at different levels of a hierarchical class
structure is not known to the authors.
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