Abstract

The organization of large quantities of music is a common problem in an era, in which there is an increase in the spread of digital music: A well-timed means is the classification in appropriate musical genres. We propose the use of text categorization techniques to classify music in the form of song lyrics, which are present in the internet. In addition, different features, both content-based and structure-based features, are extracted from the song lyrics. With these features a classifier is trained, which then assigns the appropriate music genre to the respective lyrics. Support Vector Machines and Naive Bayes Classifiers are primarily used in such classifications. We present experiments comprising the evaluation of the classification process and the combination of different features to increase the classification accuracy. On the basis of these experiments, we study how many lyrics are necessary to get good results, which overall performance we can expect for classification and which feature combinations are suitable for the classification of song lyrics.

Basic Concept

1. song lyrics are extracted from the internet --> arranged into a taxonomy of m musical genres
2. a musical genre is represented by m song lyrics with artists of this genre
3. features are extracted from the song lyrics
4. text classifiers (SVM, Naive Bayes) are trained
5. new song lyrics are classified into one of the m musical genres

Features

- bag-of-Words features: each feature corresponds to a single word found in the lyric
- part-of-speech features: are extracted from the lyrics by assigning part-of-speech tags (noun, verb, preposition, etc.) to the individual words
- language feature: represents the language of the song lyrics
- rhyme features: represent various rhyme patterns identified by analyzing the words at the end of each line
- bag-of-phrases features: each feature corresponds to a phrase found in the lyric
- stemmed word features: are created by stemming each word
- bag-of-lemmas features: each feature corresponds to a lemma found in the lyric
- bag-of-Nouns features: each feature corresponds to a single noun found in the lyric
- bag-of-Vowels features: each feature corresponds to a single vowel found in the lyric
- bag-of-Consonants features: each feature corresponds to a single consonant found in the lyric

Rhyme Detection

Rhyme features are extracted from English song lyrics by identifying rhyme patterns using phonemes. In case of non-English lyrics rhyme detection is performed by comparing the final syllables of words at the end of each line. The rules of extraction of the individual word endings are as follows:

1. If the last character is a consonant, then all characters are scanned to the left, until it gets to a vowel. Then the consonant(s) then make up the word ending. Examples of such are: concentration, measurement, lightning, etc.
2. If the last character is a vowel, then all characters will be scanned to the left, until it gets to a consonant. Consonant(s) then make up the word ending. Examples of such are: dramatize, cinema, etc.

Process of the experiments

1. features are extracted from song lyrics
2. different features are combined into various feature sets
3. chi-square value is computed for each feature --> features are arranged according to size
4. feature vector is created using the first n features with the highest chi-square value, notation Cn
5. classifier is trained (SVM, Naive Bayes)
6. 10-fold cross validation is conducted for evaluation

Evaluation

- accuracy of up to 91% using Support Vector Machines and the Sing365-Corpus
- up to 65% accuracy using SVM and the Parallel-Corpus
- improvement of results of the Parallel-Corpus by modifying the Corpus --> Parallel-Corpus (1 level): 83%
- SVM consistently outperforms Naive Bayes
- stopwords removal improves performance
- worse results using Stemming
- genres with high significance (e.g. Classic containing non-English lyrics) are classified very accurately
- better results achieved with Rhyme features than with POS features
- the use of Phonemes is more suitable for rhyme detection than other approaches
- better results of Parallel-Corpus using SVM and higher feature dimensions

Data Sets

Sing365-Corpus
- 1281 lyrics, 6 musical genres
- lyrics from the website: www.sing365.com
- use of global genres
- musical genres are assigned to the lyrics according to the mappings found in www.allmusic.com

Parallel-Corpus
- 7884 lyrics, 37 musical genres
- corpus was built according to the mp3 files of a private music collection
- lyrics from the websites: lyric.com.ar, sing365.com and oldleyrics.com
- use of musical genres and styles
- genres are assigned according to the respective mp3 file
- genres assigned to the lyrics also assigned to the respective mp3 file
- musical genres and styles of the Parallel-Corpus are merged into global genres