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Abstract

Text Categorization (TC) is the discipline concerned with the construction of automatic text
classifiers, i.e. programs capable of assigning to a document one or more among a set of
predefined categories based on the content of the document. Building these classifiers is itself
done automatically, by means of a general inductive process that learns the characteristics
of the categories from a set of preclassified documents. In this paper we discuss a class
of applications, automatic indexing with controlled vocabularies, that is of direct concern to
organizing digital libraries. We exemplify this class of applications by discussing an ongoing
project aimed at classifying scientific papers about computer science with respect to the ACM
Classification Scheme.

When it was proclaimed that the Library contained all books, the first impression
was one of extravagant happiness. All men felt themselves to be the masters of an
intact and secret treasure. There was no personal or world problem whose eloquent
solution did not exist in some hexagon. (. . . ) As was natural, this inordinate
hope was followed by an excessive depression. The certitude that some shelf in
some hexagon held precious books and that these precious books were inaccessible,
seemed almost intolerable.

[Jorge Luis Borges, The Library of Babel, 1941]

1 Introduction

In the short story The Library of Babel Jorge Luis Borges envisions the world as a library
of infinite size which contains all possible books, i.e. all possible sequences of symbols that
can be built out of a given alphabet. Some of these sequences are totally random juxtaposi-
tions of symbols, with no morphological or syntactic well-formedness according to any known
language; some others are morphologically and syntactically well-formed according to some
known language, but are not meaningful according to its commonly accepted semantics; still
some others are meaningful but untruthful; and some are both meaningful and truthful.

In such an all-encompassing, chaotic, unorganized library, humans are engaged in the
endless quest for truth, which takes the form of the quest not of generically meaningful and
truthful books, but of the book, the one that reveals eternal truth. Of course, if there is such
an eternal truth, the Library contains such a book, since it contains them all: this justifies



the “extravagant happiness” of humans, but the formidable character of this task also justifies
their “depression”.

Borges’ death in 1986 sadly deprived him of the chance to know about the World Wide
Web, definitely the most faithful enactment of his Library that has been realized to date, and
probably one of the most faithful we can ever think of. Any Web user has surely experienced
the happiness and depression Borges speaks of, in first realizing that the Web contains enor-
mous amounts of useful information just a few clicks away, and in then realizing that without
appropriate tools one might need to access huge quantities of irrelevant information before
hitting on the relevant items.

The disciplines of Information Retrieval (IR) and Text Categorization (TC) have attacked
the problem of information overload from two orthogonal perspectives. While IR strives
to provide better search tools for seeking information in an unstructured collection of doc-
uments [3], the purpose of TC is that of automatically providing better structuring of this
collection so as to make search easier; it is on this latter discipline that this paper concentrates.

TC (see [33] for an introduction and review) is the discipline concerned with the construc-
tion of automatic text classifiers, i.e. programs capable of assigning to a document one or more
among a set of predefined categories based on the content of the document. Building these
classifiers is itself done automatically, by means of a general inductive process that learns the
characteristics of the categories from a set of preclassified documents.

TC has a number of applications, some of them quite esoteric, including text filtering [26],
personalized information delivery [29], word sense disambiguation [11], junk mail filtering [2,
9, 31], Web page classification under hierarchical Internet directories [10], author identification
for literary texts of unknown or disputed authorship [6, 14], automated identification of text
genre [13, 21, 25, 35], automated survey coding [18], and automated essay grading [24]. In
this paper we discuss a class of applications, automatic indexing with controlled vocabularies,
that is of direct concern to organizing digital libraries.

In particular, we will discuss this class of applications by drawing from a project currently
ongoing at the Istituto di Scienza e Tecnologia dell’Informazione. This project, codenamed
CompCat, is an internally funded project concerned with building an interactive classifier
of scientific articles in the computer science domain. Here, an author submits an article to
the classifier, and the classifier suggests to the author a list of categories drawn from the
ACM Classification Scheme1 (ACMCS) ranked in order of estimated suitability to the article.
The method by which classifiers are built takes advantage of the hierarchical structure of the
ACMCS.

This paper is organized as follows. In Section 2 we briefly introduce the basic principles and
techniques of TC. Section 3 discusses the problem of using TC for organizing digital libraries
by automatically tagging articles with categories from a predefined set, and illustrates a novel
approach to the problem that we have developed within the CompCat project. Section 4
concludes, discussing open problems and avenues for further research.

2 A short introduction to text categorization

Text categorization (also known as text classification) is the task of approximating the un-
known target function Φ̆ : D×C → {T, F} (that describes how documents ought to be classi-
fied) by means of a function Φ : D×C → {T, F} called the classifier, where C = {c1, . . . , c|C|}
is a predefined set of categories and D is a domain of documents. If Φ̆(dj , ci) = T , then dj

is called a positive example (or a member) of ci, while if Φ̆(dj , ci) = F it is called a negative
example of ci.

The categories are just symbolic labels, and no additional knowledge (of a procedural
or declarative nature) of their meaning is usually available. It is usually the case that no
metadata (such as e.g. publication date, document type, publication source) are available
either; therefore, classification must be accomplished only on the basis of knowledge extracted
from the documents themselves.

Text categorization is a subjective task: when two experts (human or artificial) decide
whether to classify document dj under category ci, they may disagree, and this in fact happens
with relatively high frequency. A news article on Clinton attending Dizzy Gillespie’s funeral

1http://info.acm.org/class/1998/ccs98.html



could be filed under Politics, or under Jazz, or under both, or even under neither, depending
on the subjective judgment of the expert.

Depending on the application, TC may be either single-label (i.e. exactly one ci ∈ C must
be assigned to each dj ∈ D), or multi-label (i.e. any number 0 ≤ nj ≤ |C| of categories may
be assigned to a document dj ∈ D). A special case of single-label TC is binary TC, in which,
given a category ci, each dj ∈ D must be assigned either to ci or to its complement ci. Multi-
label TC under C = {c1, . . . , c|C|} is usually tackled as |C| independent binary classification
problems under {ci, ci}, for i = 1, . . . , |C|. A classifier for ci is then a function Φi : D → {T, F}
that approximates the unknown target function Φ̆i : D → {T, F}.

We can roughly distinguish three different phases in the life cycle of a TC system: doc-
ument indexing, classifier learning, and classifier evaluation. The three following paragraphs
are devoted to these three phases, respectively; for a more detailed treatment see Sections 5,
6 and 7, respectively, of [33].

2.1 Document indexing

Document indexing denotes the activity of mapping a document dj into a compact represen-
tation of its content that can be directly interpreted (i) by a classifier-building algorithm and
(ii) by a classifier, once it has been built. The document indexing methods usually employed
in TC are borrowed from IR, where a text dj is typically represented as a vector of term
weights �dj = 〈w1j , . . . , w|T |j〉. Here, T is the dictionary, i.e. the set of terms (also known as
features) that occur at least once in at least k documents, and 0 ≤ wkj ≤ 1 quantifies the
importance of tk in characterizing the semantics of dj . Typical values of k are between 1 and
5.

An indexing method is characterized by (i) a definition of what a term is, and (ii) a
method to compute term weights. Concerning (i), the most frequent choice is to identify
terms either with the words occurring in the document (with the exception of stop words, i.e.
topic-neutral words such as articles and prepositions, which are eliminated in a pre-processing
phase), or with their stems (i.e. their morphological roots, obtained by applying a stemming
algorithm). A popular choice is to add to the set of words or stems a set of phrases, i.e. longer
(and semantically more significant) language units extracted from the text by shallow parsing
and/or statistical techniques. Concerning (ii), either statistical or probabilistic techniques
are used to compute terms weights, the former being the most common option. One popular
class of statistical term weighting functions is tf ∗ idf (see e.g. [32]), where two intuitions are
at play: (a) the more frequently tk occurs in dj , the more important for dj it is (the term
frequency intuition); (b) the more documents tk occurs in, the less discriminating it is, i.e. the
smaller its contribution is in characterizing the semantics of a document in which it occurs
(the inverse document frequency intuition). Weights computed by tf ∗idf techniques are often
normalized so as to contrast the tendency of tf ∗ idf to emphasize long documents.

In TC, unlike in IR, a dimensionality reduction phase is often applied so as to reduce the
size of the document representations from T to a much smaller, predefined number. This
has both the effect of reducing overfitting (i.e. the tendency of the classifier to better classify
the data it has been trained on than new unseen data), and to make the problem more
manageable for the learning method, since many such methods are known not to scale well
to high problem sizes. Dimensionality reduction often takes the form of feature selection:
each term is scored by means of a scoring function that captures its degree of (positive, and
sometimes also negative) correlation with ci, and only the highest scoring terms are used for
document representation. Alternatively, dimensionality reduction may take the form of feature
extraction: a set of “artificial” terms is generated from the original term set (by techniques
such as supervised or unsupervised term clustering, or latent semantic indexing) in such a
way that the newly generated terms are both fewer and stochastically more independent from
each other than the original ones used to be.

2.2 Classifier learning

A text classifier for ci is automatically generated by a general inductive process (the learner)
which, by observing the characteristics of a set of documents preclassified under ci or ci,
gleans the characteristics that a new unseen document should have in order to belong to ci.
In order to build classifiers for C, one thus needs a corpus Ω of documents such that the



value of Φ̆(dj , ci) is known for every 〈dj , ci〉 ∈ Ω × C. In experimental TC it is customary
to partition Ω into three disjoint sets Tr (the training set), V a (the validation set), and Te
(the test set). The training set is the set of documents observing which the learner builds
the classifier. The validation set is the set of documents on which the engineer fine-tunes
the classifier, e.g. choosing for a parameter p on which the classifier depends, the value that
has yielded the best effectiveness when evaluated on V a. The test set is the set on which
the effectiveness of the classifier is finally evaluated. In both the validation and test phase,
“evaluating the effectiveness” means running the classifier on a set of preclassified documents
(V a or Te) and checking the degree of correspondence between the output of the classifier
and the preassigned labels.

Different learners have been applied in the TC literature, including probabilistic meth-
ods, regression methods, decision tree and decision rule learners, neural networks, batch and
incremental learners of linear classifiers, example-based methods, support vector machines,
genetic algorithms, hidden Markov models, and classifier committees. Some of these methods
generate binary-valued classifiers of the required form Φ : D × C → {T, F}, but some others
generate real-valued functions of the form CSV : D×C → [0, 1] (CSV standing for categoriza-
tion status value). For these latter, a set of thresholds τi needs to be determined (typically, by
experimentation on a validation set) allowing to turn real-valued CSVs into the final binary
decisions.

2.3 Classifier evaluation

Both training efficiency (i.e. average time required to build a classifier Φi from a given corpus
Ω), classification efficiency (i.e. average time required to classify a document by means of
Φi), and effectiveness (i.e. average correctness of Φi’s classification behaviour) are measures
of success for a learner. However, effectiveness is usually considered the most important
criterion, since in most applications one is willing to trade training time and classification
time for correct decisions. Also, it is the most reliable one when it comes to comparing
different learners, since efficiency depends on too volatile parameters (e.g. different sw/hw
platforms). In TC, effectiveness is often measured by a combination of precision (π), the
percentage of positive categorization decisions that are correct, and recall (ρ), the percentage
of positive, correct categorization decisions that are actually taken. Since a classifier can
be tuned to emphasize one at the expense of the other, only combinations of the two are
significant, the most popular combination nowadays being their harmonic mean F1 = 2πρ

π+ρ
.

When effectiveness is computed for several categories, the results for individual categories
must be averaged in some way; here, one may opt for microaveraging (“categories count
proportionally to the number of their positive training examples”) or for macroaveraging (“all
categories count the same”), depending on the application. The former rewards classifiers that
behave well on frequent categories (i.e. categories with many positive training examples), while
classifiers that perform well also on infrequent categories are emphasized by the latter.

3 Automatic indexing with controlled vocabularies

An important problem in building and maintaining digital libraries is metadata generation,
i.e. the creation of the description of a given document according to the metadata standard
adopted in the digital library of interest. A typical metadata standard for digital libraries
(such as e.g. Dublin Core2) includes several fields (or slots), each of a different nature and of
varying difficulty when it comes to the task of filling them automatically.

In a digital library, some fields can be filled only by drawing data from an external source;
a typical example is a field Publication Source, given that the indication of the source in which
a document was published does not always appear in the document itself, or cannot always
be inferred by looking at its content. Other examples of such fields are Author and Title for
libraries of digital photographs.

Other fields can, in principle, be filled without help from external sources, i.e. by looking at
the document only. Typical examples are the Author and the Title fields in the case of scientific
articles or other such textual documents, since fillers for these slots are usually present in the

2http://dublincore.org/
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1. INTRODUCTION

In the last 10 years content-based document management tasks . . .
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Figure 1: An example first page of an article published in an ACM journal.

document itself. Although the task may be non trivial when documents are heterogeneous in
format, the slot fillers can thus be extracted directly from the document; techniques such as
wrapper induction [15] may be used for this.

Note that in the case of the Author and Title fields of scientific articles, their fillers can
always be unambiguously identified in the document (when they are there) by a human. In-
stead, there are fields for which this is not the case: for instance, the Additional Key Words and
Keyphrases field used in the description of articles published in ACM journals (see the exam-
ple in Figure 1) constitutes a harder problem, since it should be filled with the keywords and
keyphrases contained in the article that are most representative of the article’s content. The
task of their identification is obviously subjective, so that more complex keyphrase extraction
techniques must be employed [36].

A still trickier problem (and the one we concentrate on in this section) is represented by
fields such as the Categories and Subject Descriptors field used in ACM journals (see again
Figure 1), which must be filled by means of one or more categories drawn from the ACMCS.
The reason why the problem is trickier is that a category such as “H.3.1 [Information Storage
and Retrieval]: Content Analysis and Indexing—Indexing methods” may be attached to an
article even if none of the expressions “Information Storage and Retrieval”, “Content Analysis
and Indexing” and “Indexing methods” (i.e. the labels traversed in the root-to-leaf path in the
category tree) occur in the text of the article: this kind of medatada cannot thus be extracted
from the document, but must be generated following a process that involves some kind of
understanding (i) of the content of the document and (ii) of the semantics of the categories
belonging to the chosen classification scheme.

This latter metadata generation problem is known as the problem of automatic indexing
with controlled vocabularies. This was a hugely important problem up to the late ‘80s, since
until then information retrieval systems were mostly of a Boolean nature, and thus required
documents to be represented (i.e. “indexed”) by lists of categories drawn from a predefined set,
a so-called controlled vocabulary, often consisting of a thematic hierarchical thesaurus (e.g.



the NASA thesaurus for the aerospace discipline3, or the MESH thesaurus for medicine4).
Since the attribution of the appropriate categories to a document was not within reach of the
technology of the time, this attribution used to be performed manually by trained profession-
als, a slow and expensive process. The costs involved in this process encouraged the research
in automatic means of indexing documents by means of controlled vocabularies. The seminal
work by Maron [27] is universally considered as the birth of TC, and automatic indexing
with controlled vocabularies is the application that has spawned most of the early research
in TC [4, 12, 19, 20]. Various text classifiers have been explicitly conceived for document
indexing even in recent times [17, 30, 37].

Recalling Section 2, note that automatic indexing with controlled vocabularies is typically
a multi-label TC task.

3.1 Indexing under hierarchically structured classification schemes

CompCat is an internally funded, ongoing project at Istituto di Elaborazione dell’Informazione,
concerned with building an interactive classifier of scientific articles about computer science,
with categories being drawn from the ACMCS. This latter is a tree-shaped hierarchy consist-
ing of 1474 categories among which 258 are internal nodes and 1216 are leaves; its maximum
depth is 4, and documents can be classified both in (third-level) internal nodes (e.g. categories
such as “H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing”) and/or
in leaves (e.g. categories such as “H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—Indexing methods”) of the tree5.

The classifier is to be used within the ERCIM Technical Reference Digital Library (ETRDL),
a networked digital library of technical reports in the computer science and mathematics do-
mains [1]. The idea that underlies this project is to provide an interactive tool by means of
which an author wishing to contribute a technical report to the digital library can receive
support in deciding the ACMCS categories that she should attribute to the paper. Usually,
authors do not have an in-depth knowledge of the ACMCS, and studying it in order to pick
the most appropriate categories for the paper is for them a time-consuming process. As a
consequence, an interactive tool that, after receiving the paper as input, returns a list of
ACMCS categories ranked in order of estimated appropriateness to the paper, is going to be
a useful tool, since the author needs only scan the top part of the list, picking appropriate
entries and stopping when satisfied.

It would certainly be possible to build a tool that classifies scientific papers under the
ACMCS by means of the basic techniques described in Section 2 (and in Section 2.2 in partic-
ular), by simply building a binary classifier for each category ci. However, this naive approach
fails to exploit the hierarchical structure of the ACMCS, treating it as a “flat” set of cate-
gories. Notwithstanding the ubiquity of hierarchically organized category sets, TC techniques
that exploit this structure (a task that we will call hierarchical text categorization) have been
rare, the first attempts dating to the mid ’90s [38]. Omitting to exploit this hierarchical struc-
ture is inadequate, since it is quite intuitive that the relationships of dependence (e.g. “more
general than”, “more specific than”, “sibling of”, etc.) between the categories belonging to
the catalogue could provide a valuable source of information for the classifier learning task.

The method we use in CompCat is based on the “shrinkage” method for hierarchical text
categorization introduced by McCallum et al. [28], but exploits it in a novel way by combining
it with a hierarchical clustering method.

Before describing the original shrinkage method and our own variant of it, we first introduce
the naive Bayesian classification method, which shrinkage uses as basic learner.

3http://www.sti.nasa.gov/nasa-thesaurus.html
4http://www.nlm.nih.gov/mesh/meshhome.html
5In this paper we will always refer to the currently latest version of the ACMCS, which dates back to 1998.

Also, note that we will not strictly adhere to the terminology of the ACMCS, where a distinction is made between
“subject descriptors” (that basically correspond to third- or fourth-level leaves) and “categories” (all the other
nodes); since the distinction does not have a functional character, we will use the name “categories” for all of them.



3.2 Naive Bayesian classification

Naive Bayesian classification is usually achieved by training a probabilistic classifier for each
category ci of interest6. Given dj , a probabilistic classifier for ci outputs a value P (ci|�dj)

denoting the probability that a random document with representation �dj = 〈w1j , . . . , w|T |j〉
belongs to ci. In what follows, we will assume that our task consists in individuating the leaf
categories into which document dj should be classified7. The classification of dj thus consists
in choosing the leafs ck for which P (ck|�dj) is maximized.

McCallum et al. [28] address the problem through the use of a Bernoulli model of document
generation, in which each ci is represented by a “coin” with |T | faces (one face for each tk ∈ T ),

each characterized by a probability of occurrence θik such that
∑|T |

k=1
θik = 1 for all ci ∈ |C|.

A document dj of length n is obtained by tossing this coin n times, and is represented by
a vector �dj = 〈w1j , . . . , w|T |j〉 where wkj represents the number of times tk occurs in dj

(therefore, n =
∑|T |

k=1
wkj). The probability that a document with �dj as representation is

generated, given that coin ci is used, is

P (�dj |ci) = P (n)
n!

w1j !w2j ! . . . w|T |j !

|T |∏
k=1

θ
wkj

ik (1)

where P (n) denotes the probability that the coin is tossed exactly n times. For estimating
the θik parameters one can use plain maximum likelihood (ML) estimation, i.e.

θ̂ik =

∑
dj∈ci

wkj∑
tr∈T

∑
dj∈ci

wrj
(2)

It is now easy to compute P (ci|�dj) through Bayes’ theorem, i.e.

P (ci|�dj) =
P (�dj |ci)P (ci)

P (�dj)
=

P (�dj |ci)P (ci)∑
cr∈C P (�dj |cr)

(3)

where P (ci) can be estimated as
1 + |{dj ∈ ci}|

|C| +
∑

cr∈C |{dj ∈ cr}|
and P (�dj |ci) is given by (1). Note

that for the purpose of computing (3) it is not necessary to estimate the P (n) factor in (1),
since this factor would appear both at the numerator and at the denominator of (3), and
would thus disappear from it.

3.3 Improving parameter estimation by shrinkage

McCallum et al. [28] have proposed the use of a technique called shrinkage for improving
the effectiveness of probabilistic naive Bayesian text classifiers. Shrinkage is a technique
from statistics that allows a more robust estimation of parameters than ML estimation or its
variants (such as ones obtained by Laplace smoothing). The purpose of shrinkage is to obtain
better estimates of θik than the ones obtained by (2), since this latter may yield unreliable
estimates if ci is an infrequent category. This is typically the case with leaf categories in
a hierarchy with many classes and fine-grained distinctions between leaves. If ci is a leaf
distant δ steps from the root, shrinkage builds more robust estimates of θik (indicated as θ̌ik)
by interpolating the ML estimates θ̂ik obtained for ci with the ML estimates θ̂r

ik obtained for
its ancestors πr(ci), for r ∈ {1, . . . , δ}. This means computing

θ̌ik =

δ+1∑
r=0

λr
i θ̂

r
ik (4)

where θ̂0
ik = θ̂ik, the θ̂r

ik estimates are obtained according to (2), and the λr
i are the interpo-

lation weights, with
∑δ+1

r=0
λr

i = 1. Note that (4) assumes the existence of a “virtual” parent

6See [33, Section 6.2] for an introduction to and review of research on probabilistic TC.
7Although ACMCS also allows the tagging of an article by an internal node whose children are leaves, we will

assume, without loss of generality, that tagging dj by such a node is achieved by tagging dj by all its children
leaves.



πδ+1(ci) of the root characterized by the uniform estimate, i.e. such that θ̂δ+1
ik =

1

|T | for all

tk ∈ T ; this is done in order to smooth the parameters for those terms that are rare also in the
root category (i.e. in the entire training set), and eliminates the need for Laplace smoothing.
The λr

i weights are determined by applying a variant of the expectation maximization (EM)
algorithm [5] on a validation set.

The ML estimate θ̂ik is the most specific to ci, because it is based on data from ci alone,
but it is not robust, since these data are typically few. Symmetrically, the estimate θ̂δ

ik is the
least specific to ci, since it is also based on data loosely related to ci, but it is more robust,
since it is based on a very large dataset. Shrinkage thus trades specificity for robustness by
combining them all. In order to maximize the independence of the ML estimates that are
combined by (4), the ML estimate θ̂r

ik for πr(ci) is computed by using, instead of all the data
from πr(ci), the data from πr(ci) minus the data from its child πr−1(ci).

McCallum and colleagues have found that this model improves the effectiveness of naive
Bayesian classification especially for those categories for which few positive training instances
are available; in these cases, the estimates of the naive Bayesian parameters are unreliable,
and shrinkage can help in making them more robust. This is important for our application,
since the ACMCS exhibits fine-grained distinctions among categories, and because of this
many leaf categories are scarcely populated.

3.4 Replacing the ACMCS with an artificially generated hier-
archy

In the CompCat project we exploit the added power of shrinkage over naive Bayesian clas-
sification in a novel way. Our key idea is that of discarding the naturally occurring ACMCS
hierarchy and generating an artificial hierarchy H that has better statistical properties. While
a user of the ETRDL digital library will keep referring to ACMCS (and indeed will have no
knowledge even of the existence of H), the learning algorithm uses H instead of ACMCS, with
the aim of obtaining better classification effectiveness. The two hierarchies have different in-
ternal nodes, different maximal depth, and different structure in general, but have exactly the
same leaves.

How can we obtain a hierarchy with better statistical properties than the naturally occur-
ring one? For the purposes of this work, a measure of goodness of the statistical properties
of a hierarchy will be the gain in effectiveness that shrinkage on the hierarchy achieves over
pure naive Bayesian classification. The main hypothesis that underlies our work is that a
naturally occurring hierarchy such as ACMCS is optimized for human use, but not necessarily
for classifier use. In fact, the structure of the ACMCS was designed by humans for humans,
with the aim of subdividing the field of computer science into disciplines and subdisciplines
in a way that reflects the perception of workers in the field and that optimizes the perusal of
the hierarchy by its users. We instead aim at subdividing the field in a way that reflects the
perception of statistically-motivated text management algorithms. This will be done for the
sole purpose of achieving a better classification behaviour on the ACMCS (natural) hierarchy;
the fact that the two hierarchies have exactly the same leaves guarantees that the user can
ignore the existence of H, since the documents are eventually classified in the leaves, which
are also leaves of ACMCS.

Let us imagine that in order to achieve the subdivision of the computer science field into
disciplines and subdisciplines the designers of the ACMCS have worked in a bottom-up way,
grouping disciplines they recognized to be similar into superdisciplines, and so on. A similar
procedure could be performed automatically by a clustering method, provided a measure of
similarity between the individual items (in our case: the leaf categories) is defined. The key
difference between the two hierarchies is thus the notion of similarity that is being used; a
notion based on “human semantics” in the former case, and a notion based on statistical word
distributions in the latter. Since it is statistical word distributions that both naive Bayesian
classification and shrinkage use, intuition suggests that it is a hierarchy of the latter kind that
shrinkage would best profit from.

We generate an artificial hierarchy by first learning a naive Bayesian classifier for each
(leaf or nonleaf) category ci and then clustering these classifiers (by means of the technique
we describe in Section 3.5); this superimposes a hierarchical structure on the set of categories,
recursively grouping “similar” categories into supercategories.



3.5 Creating a hierarchical view of the classifiers

Several clustering approaches for the detection of hierarchical structure within the input data
are available. Examples of these are all flavours of the single- or complete-linkage clustering
family, graph-based models relying on a minimal spanning tree, and others.

For our initial experiments we have chosen the Growing Hierarchical Self-Organizing Map
algorithm [7], a fully adaptive, hierarchical extension of the Self-Organizing Map method [22].
The main reasons for this choice are the convenient ways of analyzing and interpreting the
resulting structure due to the overall topological organization of the clusters provided by
this neural network model, plus the flexibility and automatic adaptability of the approach.
Furthermore, the GHSOM has frequently been employed successfully in the text clustering
domain, scaling well to the typically very high-dimensional, sparse feature spaces [8].

3.5.1 Self-Organizing Maps

The GHSOM can be viewed as a divisive stochastic model, conventionally using hard as-
signment of data points onto clusters. Its principles are based on the Self-Organizing Map
(SOM) [23], a popular unsupervised neural network model providing a topology-preserving
mapping from a high-dimensional feature space onto a two-dimensional output space in such
a way that similar data points are located spatially close together on the resulting map. The
SOM consists of neural processing units, commonly arranged in the form of a rectangular grid.
Each of the units i is assigned an n-dimensional model vector mi = [µi1, µi2, ..., µin]T , mi ∈
�n, where n is the dimensionality of the feature space to be analyzed. The training pro-
cess of SOMs may be described in terms of input pattern presentation and model vector
adaptation. Each training iteration t starts with the random selection of one input pattern
x = [ξ1, ξ2, . . . , ξn]T , x ∈ �n. This input pattern is presented to the SOM and each unit
determines its activation following some activation function (for which we use the Euclidean
distance), selecting the unit with the smallest distance as the winner c of the current learning
iteration:

c : mc(t) = min
i

||x(t) − mi(t)|| (5)

Subsequently, the model vector of the winner, as well as those of units in a time-decreasing
neighborhood of c are adapted in order to more closely represent the presented input signal.
This adaption is performed as a gradual reduction of the difference between the corresponding
components of the input pattern and the weight vector as given in Expression 6, where
α(t) represents a monotonically decreasing learning rate, and hci(t) an over time decreasing
neighborhood function centered on the winner and monotonically decreasing with increasing
distance from the winner.

mi(t + 1) = mi(t) + α(t) · hci(t) · [x(t) − mi(t)] (6)

A Gaussian may be used to model the neighbourhood function, i.e.

hci(t) = exp

(
−||rc − ri||2

2σ2(t)

)
(7)

with ri representing the two-dimensional vector pointing to the location of unit i within the
grid, and ||rc−ri|| denoting the distance between units c, i.e. the winner of the current training
iteration, and i in terms of the output space.

It is common practice that at the beginning of training a wide area of the output space is
subject to adaptation. The spatial width of units affected by adaptation is reduced gradually
during the training process. Such a strategy allows the formation of large clusters at the
beginning and fine-grained input discrimination towards the end of the training process. The
spatial width of adaptation is guided by means of the time-varying parameter σ.

3.5.2 Growing Hierarchical Self-Organizing Maps

While the SOM has been successfully applied in numerous domains of data analysis, two
short-comings have to be noted, one being the fixed size of the output grid, the definition of
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Figure 2: GHSOM reflecting the hierarchical structure of the input data.

which actually depends on a-priori unknown input data requirements, the second being the
limited support for the detection of hierarchical structures.

The key idea of the GHSOM [7] is to use a hierarchical structure of multiple layers, where
each layer consists of a number of independent SOMs. One SOM is used at the first layer
of the hierarchy. For every unit in this map a SOM might be added to the next layer of the
hierarchy which is trained only with the subset of data items mapped onto the unit it derives
from, thus effectively splitting the data space. This principle is repeated with the third and
any further layers of the GHSOM.

To overcome the limitations of the fixed network architecture we rather use an incremen-
tally growing version of the SOM, similar in spirit to the Growing Grid model [16]. This
relieves us from the burden of predefining the network’s size, which is instead determined
during the unsupervised training process.

Training commences with a layer 0, consisting of only one single unit. The model vector
of this unit is initialized as the average of all input data. The training process basically starts
with a small map of usually 2 × 2 units in layer 1, which is self-organized according to the
standard SOM training algorithm. This training process is repeated for a fixed number λ of
training iterations. After λ training iterations the unit with the largest deviation between its
weight vector and the input vectors represented by this very unit is selected as the error unit.
In between the error unit and its most dissimilar neighbor in terms of the input space, either
a new row or a new column of units is inserted. The model vectors of these new units are
initialized as the average of their neighbors.

An obvious criterion to guide the training process is the quantization error qi, calculated
as the sum of the distances between the model vector of a unit i and the input vectors mapped
onto this unit, or its respective mean quantization error (mqei). It is used to determine the
general data representation quality of a map as identified by its overall quantization error
QE , defined as the sum of the units’ individual qi’s, or again its respective mean over all units
(MQE). A map grows until its QE is reduced to a certain fraction τ1 of the qi of the unit i
in the preceding layer of the hierarchy. Thus, the map now represents the data mapped onto
the higher layer unit i in more detail.

As outlined above the initial architecture of the GHSOM consists of one SOM. This ar-
chitecture is expanded by another layer in case of dissimilar input data being mapped on a
particular unit. These units are identified by a rather high quantization error qi which is
above a threshold τ2. This threshold basically indicates the desired granularity level of data
representation as a fraction of the initial quantization error at layer 0. In such a case, a new
map will be added to the hierarchy and the input data mapped on the respective higher layer
unit are self-organized in this new map, which again grows until its QE is reduced to a fraction
τ1 of the respective higher layer unit’s quantization error qi. Note that this usually will not
lead to a balanced hierarchy. The depth of the hierarchy will rather reflect the diversity in
input data distribution which we will find in our data collection. Depending on the desired
fraction τ1 of QE reduction we may end up with either a very deep hierarchy with small
maps, a flat structure with large maps, or (in the most extreme case) only one large map.
The growth of the hierarchy is terminated when no further units are available for expansion.
A graphical representation of a GHSOM is given in Figure 2. The map in layer 1 consists of



3× 2 units and provides a rough organization of the main clusters in the input data. The six
independent maps in the second layer offer a more detailed view on the data. Two units from
one of the second layer maps have further been expanded into third-layer maps to provide
sufficiently granular input data representation.

4 Conclusion

We have described an application, automatic indexing with controlled vocabularies, that is
of direct concern to the problem of creating a digital library, and we have exemplified the
problem by referring to an ongoing project concerned with building an interactive classifier
of scientific articles in the computer science domain.

For the construction of such an automated classifier we are using a novel combination of
our own implementation of the “shrinkage” parameter estimation model for naive Bayesian
classifiers with a hierarchical version of the SOM clustering method. This allows to exploit
the additional information provided by the hierarchical structure of the category set, while
at the same time benefitting from the good statistical properties of a hierarchy automatically
generated through clustering.
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