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Zusammenfassung

Die wachsende Popularität und Größe von Musikarchiven – sowohl im
privaten als auch im professionellen Bereich – erfordert neue Methoden
für das Organisieren und Suchen von Musik sowie den Zugriff auf diese
Musikkollektionen. Music Information Retrieval ist ein junges Forschungsge-
biet, das sich mit der Entwicklung von automatischen Methoden zur Berech-
nung von Ähnlichkeit in Musik beschäftigt, um das Organisieren von großen
Musikarchiven auf Basis von akustischer Ähnlichkeit zu ermöglichen. Für
Musikähnlichkeit spielt eine Vielzahl an Aspekten eine Rolle: z.B. Tempo,
Rhythmus, Melodie, Instrumentierung und potenziell auch die Struktur
(Refrain und Vers), der Text und sogar die verwendete Sprache. Um
Musik semantisch erfassen zu können, ohne jeden einzelnen Song manuell
beschriften zu müssen, wird viel Forschung zur automatischen Extraktion
solcher musikalischen Aspekte betrieben.

Diese Algorithmen zur sogenannten Feature (Merkmals-) Extraktion
bilden das Herzstück einer Reihe von weiteren Aufgaben. Unter Verwendung
von Klassifikationsalgorithmen können damit ganze Musikarchive automa-
tisch in Kategorien organisiert werden. Allerdings stellt oft die Einteilung
dieser Kategorien selbst ein Problem dar, sodass andere Methoden gefun-
den wurden, die Musiksammlungen rein aufgrund von Musikähnlichkeiten
in Cluster gruppieren. Dabei wird Musik, die sehr ähnlich klingt, zusam-
men gruppiert und gleichzeitig von Musik mit anderen Charakteristika dis-
tanziert. Um das Resultat intuitiv darstellen zu können, wurde eine Reihe
von Visualisierungen für die Darstellung von Musikarchiven entwickelt.

Diese Diplomarbeit stellt zwei neue Algorithmen für die automatische
Merkmalsextraktion aus Musik vor und beschreibt eine Reihe von Verbes-
serungen an einem weiteren, bereits existierenden Verfahren. Weiters be-
inhaltet die Arbeit eine Studie zur Bedeutung der Psycho-Akustik in der
Berechnung von Musikmerkmalen. Alle neuen Verfahren werden anhand
von Referenz-Musikkollektionen sowie in internationalen Performancever-
gleichen (auf Basis von Genre-Klassifizierung, Interpret-Erkennung und
Ähnlichkeitssuche) evaluiert. Darüber hinaus wird eine neuartige Software
vorgestellt, die Musiksammlungen auf Musiklandkarten darstellt und das
Finden ähnlicher Musik sowie die direkte Interaktion mit der Sammlung
ermöglicht, und zwar sowohl auf PCs als auch auf mobilen Geräten. Zur
Veranschaulichung wurden Mozarts gesamte Werke unter Verwendung der
neuen Methoden zur Merkmalsberechnung auf einer Musiklandkarte orga-
nisiert und die Map of Mozart erstellt.
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Abstract

With increased popularity and size of music archives – in both the pri-
vate and professional domains – new ways for organizing, searching and
accessing these collections are needed. Music Information Retrieval is a
relatively young research domain which addresses the development of au-
tomated methods for computation of similarity within music, in order to
enable similarity-based organization of large music archives.

In music similarity many different aspects play a role, e.g. tempo,
rhythm, melody, instrumentation, but potentially also the structure (cho-
rus/verse), the lyrics and even the language of a song. Much research is
done on the automatic extraction of those aspects in order to describe mu-
sic semantically, without the need of manual annotation.

Those feature extraction algorithms form the basis for a range of further
tasks. Automatic organization of entire music archives into categories can
be accomplished by the use of classification algorithms. However, often
the definition of categories is a problem itself and thus methods have been
created to cluster music collections solely by sound similarity. Clustering
means that music which is very similar is grouped together and separated
from music containing different characteristics. Visualizations have been
devised to provide intuitive views of clustered music collections.

This work contributes two new algorithms for automatic extraction of
features from music and presents a number of improvements on an existing
descriptor. It contains a study on the importance of considering psycho-
acoustics in feature computation. The new approaches are evaluated on a
number of reference music collections as well as in international benchmark-
ing events on music genre classification, artist recognition and similarity
retrieval.

Moreover, a set of novel applications for clustering music libraries on
Music Maps is presented, allowing interaction with and retrieval of music
both on personal computers and mobile devices. For demonstration of prac-
ticability Mozart’s complete works have been organized on a Music Map, the
Map of Mozart, which has been created utilizing the previously evaluated
audio descriptors.
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Chapter 1

Introduction

1.1 Motivation

Music has become one of the predominant goods in our world, not only,

but with increasing importance, in the Internet. Digital music databases

are continuously gaining popularity both in terms of professional reposi-

tories and personal audio collections. Broadcast stations, movie industry,

national archives, etc. are among the professionals concerned with large au-

dio databases. Ongoing advances in network bandwidth and popularity of

Internet services anticipate further growth of the number of private people

having large music collections in digital form.

However, the organization of large music collections is a very time-

intensive and tedious task, especially when the traditional solution of man-

ually annotating semantic data to the audio is chosen. Also, one cannot

rely on meta-data services which deliver data such as artist name, title and

album, because these meta-data may be incorrect or incomplete. Moreover,

traditional search based on file name, song title, or artist does not meet the

advanced requirements of people working with large music archives, because

it either presumes exact knowledge of the meta-data fields or involves brows-

ing of long lists in the archive. For many audio titles and archives apart from

popular music such meta-data is not even available yet. Consequently, the

possibility to search and organize music according to similarity inherent in

the music itself is required.

Fortunately, the research domain of Music Information Retrieval (MIR)

has made substantial progress in recent years to find solutions to these chal-

7



CHAPTER 1. INTRODUCTION 8

lenges. Approaches from Music Information Retrieval accomplish content-

based analysis of music in order to automatically extract semantic descrip-

tors. These descriptors are intended to capture significant aspects of music

such as pitch, timbre, instrumentation, structure, tempo, beat, etc. How-

ever, it is an unsolved problem of what exactly to capture for efficient de-

scription of music. The descriptors, or features, extracted from music are

fundamental to tasks like searching music (i.e. retrieval of similar music to

a given piece), music identification, classification of music into categories

(i.e. automatic meta-data labeling) and organization of music collections

by similarity. The choice of features to extract is a matter of the specific

task, but is also a matter of ongoing research. For instance the utiliza-

tion of psycho-acoustics in feature extraction has not yet been investigated

exhaustively.

In the music feature extraction domain there are two main directions: ex-

traction from symbolic notations (e.g. MIDI files) and extraction from audio

waveform signals (such was CDs, WAV or MP3 files). The challenge of the

signal-based approaches is that only a mixed signal is available, containing

all kinds of sources (different types of instruments, percussion, singing voice

contained in a mixed signal). The challenge of notation-based approaches

is that they do not have information about the actual sound of the music.

This thesis has its focus entirely on systems that are based on extraction

from audio signals rather than symbolic notations.

The extracted features form the basis for a range of applications. One

of them is the automatic classification of music archives into a set of cate-

gories. Musical genre is probably the most popular categorization of music,

promoted by the music industry, used in shops for the arrangement of CDs

and also by home users to organize their music collections. Consequently,

there is substantial need for automatic classification of music into genres.

However, there is the open question of the definition of a genre. The actual

genre categorization depends on the audio collection under consideration

and/or the user’s taste and experience. Nevertheless, with the use of classi-

fication techniques from the machine learning domain combined with recent

approaches for music feature extraction considerable achievements have been

made on music classification. Using these techniques, entire music archives

can be classified and organized automatically.

Yet, musical genres are often defined in a fuzzy way and many genres
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are overlapping. Therefore, other approaches for the organization of music

archives rely on clustering or topology-preserving mapping techniques, such

as, for example, the Self-Organizing Map (SOM), which do not consider cate-

gories but organize music solely by perceived sound similarity. In clustering,

the features extracted from music are analyzed and similar pieces of music

are grouped together, forming clusters. Each type of music with a distinct

style is represented by a separate cluster. Music which is not represented

by a clearly defined style may be either assigned to or located between two

or more clusters of more representative music, depending on the clustering

approach used. The result is an overall organization of a music archive. In

order to depict the clusters a number of visualization techniques have been

devised which provide intuitive views of the music collection. Based on one

of these visualizations the metaphor of a geographic map has been created

for the representation of a music archive in order to create virtual landscapes

of music collections, so-called Music Maps.

On top of these maps various applications have been developed, which

offer completely novel ways of interaction with music archives: Music can be

accessed and played directly based on similarity, while the overview of the

whole music collection is preserved. Playlists can be created depending on

a particular situation or mood, by simply selecting areas on the Music Map.

This novel metaphor for retrieval and browsing of music is particularly useful

on mobile devices and therefore efforts are made for the implementation of

the new interaction models on handheld devices.

To summarize, approaches developed within the Music Information Re-

trieval research domain relieve us from the burden of manual annotation and

labeling of music collections and of organizing them into categories. They

enable us to find music based on the perceived sound similarity rather than

unreliable or inexistent meta-data, they allow the identification of pieces of

music, and they pave the way for completely new models of organization of

and interaction with music collections.

1.2 Outline

This thesis is organized as follows:

Chapter 2 reviews related publications within areas relevant to the work

in this thesis, such as feature extraction approaches from audio, music clas-
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sification, clustering approaches, visualizations and interfaces for Music In-

formation Retrieval (MIR).

In Chapter 3 several classes of standard audio features are explained,

including MPEG-7 and MARSYAS features, as well as three novel feature

sets that are evaluated and utilized in later chapters of this thesis.

Chapter 4 introduces the reference audio collections used in the various

benchmarking campaigns and experiments described in this thesis.

Chapter 5 reviews the history of international benchmarking in MIR

research and reports about both scientific evaluation campaigns as well as

individual evaluations of the audio feature sets developed as part of this

thesis work on both classification and similarity retrieval tasks.

Chapter 6 explains how music is clustered on Self-Organizing Maps, de-

scribes a large number of visualization methods for Music Maps and presents

novel applications for interaction with music. The Map of Mozart is pre-

sented as a demonstration of the practicability of the audio feature extrac-

tion and map organization approaches.

Chapter 7 provides a summarization and draws conclusions.

1.3 Contributions

These are the contributions of this thesis:

• a review of common audio features for Music Information Retrieval

tasks including MPEG-7 standard descriptors as well as state-of-the-

art non-standardized feature sets

• an improved version of the Rhythm Pattern audio feature set, derived

from an evaluation of the impact of utilizing psycho-acoustics in audio

feature computation

• two new feature sets for audio content description: Statistical Spec-

trum Descriptors and Rhythm Histograms, which show comparable

performance or even outperform Rhythm Patterns, yet at much lower

dimensionalities of the resulting feature space

• benchmark evaluation of the feature sets on three standard music

databases and evaluation of combinations of feature sets for music

classification tasks
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• participation in international evaluation campaigns starting from the

ISMIR Audio Description Contest in 2004 up to the most recent

MIREX evaluation campaign 2006 with results stating that the fea-

ture sets developed in the course of this thesis are amongst the best-

performing state-of-the-art methods

• contributions to novel applications for visualization of and interaction

with music collections on desktop computers (PlaySOM) and mobile

devices (PocketSOMPlayer)

• utilization of the novel feature sets and applications for clustering of

music archives using Self-Organizing Maps, with the particular exam-

ple of clustering the complete works of W. A. Mozart and creation of

the interactive “Map of Mozart”

Several parts of the research done for this thesis have been already re-

viewed and published at international scientific conferences. The new audio

feature sets as well as related evaluation experiments were published and

presented at the International Conference on Music Information Retrieval

(ISMIR) 2005 [LR05]. A resynthesis approach of the Rhythm Pattern fea-

ture set has been demonstrated at the International Computer Music Con-

ference (ICMC) 2005 [LPR05]. The submission to the ISMIR 2004 Audio

Description Contest won a prize in the category of Rhythm Classification.

The feature sets devised have been benchmarked in several international

evaluation campaigns (MIREX). The Rhythm Pattern feature set has also

been applied successfully to instrument classification [BKLR06]. The ap-

plication of the feature sets to the clustering of music collections within

the PlaySOM and PocketSOMPlayer programs has been presented at the

Musicnetwork Workshop 2005 [NLR05].

Amongst the applications developed on top of the principles described in

this thesis was the Map of Mozart, which was made public in spring 20061.

National and international online press (ORF Futurezone, Spiegel online

[MoM06d], La Capital, et al.) as well as print media (Kurier [MoM06a], Der

Standard [MoM06c], Financial Times Germany [MoM06e], GEO [MoM06b])

reported about the clustering of Mozart’s complete works on the Map of

Mozart2. The Map of Mozart was also presented at ISMIR 2006 [MLR06].

1http://www.ifs.tuwien.ac.at/mir/mozart/
2http://www.ifs.tuwien.ac.at/mir/press.html



Chapter 2

Related Work

2.1 Introduction

The domain of content-based music retrieval experienced a major boost in

the late 1990’s when mature techniques for the automated description of the

content of music became available. From that time on a growing number of

researchers has been working on different methods for description, retrieval

and organization of music based on its content. Many different approaches

exist for computation of features from the musical content. Descriptors can

be computed from music stored either in audio waveform signals (e.g. WAV

or MP3 format) or in symbolic notations, which do not actually contain any

sound (such as MIDI files). Music stored in symbolic notations is not part of

this thesis and thus will not be considered in the following review of music

descriptors in Section 2.2, which will consequently concentrate on feature

extraction approaches from audio signals.

Orio explains and reviews different aspects of music and music process-

ing, in both the audio and symbolic domains [Ori06]. He furthermore dis-

cusses the role of the users, describes several systems for music retrieval,

browsing and visualization and gives an introduction to scientific Music In-

formation Retrieval evaluation campaigns.

Stephen Downie provides a review of all aspects of Music Information

Retrieval (MIR), covering as well all the individual classes of music descrip-

tors [Dow03a]. He also discusses challenges in Music Information Retrieval

and reviews different MIR systems.

Apart from a wealth of audio descriptors, a large range of different sim-

12
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ilarity measures have been published, which are partly mentioned either

directly together with the audio descriptors in Section 2.2 (if they are sys-

tematically connected) or in Section 2.3 which reviews machine learning and

classification approaches in MIR.

Section 2.4 describes the efforts for scientific evaluation in MIR and the

creation of benchmark audio collections. Section 2.5 introduces a number of

clustering approaches that emerge into different kinds of attractive visual-

izations, on top of which novel interfaces for access to music collections are

created. A summary is given in Section 2.6.

2.2 Audio Feature Extraction

In the domain of feature extraction from audio a lot of different approaches

have been developed. The wealth of devised audio descriptors include mu-

sical aspects such as loudness, tempo, beat, rhythm, timbre, pitch, harmon-

ics, melody, etc. This list already included several higher-level descriptors

which themselves are based on low-level features. The low-level features are

directly based on the temporal or spectral representation of the audio signal,

and some of them will be explained in detail in Chapter 3.

The following is a review of important works on the development of

low-level and higher-level audio descriptors:

The first beat detection systems were already published in the 1970s and

1980s [Ste77, LH78, LHL82, CMRR82, DH89]. In 1990 Paul Allen and Roger

Dannenberg presented a new approach for beat tracking working in real-time

[AD90]. Contrary to previous beat detection algorithms their approach was

adaptive, i.e. it predicts beats considering multiple interpretations of the

performance. In 1995 Goto and Muraoka [GM95] propose another real-time

beat tracking system for audio signals.

In 1996 Wold et al. present an audio analysis, search, and classification

engine called Muscle Fish1. The system is intended for retrieval of sounds

rather than music and uses features such as loudness, pitch, brightness and

bandwidth [WBKW96].

Scheirer introduces a vocoder-based approach for tempo and beat anal-

ysis of musical signals [Sch98]. He presents a method for using a small

number of bandpass filters and banks of parallel comb filters to analyze the

1http://www.musclefish.com
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tempo of and extract the beat from musical signals of arbitrary polyphonic

complexity. Scheirer did also a comparison of his vocoder model with the

perceptually-based pitch model of Meddis and Hewitt [MH91], and discov-

ered that the problems of pitch and pulse detection are related and that a

pitch tracker can also be used for extracting the tempo of acoustic signals,

yet at a larger time scale [Sch97].

More recent work on beat tracking includes the work of Dixon [Dix99].

A review of automatic rhythm description systems has been published in

[GD05].

Mel-Frequency Cepstral Coefficients (MFCC) are a perceptual motivated

set of features developed in context of speech recognition. An investigation

about their adoption in the MIR domain was presented by Logan [Log00].

Liu and Huang [LH00] introduce a segmentation approach for audio based

on MFCC features. They use Gaussian Mixture Models (GMM) to model

feature distribution of an audio segment and propose the Kullback Leibler

divergence [CT91] as a metric for distance measuring between two mod-

els, which was new to MIR research. Logan and Salomon [LS01] perform

content-based audio retrieval based on K-Means clustering of MFCC fea-

tures and apply yet another distance measure: the Earth Mover’s Distance

[RTG98].

Rauber, Pampalk and Merkl propose “Rhythm Patterns” [RPM03,

PRM02], modeling modulation amplitudes on critical frequency bands, for

organization and visualization of music archives. The approach is based on

a previous development by Rauber and Frühwirth [RF01]. The new fea-

ture set consideres a set of psycho-acoustic models [RPM02]. A resynthesis

algorithm of the Rhythm Patterns feature set allowing to analyze its char-

acteristics has been shown later [LPR05].

Aucouturier and Pachet introduce a timbral similarity measure based on

Gaussian Mixture Models of MFCCs [AP02], but also question the use of

such measures in very large databases and propose a measure of “interest-

ingness”.

Pampalk et al. [PDW03] conduct a comparison of several content-based

audio descriptors and similarity measures on both small and large audio

databases, including those of Logan and Salomon [LS01] and Aucouturier

and Pachet [AP02] as well as Rhythm Patterns (Fluctuation Patterns). They

report that in the large scale evaluation simple Spectrum Histograms out-
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perform all other descriptors. The various approaches have been extended,

optimized, compared and combined in Pampalk’s PhD thesis [Pam06], in

which also a number of applications are presented.

Li et al. [LOL03] propose Daubechies Wavelet Coefficient Histograms as

a feature set suitable for music genre classification. The feature set charac-

terizes amplitude variations in the audio signal.

The MPEG-7 standard also defines a set of seventeen low-level audio

descriptors [Mar04, MPE02]. Allamanche et al. [AHH+01] use these features

for audio fingerprinting, i.e. the robust identification of audio material. A

classification approach with MPEG-7 features is done in [CW03]. Xiong

et al. did a comparison of MFCC and MPEG-7 features on sports audio

classification [XRDH03].

Liu and Tsai [LT01] propose an idea to derive audio features directly

from the coefficients of the output of the polyphase filters of MP3-encoded

music and an approach on content-based similarity based on that idea.

George Tzanetakis reviews in his PhD thesis [Tza02] a number of systems

for the analysis and manipulation of audio data as well as content-based re-

trieval. He developed a new system for audio feature extraction, analysis

and classification, called MARSYAS, which is designed for rapid prototyping

of MIR research. He also contributed a number of new algorithms for audio

description: a general multifeature audio texture segmentation methodol-

ogy, feature extraction from MP3 compressed data (similar to the idea of

Liu and Tsai), beat detection based on the discrete Wavelet transform and

musical genre classification combining timbral, rhythmic and harmonic fea-

tures. Furthermore he presents novel 2D and 3D graphical user interfaces for

browsing and interacting with audio signals and collections (c.f. Section 2.5).

In a previous work Tzanetakis et al. [TEC02b] proposed Pitch His-

tograms as a way to represent the pitch content of music signals. Pitch

is a feature yet mostly used in symbolic music description. This new ap-

proach was applicable to both symbolic and audio data. For the audio case

a multiple-pitch detection algorithm for polyphonic signals by Tolonen and

Karjalainen [TK00] is used to calculate the Pitch Histograms.

High-level audio feature sets include the extraction of key [Lem95,

MMB+05], tonality [Gom06] and melody [GKM03]. Purwins [Pur05] did

an extensive study of pitch classes based on the circularity of relative pitch

and key.
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Another detailed review about audio descriptors is provided in Pohle’s

thesis [Poh05].

2.3 Music Classification

Many feature extraction algorithms are employed in the context of classifi-

cation tasks, such as music/speech discrimination, classification of animal or

environmental sounds [Mit05], music genre classification, or dance rhythm

classification.

In 1997 Scheirer and Slaney present a speech/music discriminator [SS97]

that is based on temporal and spectral low-level features such as percentage

of low-energy frames, Zero-Crossing Rate, Spectral Rolloff Point, Spectral

Centroid, and Spectral Flux. The system’s performance is evaluated by

classification using k-Nearest Neighbor (k-NN), Gaussian Mixture Models

and a k-d tree. A Gaussian Mixture Model (GMM) models each class of

data as the union of several Gaussian clusters in the feature space. This

clustering can be iteratively derived with the Expectation Maximization

(EM) algorithm [Moo96]. Classification using the GMM uses a likelihood

estimate for each model, which measures how well the new data point is

modeled. A point in feature space is assigned to whichever class is the best

model of that point [SS97].

An early work on musical style recognition by Dannenberg et al.

[DTW97] investigates various machine learning techniques applied for build-

ing style classifiers. The authors use low-level features from MIDI data

and compare a Bayesian classifier, a linear classifier and neural networks

for discriminating between the styles “lyrical”, “frantic”, “syncopated” and

“pointilistic”.

In a seminal work about “Content-Based Retrieval of Music and Audio”

[Foo97] Foote uses MFCC features and proposes a tree-based supervised

vector quantization approach. As distance measures the Euclidean and the

cosine distance are compared, where the latter performs better. Foote also

proposes the idea of directly using MPEG encoded data for feature extrac-

tion for the first time.

Liu and Wan [LW01] conduct a study in which four classifiers, namely

nearest neighbor, modified k-NN, GMM and probabilistic neural networks

were compared. Based on a small set of features, selected by feature selec-
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tion, the task was to classify different types of sounds, speech, and music.

Tzanetakis et al. [TEC01] perform a hierarchical genre classification

approach using and proposing a set of features representing texture and

instrumentation in music. Li et al. [LOL03] conduct a comparative study

on content-based music genre classification using several classifiers, including

Support Vector Machines. Basili et al. [BSS04] present another study on

different machine learning algorithms (and varying dataset partitioning) and

their performance in music genre classification. Livshin and Rodet [LR03]

present a cross database evaluation on musical instrument classification.

Dixon et al. [DPW03] employ Periodicity Patterns for classification of

Latin American and Ballroom dance music. Gouyon and Dixon [GD04]

propose also a tempo-based approach for dance music classification.

A survey on automatic genre classification of music content is available

in [SZM06]. Details about machine learning and pattern classification algo-

rithms are provided in [DHS00].

2.4 Benchmarking in MIR Research

Benchmarking is an important topic when comparing the many different

audio descriptors and approaches for classification or music similarity com-

putation.

A fundamental work for benchmarking was the large-scale evaluation

by Berenzweig et al. [BLEW04] which not only examined audio-based

descriptors but also subjective findings. As acoustic features they used

MFCCs combined with GMM and neural networks. For subjective measures

they used surveys, expert opinions, meta-data from AllMusic.com, playlist

co-occurrences, personal user collections and web-text as source. One of

the findings of the study was that computer-performed audio classification

achieves agreement with ground-truth data that is at least comparable to the

internal agreement between different subjective sources. The analysis also

showed that the subjective measures from diverse sources show reasonable

agreement, with the measure derived from co-occurrence in personal music

collections being the most reliable overall. The collected data, particularly

meta-data and MFCC features for more than 8700 tracks from 400 artists,

has been made available online for future studies. In fact, part of this data

set has been used also in the international MIREX evaluation campaign.
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Goto et al. created a set of copyright-cleared music databases for re-

search purposes, the RWC (Real World Computing) database [GHNO02,

GHNO03]. It comprises five collections: popular music (english and

japanese), classical music, jazz music, a music genre database containing

100 pieces from 10 genres and a musical instrument database2.

Another benchmark data set for music classification (and clustering) is

provided by Homburg et al. [HMM+05] and contains 10-second excerpts of

1886 songs from 9 genres.

Stephen Downie outlines in [Dow03b] the way toward scientific eval-

uation of Music Information Retrieval systems. The paper describes the

efforts that have been made and the discussions open for the construction

and implementation of scientifically valid evaluation frameworks in the MIR

research community. Specific focus was laid on the problematic topic of

ground-truth assembly regarding “real-world” requirements and the devel-

opment of a secure, but accessible, research environment that allows re-

searchers to remotely access a large-scale test collection.

In 2005 the first Music Information Retrieval Evaluation eXchange

(MIREX)3 has been conducted by Stephen Downie’s IMIRSEL team. The

kick-off for scientific evaluation of MIR research was done one year earlier

with the ISMIR 2004 Audio Description Contest4.

2.5 Clustering, Visualization and Interfaces

Tzanetakis and Cook introduce a set of tools based on interactive 3D graph-

ics for working with sound collections [TC00a]. The tools include sound anal-

ysis visualization displays (Timbregram, TimbreSpace, GenreGram) and

model-based controllers for sound synthesis. Later, new tools for graphi-

cal query user interfaces were added creating a new paradigm for querying

and browsing large audio collections [TEC02a].

Cano et al. report about applications of the FastMap algorithm for

visualization of audio similarity and improved browsing of music archives

[CKGB02]. Torrens et. al [THA04] present new interfaces for exploring

personal music libraries in form of disc- and tree-map-based visualizations

based on meta-data. A novel interface particularly developed for hand-held

2http://staff.aist.go.jp/m.goto/RWC-MDB/
3http://www.music-ir.org/mirex2005/
4http://ismir2004.ismir.net/ISMIR Contest.html
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devices has been presented by Gulik et al. [vGVvdW04]. This artist map

interface clusters pieces of audio based on content features as well as meta-

data attributes using a a spring model algorithm.

Dixon shows the live tracking of musical performances with the “Per-

formance Worm” using on-line time warping [Dix05]. The “Performance

Worm” is an animation of some of the expressive parameters of a musical

performance.

Goto presents a new interface to music collections called Musicream

[GG05], in which pieces of music are represented by discs, that stream down

on the screen enabling unexpected encounters with music pieces. Disc colors

indicate the “mood” of a piece and thus reflect similarity in musical pieces.

A “sticking function” attracts similar pieces like a magnet. The “meta-

playlist function” enables advanced visual playlist arrangement with a high

degree of freedom.

In recent years, Self-Organizing Maps have become very popular for the

visualization of music collections. A Self-Organizing Map (SOM) is an un-

supervised neural network providing a topology-preserving mapping from a

high-dimensional input space onto a two-dimensional output space [Koh01].

The earliest works that use SOMs to organize sounds, based on pitch, dura-

tion and loudness, date back to [CPL94, FG94]. In [SP01] MFCCs are used

for retrieval of sound events from a SOM.

Automatic organization of music collections on SOMs has been first

demonstrated by Rauber et al. in [RF01], and later in [RPM02, PRM02,

NDR05]. Pampalk presented an “Islands of Music” visualization using Self-

Organizing Maps and Rhythm Pattern features [Pam01]. An interactive

implementation of Islands of Music on both personal computers as well as

portable devices has been shown by Neumayer et al. [NDR05].

Another work on exploring music collections by Pampalk et al. [PDW04]

uses Aligned-SOMs, which allow for interactively changing the focus of or-

ganization among different aspects, like e.g. timbre or rhythm. Knees et al.

[KPW04, PFW05] apply SOMs to organize music at the artist level using

artist information mined from the web. Dittenbach et al. [DMR00] intro-

duce the Growing Hierarchical Self-Organizing Map which extends the SOM

principle to several layers and also enables a SOM to iteratively grow if data

is sufficiently dense.

In [MUNS05] Mörchen et al. employ so-called Emergent SOMs for vi-
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sualization of music collections, which are particularly suitable for creating

large maps. Mayer et al. present another extension to SOMs, the Mnemonic

SOM [MMR05] which allows the maps to take any arbitrary shape, for better

memorization of locations on a SOM.

Other visualizations of music archives and music relations are emerging

in the Internet, e.g. LivePlasma (formerly MusicPlasma)5.

A review of visualization in audio-based Music Information Retrieval is

provided in [CFPT06].

2.6 Conclusions

This chapter presented an overview of seminal works of the Music Informa-

tion Retrieval research domain, which are relevant for the remaining chap-

ters of this thesis. We have reviewed publications about content-based audio

feature extraction, covering a large range of different features that can be

extracted from music. Particularly relevant for this thesis are the various

approaches for sound and music classification as well as the efforts for stan-

dard scientific benchmarking. Chapter 5 describes how music classification

approaches are used both for evaluation of feature sets and classifiers as well

as in scientific benchmarking campaigns.

Furthermore, we have revisited a number of graphical representations

for music archives as well as interactive applications. The SOM-based ap-

proaches are particularly relevant for Chapter 6, which describes applications

that are built predominantly on the Self-Organizing Map.

5http://www.liveplasma.com/



Chapter 3

Audio Feature Extraction

3.1 Introduction

For most Music Information Retrieval tasks music needs to be described in

some way. As computers are not capable to grasp musical aspects directly,

algorithms have been devised that extract features from music which are in-

tended to capture semantics in music and to provide the basis for subsequent

MIR tasks such as retrieval by similarity. As music can be stored in differ-

ent representations, there are also multiple directions for the extraction of

descriptors: Symbolic representations (e.g. MIDI files) provide directly the

musical structure, such as note beginnings and pitch information, which can

be used directly as part of a set of features. However, information about the

sound of the music is completely lacking. Feature extraction from symbolic

notations is not part of the topic of this thesis and is thus not considered

in this chapter. On the other hand, audio-based approaches have to rely

entirely on a mixed audio-signal. From the amplitude information it is very

difficult to extract semantics and thus the majority of the audio-based al-

gorithms perform transformations of the signal into the frequency domain,

i.e. a spectrum analysis. From the energy and fluctuations of the individ-

ual frequency bands many aspects of the music can be derived, such as for

instance pitch and rhythm information.

This chapter provides a brief overview of some of the many audio fea-

tures developed and utilized in the MIR domain, starting with temporal

and spectral low-level audio features such as energy and Spectral Centroid,

continuing with the low-level audio descriptors defined in the MPEG-7 stan-

21
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dard. Subsequently, MFCC features are described, which have originated

in speech processing. A large set of features available in the MARSYAS

system are described, including Fourier transform based features, MPEG

compression based features, Wavelet transform features as well as features

based on Beat and Pitch Histograms. Furthermore, Rhythm Patterns and

two new feature sets, Statistical Spectrum Descriptors and Rhythm His-

tograms, are presented, which are the feature sets utilized in several studies,

evaluations and benchmarking events (see Chapter 5) as well as in clustering

applications for interaction with music collections (see Chapter 6).

3.2 Audio Features

3.2.1 Low-Level Audio Features

The following features are common low-level features employed in the con-

text of many content-based audio retrieval projects, typically in combination

with other features or feature sets. They are for example also available in

audio software frameworks such as MARSYAS [Tza02], M2K [DEH05] or

CLAM [AAG06].

Zero Crossing Rate

The Zero Crossing Rate (ZCR) is one of the features calculated directly from

the audio wave form, i.e. in the time domain. It represents the number of

times the signal crosses the 0-line, i.e. the signal changes from a positive

to a negative value, within one second. It can be either a measure for

the dominant frequency or the noisiness of a signal, and serves as a basic

separator of speech and music.

RMS Energy

Root Mean Square (RMS) energy is computed in time domain by computing

the mean of the square of all sample values in a time frame and taking the

square root. Hence, it is a feature easy to implement. The RMS gives a good

indication of loudness in a time frame and may also serve for higher-level

tasks such as audio event detection, segmentation or tempo/beat estimation.
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Low Energy Rate

Low Energy Rate is usually defined as the percentage of frames containing

less energy than the average energy of all frames in a piece of audio. Energy

is computed in time domain as RMS energy (see above). In [SS97] a frame

is considered a low-energy-frame when it has less than 50 % of the average

value within a one-second window.

Spectral Flux

Spectral Flux is a frequency domain feature and is computed as the squared

differences in frequency distribution of two successive time frames. It mea-

sures the rate of local change in the spectrum. If there is much spectral

change between two frames the Spectral Flux is high.

Spectral Centroid

The Spectral Centroid is the center of gravity, i.e. the balancing point of

the spectrum. It is the frequency where the energy of all frequencies below

that frequency is equal to the energy of all frequencies above that frequency

and is a measure of brightness and general spectral shape.

Spectral Rolloff

Another measure of spectral shape is the Spectral Rolloff which is the 90

percentile of the spectral distribution. It is a measure of the skewness of the

spectral shape.

3.2.2 MPEG-7 Audio Descriptors

The Moving Picture Experts Group (MPEG) is a working group of ISO/IEC

in charge of the development of standards for digitally coded representation

of audio and video1 . Until now, the group has produced several standards:

The MPEG-1 standard is used e.g. for Video CDs and also defines several

layers for audio compression, one of which (layer 3) is the very popular

MP3 format. The MPEG-2 standard is another standard for video and

audio compression and is used e.g. in DVDs and digital TV broadcasting.

1http://www.chiariglione.org/mpeg/
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MPEG-4 is a standard for multimedia for the fixed and mobile web. MPEG-

7 defines the Multimedia Content Description Interface and is the standard

for description and search of audio and visual content. MPEG-21 defines

the Multimedia Framework.

The MPEG-7 standard, part 4 [MPE02], describes a number of low-

level audio descriptors as well as some high-level description tools. The five

defined sets for high-level audio description are partly based on the low-level

descriptors and are intended for specific applications (description of audio

signature, instrument timbre, melody, spoken content as well as for general

sound recognition and indexing) and will not be further considered here.

The low-level audio descriptors comprise 17 temporal and spectral de-

scriptors, divided into seven classes. Some of them are based on basic wave-

form or spectral information while others use harmonic or timbral informa-

tion. The following review of the 17 descriptors is based on an MPEG-7

overview provided by the ISO Organization on the web2:

Basic Temporal Descriptors

The two basic audio descriptors are temporally sampled scalar values for

general use, also in combination with other low-level features.

The AudioWaveform Descriptor describes the audio waveform envelope

(minimum and maximum), and is rather intended for display purposes.

The AudioPower Descriptor is similar to RMS energy and describes the

power at certain intervals. It can be useful as a quick summary of a signal.

Basic Spectral Descriptors

The Basic Spectral Descriptors are derived from the signal transformed into

the frequency domain, similar to the spectral low-level features described

in Section 3.2.1. However, instead of an equi-spaced frequency spectrum, a

logarithmic frequency spectrum is used, where the resulting frequency bins

are spaced by a power-of-two divisor or a multiple of an octave. This loga-

rithmic spectrum is the common basis for the four MPEG-7 basic spectral

audio descriptors:

The AudioSpectrumEnvelope Descriptor computes the short-term power

spectrum using the logarithmic frequency division and constitutes the evo-

2http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
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lution of the spectrum over time, hence a log-frequency spectrogram. The

AudioSpectrumEnvelope can be used as a general-purpose descriptor for

search and comparison or also for display purposes or even for a re-synthesis

for an auralization of the data.

The AudioSpectrumCentroid Descriptor represents the center of gravity

of the log-frequency power spectrum. Hence, it is a description of the shape

of the power spectrum by a single scalar, indicating whether the spectral

content of a signal is dominated by high or low frequencies.

The AudioSpectrumSpread Descriptor describes the second moment of

the log-frequency power spectrum, indicating whether the power spectrum

is centered near the spectral centroid, or spread out over the spectrum. This

potentially enables discriminating between pure-tone and noise-like sounds.

The AudioSpectrumFlatness Descriptor describes the flatness of the

spectrum of an audio signal for each of a number of frequency bands and is

computed as the deviation of the power amplitude spectrum of each frame

from a flat line. This descriptor may signal the presence of tonal compo-

nents, if there is a high deviation from a flat spectral shape for a given

band.

Signal Parameters

The two signal parameter descriptors estimate parameters of the signals

which are fundamental for the extraction of other descriptors. The extrac-

tion of both of the following descriptors is possible however only mainly from

periodic or quasi-periodic signals.

The AudioFundamentalFrequency Descriptor is intended to provide fun-

damental frequency of an audio signal. The MPEG-7 standard, however,

does not give a reference implementation, thus, a number of different ap-

proaches could be taken for the determination of the fundamental frequency

of a signal, such as pitch tracking for example. Consequently, the representa-

tion of this descriptor allows to include a confidence measure, in recognition

of the facts that the various different extraction algorithms are not perfectly

accurate and that there may be sections of a signal for which no fundamen-

tal frequency may be detected (e.g. noise).

The AudioHarmonicity Descriptor represents the harmonicity of a signal,

allowing distinction between sounds with a harmonic spectrum (e.g. musical

tones or voiced speech, such as vowels), sounds with an inharmonic spec-
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trum (e.g. metallic or bell-like sounds) and sounds with a non-harmonic

spectrum (e.g., noise, unvoiced speech, or dense mixtures of instruments).

As for the AudioFundamentalFrequency Descriptor a concrete algorithm for

describing AudioHarmonicity is not provided.

Timbral Temporal Descriptors

The LogAttackTime Descriptor characterizes the “attack” of a sound,

i.e. the time it takes for the signal to rise from silence to the maximum

amplitude.

The TemporalCentroid Descriptor also characterizes the signal envelope,

representing the point in time that is the center of gravity of the energy of

a signal. This descriptor may, for example, distinguish between a decaying

piano note and a sustained organ note, when the lengths and the attacks of

the two notes are identical.

Timbral Spectral Descriptors

The five timbral spectral descriptors are spectral features computed from

a linear-frequency spectrum and are especially intended to capture musical

timbre. The four harmonic spectral descriptors are derived from the compo-

nents of harmonic peaks in the signal. Therefore, harmonic peak detection

must be performed prior to feature extraction.

The SpectralCentroid Descriptor is determined by the frequency bin

where the energy in the linear spectrum is balanced, i.e. half of the en-

ergy is below that frequency and half of the energy is above it. This is

equal to the SpectralCentroid explained in Section 3.2.1 and differs from

the MPEG-7 AudioSpectrumCentroid Descriptor by using a linear instead

of a log-scale spectrum. It is included in the MPEG-7 standard for better

distinguishing musical instrument timbres because is related to the percep-

tual feature of the “sharpness” of a sound.

The HarmonicSpectralCentroid is the amplitude-weighted mean of the

harmonic peaks of the spectrum. It has a similar semantic as the other

centroid Descriptors, but applies only to the harmonic parts of the musical

tone.

The HarmonicSpectralDeviation Descriptor indicates the spectral devi-

ation of logarithmic amplitude components from a global spectral envelope.
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The HarmonicSpectralSpread describes the amplitude-weighted stan-

dard deviation of the harmonic peaks of the spectrum, normalized by the

HarmonicSpectralCentroid.

The HarmonicSpectralVariation Descriptor is the correlation of the am-

plitude of the harmonic peaks between two sequential time frames of the

signal, normalized by the HarmonicSpectralCentroid.

Spectral Basis Descriptors

The two spectral basis descriptors represent projections of high-dimensional

descriptors to low-dimensional space for more compactness, which is useful

e.g. for subsequent classification or indexing tasks.

The AudioSpectrumBasis Descriptor is a series of (potentially time-

varying and/or statistically independent) basis functions that are derived

from the singular value decomposition of a normalized power spectrum.

The AudioSpectrumProjection Descriptor is used together with the

AudioSpectrumBasis Descriptor, and represents low-dimensional features of

a spectrum after projection upon a reduced rank basis.

Silence Descriptor

The Silence Descriptor detects silent parts in audio and attaches this se-

mantic to an audio segment. It may be used to aid segmentation of the

audio stream or as a hint to not process a segment.

Pohle’s work [Poh05] contains a slightly more detailed review of the

MPEG-7 low-level audio descriptors as well as plots of several of the de-

scriptors for exemplary songs from a variety of different genres. His thesis

also includes a review of other research works using and evaluating MPEG-7

descriptors.

3.2.3 MFCCs

Mel Frequency Cepstral Coefficients (MFCCs) originated in research for

speech processing and soon gained popularity in the field of music informa-

tion retrieval [Log00]. A cepstrum is defined as the inverse Fourier transform

of the logarithm of the spectrum. If the Mel scale is applied to the loga-
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rithmic spectrum before applying the inverse Fourier transform the result is

called Mel Frequency Cepstral Coefficients.

The Mel scale is a perceptual scale found empirically through human

listening tests and models perceived pitch distances. The reference point

is 1000 Mels, equating a 1000 Hz tone, 40 dB above the hearing threshold.

With increasing frequency, the intervals in Hz which produce equal incre-

ments in perceived pitch are getting larger and larger. Thus, the Mel scale

is approximately a logarithmic scale, which corresponds more closely to the

human auditory system than the linearly spaced frequency bands of a spec-

trum. In MFCC calculation often the Discrete Cosine Transform (DCT) is

used instead of the inverse Fourier transform for practical reasons. From

the MFCCs commonly only the first few (for instance 5 to 20) coefficients

are used as features.

3.2.4 MARSYAS Features

The MARSYAS system is a software framework for audio analysis, feature

extraction, synthesis and retrieval and contains a number of extractors for

the following feature sets:

STFT-Spectrum based Features

MARSYAS implements the standard temporal and spectral low-level fea-

tures described in Section 3.2.1: Spectral Centroid, Spectral Rolloff, Spec-

tral Flux, RMS energy and Zero Crossings. Also, MFCC feature extraction

is provided, c.f. Section 3.2.3.

MPEG Compression based Features

George Tzanetakis presented an approach which extracts audio features di-

rectly from MPEG compressed audio data (e.g. from mp3 files) [TC00b].

The idea was that in MPEG compression much of analysis is done already in

the encoding stage, including a time-frequency analysis. The spectrum is di-

vided into 32 equally spaced sub-bands via an analysis filterbank. Instead of

decoding the information and again computing the spectrum this approach

computes features directly from the 32 sub-bands in the MPEG data. Con-

sequently, the derived features are called MPEG Centroid, MPEG Rolloff,

MPEG Spectral Flux and MPEG RMS, and are computed similar as their
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non-MPEG counterparts (c.f. Section 3.2.1). These features should not be

confused with the MPEG-7 standard features, which are based on logarith-

mically spaced spectrum data, whereas the MPEG-1 audio compression uses

32 equally spaced frequency bands.

Wavelet Transform Features

The Wavelet Transform [Mal99] is an alternative to the Fourier Transform

which overcomes the issue of the trade-off between time and frequency res-

olution. For high frequency ranges, it provides low frequency resolution but

high time resolution, whereas in low frequency ranges, it provides high fre-

quency and lower time resolution. This is a closer representation of what

the human ear perceives from sound.

The Wavelet Transform Features represent “sound texture” by applying

the Wavelet Transform and computing statistics over the wavelet coefficients:

• mean of the absolute value of the coefficients in each frequency band

• standard deviation of the coefficients in each frequency band

• ratios of the mean absolute values between adjacent bands

These features provide information about the frequency distribution of

the signal and its evolution over time.

Beat Histograms

The calculation of this set of features includes a beat detection algorithm

which uses a Wavelet Transform to decompose the signal into octave fre-

quency bands followed by envelope extraction and periodicity detection. The

time domain amplitude envelope of each band is extracted separately which

is achieved by full-wave rectification3, low-pass filtering and downsampling.

These envelopes are the summed together after removing the mean of each

band signal and the autocorrelation of the resulting envelope is computed.

The amplitude values of the dominant peaks of the autocorrelation function

are then accumulated over the whole song into a Beat Histogram. This rep-

resentation does not only capture the dominant beat in a sound, like other

3Full-wave rectification in the digital world means that each sample value is transformed
into its absolute value.
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automatic beat detectors, but captures more detailed information about the

rhythmic content of a piece of music. The following set of features is derived

from a Beat Histogram:

• relative amplitude (divided by the sum of amplitudes) of the first and

second histogram peak

• ratio of the amplitude of the second peak to the amplitude of the first

peak

• period of the first and second beat (in beats per minute)

• overall sum of the histogram, as indication of beat strength

Pitch Histograms

For the pitch content features, the multiple pitch detection algorithm de-

scribed by [TK00] is utilized. The signal is decomposed into two frequency

bands (below and above 1000 Hz) and amplitude envelopes are extracted

for each of them using half-wave rectification4 and low-pass filtering. The

envelopes are then summed up and an enhanced autocorrelation function

is used – similar as for Beat Histograms, but within smaller time frames

(about 23 ms) – to detect the main pitches of the short sound segment. The

three dominant peaks are then accumulated into a Pitch Histogram over the

whole sound file. Each bin in the histogram corresponds to a musical note.

Subsequently, also a folded version of the Pitch Histogram can be created

by mapping the notes of all octaves onto a single octave. The unfolded ver-

sion contains information about the pitch range of a piece of music and the

folded version contains information about the pitch classes or the harmonic

content. The following features are derived from Pitch Histograms:

• amplitude of the maximum peak of the folded histogram (i.e. magni-

tude of the most dominant pitch class)

• period of the maximum peak of the unfolded histogram (i.e. octave

range of the dominant pitch)

4Half-wave rectification in the digital world means that each sample value < 0 is con-
verted to 0.
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• period of the maximum peak of the folded histogram (i.e. main pitch

class)

• pitch interval between the two most prominent peaks of the folded

histogram (i.e. main tonal interval relation)

• overall sum of the histogram (i.e. measure of strength of pitch detec-

tion)

MARSYAS can be applied to extract individual feature sets, however a

set of combinations of them is defined and has been applied successfully in

music genre classification. It also consists of additional tools for classifica-

tion and subsequent processing. For detailed descriptions of all the features

available in MARSYAS refer to [Tza02].

3.2.5 Rhythm Patterns

A Rhythm Pattern [Pam01, RPM02, RPM03], also called Fluctuation Pat-

tern, is a matrix representation of fluctuations on critical bands. Parts of it

describe rhythm in the narrow sense. The algorithm for extracting a Rhythm

Pattern is a two stage process: First, from the spectral data the specific loud-

ness sensation in Sone is computed for critical frequency bands. Second, the

critical band scale Sonogram is transformed into a time-invariant domain

resulting in a representation of modulation amplitudes per modulation fre-

quency. The block diagram for the entire approach of Rhythm Patterns

extraction is provided in Figure 3.2, steps of the first part are denoted with

an ‘S’ and steps of the second part with an ‘R’.

In a pre-processing step the audio signal is converted to a mono signal

(if necessary) and segmented into chunks of approximately 6 seconds5. Usu-

ally not every segment is used for audio feature extraction, the selection of

segments however depends on the particular task. For music with a typical

duration of about 4 minutes, frequently the first and last one or two (up

to four) segments are skipped and from the remaining segments every third

one is processed.

For each segment the spectrogram of the audio is computed using the

short time Fast Fourier Transform (STFT). The window size is set to 23 ms6

5The segment size is 218 samples with a sampling frequency of 44 kHz, 217 for 22 kHz,
and 216 for 11 kHz, i.e. about 5.9 seconds.

61024 samples at 44 kHz, 512 samples at 22 kHz, 256 samples at 11 kHz
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and a Hanning window is applied using 50 % overlap between the windows.

The Bark scale, a perceptual scale which groups frequencies to critical

bands according to perceptive pitch regions [ZF99], is applied to the spectro-

gram, aggregating it to 24 frequency bands. A Spectral Masking spreading

function is applied to the signal [SAH79], which models the occlusion of one

sound by another sound.

The Bark scale spectrogram is then transformed into the decibel scale.

Further psycho-acoustic transformations are applied: Computation of the

Phon scale incorporates equal loudness curves, which account for the differ-

ent perception of loudness at different frequencies [ZF99]. Subsequently, the

values are transformed into the unit Sone, reflecting the specific loudness

sensation of the human auditory system. The Sone scale relates to the Phon

scale in the way that a doubling on the Sone scale sounds to the human ear

like a doubling of the loudness.

In the second part, the varying energy on a critical band of the Bark

scale Sonogram is regarded as a modulation of the amplitude over time.

Using a Fourier Transform, the spectrum of this modulation signal is re-

trieved. In contrast to the time-dependent spectrogram data the result is

now a time-invariant signal that contains magnitudes of modulation per

modulation frequency per critical band. The occurrence of high amplitudes

at the modulation frequency of 2 Hz on several critical bands for example

indicates a rhythm at 120 beats per minute. The notion of rhythm ends

above 15 Hz, where the sensation of roughness starts and goes up to 150

Hz, the limit where only three separately audible tones are perceivable. For

the Rhythm Patterns feature set usually only information up to a modula-

tion frequency of 10 Hz is considered. Subsequent to the Fourier Transform,

modulation amplitudes are weighted according to a function of human sensa-

tion depending on modulation frequency, accentuating values around 4 Hz.

The application of a gradient filter and Gaussian smoothing may improve

similarity of Rhythm Patterns which is useful in classification and retrieval

tasks.

The impact of this filtering and smoothing as well as of all of the psycho-

acoustic transformations has been evaluated through experiments in this

thesis, which are described in Chapter 5. The smoothing step seems not to

be appropriate for all kinds of music collections and especially the Spectral

Masking spreading function seems to introduce problems rather than being
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(a) Classical: Johann Strauß (b) Rock: Queens Of The Stone Age

Figure 3.1: Rhythm Patterns

beneficial. In contrast, the psycho-acoustically motivated transformations

into the decibel, Phon and Sone scales have been identified as being crucial

for audio feature extraction. The findings of these experiments led to an

improved version of the Rhythm Patterns feature set, which has also been

used in joint scientific MIREX evaluations.

A Rhythm Pattern is usually extracted per segment (e.g. 6 seconds) and

the feature set is computed as the median of multiple Rhythm Patterns of

a piece of music. The dimension of the feature set is 1440, if the full range

of frequency bands (24) and modulation frequencies up to 10 Hz (60 bins at

a resolution of 0.17 Hz) are used.

Figure 3.1 shows examples of Rhythm Patterns of a classical piece, the

“Blue Danube Waltz” by Johann Strauß7, and a rock piece, “Go With The

Flow” by The Queens Of The Stone Age. While the rock piece shows a

prominent rhythm at a modulation frequency of 5.34 Hz, both in the lower

critical bands (bass) as well as in higher regions (percussion, e-guitars), the

classical piece does not show a distinctive rhythm but contains a “blobby”

area in the region of lower critical bands and low modulation frequencies.

This is a typical indication of classical music.

3.2.6 Statistical Spectrum Descriptors

Statistical Spectrum Descriptors (SSD) [LR05] are based on the first part

of the Rhythm Patterns algorithm, namely the computation of a psycho-

acoustically motivated Bark scale Sonogram. However, instead of creating a

7Johann Strauß – An der schönen blauen Donau (op. 314), available free from http:

//www.wien.gv.at/english/views/download/index.htm, thanks to the municipality of
Vienna and the Vienna Symphonic Orchestra.
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pattern of modulation frequencies, an SSD intends to describe fluctuations

on the critical frequency bands in a more compact representation, by deriv-

ing several statistical moments from each critical band. A block diagram of

SSD computation is given in Figure 3.2.

The specific loudness sensation on different frequency bands is computed

analogously to Rhythm Patterns (c.f. Section 3.2.5): A Short Time FFT is

used to compute the spectrum. The resulting frequency bands are grouped

to 24 critical bands, according to the Bark scale. Optionally, a spreading

function is applied in order to account for spectral masking effects. Succes-

sively, the Bark scale spectrogram is transformed into the decibel, Phon and

Sone scales. This results in a power spectrum that reflects human loudness

sensation – a Bark scale Sonogram.

From this representation of perceived loudness a number of statistical

moments is computed per critical band, in order to describe fluctuations

within the critical bands extensively. Mean, median, variance, skewness,

kurtosis, min- and max-value are computed for each band, and a Statistical

Spectrum Descriptor is extracted for each selected segment. The SSD feature

vector for a piece of audio is then calculated as either the mean or the median

of the descriptors of its segments.

Statistical Spectrum Descriptors are able to capture additional timbral

information compared to Rhythm Patterns, yet at a much lower dimension

of the feature space (168 dimensions). Evaluations described in Chapter 5

show that SSD features are able to outperform RP features in music genre

classification tasks.

3.2.7 Rhythm Histograms

Rhythm Histogram features are a descriptor for general rhythmic charac-

teristics in a piece of audio. A modulation amplitude spectrum for critical

bands according to the Bark scale is calculated, equally as for Rhythm Pat-

terns (see Section 3.2.5 and Figure 3.2). Subsequently, the magnitudes of

each modulation frequency bin of all 24 critical bands are summed up, to

form a histogram of “rhythmic energy” per modulation frequency. The his-

togram contains 60 bins which reflect modulation frequency between 0.17

and 10 Hz8 (c.f. Figure 3.3). For a given piece of audio, the Rhythm His-

8Using the parameters given in footnotes 5 and 6, the resolution of modulation fre-
quencies is 0.17 Hz.
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Power Spectrum (STFT)
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Figure 3.2: Feature extraction process for Statistical Spectrum Descrip-
tors (SSD), Rhythm Histograms (RH) and Rhythm Patterns (RP)
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(a) Classical: Johann Strauß (b) Rock: Queens Of The Stone Age

Figure 3.3: Rhythm Histograms

togram feature set is calculated by taking the median of the histograms of

every 6 second segment processed. The resulting feature vector has a 60

dimensions.

The Rhythm Histograms are similar in their representation to the Beat

Histograms introduced by Tzanetakis (c.f. Section 3.2.4), the approach how-

ever is different: the Beat Histogram approach uses envelope extraction and

autocorrelation and accumulates the histogram from the peaks of the auto-

correlation function.

Figure 3.3 compares the Rhythm Histograms of a classical piece and

a rock piece (the same example songs as for illustrating Rhythm Patterns

have been used). The rock piece indicates a clear peak at a modulation

frequency of 5.34 Hz while the classical piece generally contains less energy,

having most of it at low modulation frequencies.

3.3 Conclusions

This section presented a review on commonly utilized audio features. Very

often employed temporal and spectral low-level features which are easy to

implement and available in a number of software packages have been de-

scribed, follow by a review of the MPEG-7 standard features. Additional fea-

tures available in the MARSYAS software framework have been presented.

Of the three further feature sets described, two have been devised by myself

– the Rhythm Histograms and the Statistical Spectrum Descriptors – while

the Rhythm Patterns have undergone significant improvements throughout

my work for this thesis.
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All three of them have been evaluated in a number of experiments as well

as in joint scientific evaluation campaigns and have proved competitiveness

with state-of-the-art feature sets. Both the experiments and their conclu-

sions as well as the results of international benchmarking evaluations are

described in the following chapter. Subsequently, in Chapter 6 applications

which are based on these extracted features are presented.



Chapter 4

Audio Collections

4.1 Introduction

Reference audio collections are very important for evaluation and bench-

marking (c.f. Chapter 5). Without the use of standard benchmark col-

lections the comparison of evaluation results would be impossible. Conse-

quently there is a need for annotated (i.e. class-labeled) audio databases,

the so-called ground-truth for evaluations.

This chapter introduces the audio collections used in this thesis, either

for own experiments or in joint scientific evaluation campaigns, or in both.

Some of them are publicly available or shared among researchers, others are

not, because they are either copyrighted or undisclosed because they will be

re-used in future MIR benchmark evaluations.

4.2 Audio Collections for Evaluation and Bench-

marking

Table 4.1 gives an overview of the audio collections which are described in

this chapter. It lists the short name of each collection, the file format used for

encoding the music, the number of classes and number of files (songs, pieces)

in each collection, the file length used in the collection (either full songs or

excerpts) and the total playing time of each collection. The collections differ

significantly in several characteristics, e.g. in the size (number of pieces), in

the number and the particular set of categories they use or in audio quality.

The following sections will take a more detailed look at each of them.

38
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Table 4.1: Overview of music collections utilized in evaluations throughout
this thesis (file encoding, number of classes and number of files in each col-
lection, typical file duration and total duration of the collection [hh:min]).2

Name of collection encoding cl. # files file duration duration
GTZAN au, 22 kHz, mono 10 1000 30 seconds 05:20
ISMIR 2004 Genre mp3, 44 kHz, stereo 6 1458 full songs 18:14
ISMIR 2004 Rhythm RealAudio 8 698 30 seconds 05:39
MIREX 2005 Magnatune wav, 22 kHz, mono 10 510 full songs n/a
MIREX 2005 USPOP wav, 22 kHz, mono 6 474 full songs n/a
MIREX 2006 USPOP/USCRAP mp3, 22 kHz, mono 9 5000 full songs n/a
Mozart Collection mp3, 44 kHz, stereo 17 2442 full songs 62:32

4.2.1 GTZAN

The GTZAN audio collection was assembled by George Tzanetakis and used

in his dissertation for experiments with MARSAYS on genre classification,

among others [Tza02]. Lateron it was used also by other research groups for

evaluation and several publications exist based on usage of this collection.

Also, several experiments conducted in Chapter 5 make use of this collec-

tion. It consists of 1000 pieces of audio equi-distributed among 10 popular

music genres (see Table 4.2). The list of genres contains several genres which

are not easy to separate and thus poses a challenge to automatic music clas-

sification systems. The pieces are 30-second excerpts and have a sampling

rate of 22 kHz. The original format was the uncompressed AU format.

4.2.2 ISMIR 2004 Genre

The ISMIRgenre collection is from the ISMIR 2004 Genre Classification

contest (c.f. Section 5.4.2) and contains 1458 songs from Magnatune.com3,

a “royalty free” Internet music provider. The music on Magnatune.com is

subject to the Creative Commons License, which allows free non-commercial

usage. Magnatune organizes its music within 8 genres on its web page,

however the genres “New Age” and “Others” were not considered when

the ISMIRgenre collection was compiled. The remaining genres are listed in

Table 4.3(a). The songs in the collection are unequally distributed over the 6

2The number of files in the MIREX 2005 collections include the testing files only (the
number of training instances was not available).
In the MIREX 2006 collection there was a 10th “class” labeled ”Cover Song”; the 330
cover songs are included in the total of 5000 files.

3http://www.magnatune.com/



CHAPTER 4. AUDIO COLLECTIONS 40

Table 4.2: GTZAN collection (genres and number of tracks per genre)

genre # tracks

blues 100
classical 100
country 100
disco 100
hiphop 100
jazz 100
metal 100
pop 100
reggae 100
rock 100

total 1000

genres. Thus, this collection, though not containing well-known music from

popular artists, can be considered as a “real-world” music collection. The

compiled collection was available from the ISMIR 2004 Genre Classification

contest web site4 in 128 kbps, 44 kHz, stereo MP3 format.

4.2.3 ISMIR 2004 Rhythm

The ISMIRrhythm collection is the one used in the ISMIR 2004 Rhythm

classification contest. The source of the collection was the web site Ball-

roomDancers.com5 and a list of URLs to the files available from the contest

web site6 allowed to download those songs in RealAudio format, which then

had to be converted to 44 kHz stereo Wave files. The collection consists of

of 698 30-second excerpts of 8 genres from Latin and ballroom dance music

(see Table 4.3(b)). The challenge of this collection is to distinguish this very

restricted set of music genres by detecting the appropriate rhythm.

4.2.4 MIREX 2005 Magnatune

The first collection of the MIREX 2005 Audio Genre Classification task was

once again taken from Magnatune.com, as in ISMIR 2004 Genre Classifica-

tion. This time, however, an extended set of 10 genres has been used, which

4http://ismir2004.ismir.net/genre contest/index.htm
5http://www.ballroomdancers.com/Music/style.asp
6http://www.iua.upf.es/mtg/ismir2004/contest/rhythmContest/
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Table 4.3: ISMIR 2004 Genre and Rhythm audio collections: standard
benchmark collections also used in many other evaluations (genres and num-
ber of tracks per genre)

(a) ISMIRgenre

genre # tracks

Classical 640
Electronic 229
Jazz & Blues 52
Metal & Punk 90
Rock & Pop 203
World 244

total 1458

(b) ISMIRrhythm

genre # tracks

ChaChaCha 111
Jive 60
Quickstep 82
Rumba 98
Samba 86
SlowWaltz 110
Tango 86
VienneseWaltz 65

total 698

made the task more challenging. Jazz & Blues has been separated into two

genres and the genres Ambient, New Age, Ethnic and Folk have been added

while World music was removed.

This time, neither a training set nor the final test set have been re-

leased to the participants, in order to enable future evaluations on the same

database. During MIREX 2005 Audio Genre Classification, 1005 files have

been used for training and 510 for testing. Only the genre distribution of

the test set was made public and therefore Table 4.4 contains only the genre

counts for the test set. MIREX 2005 used a hierarchical genre organization

for evaluation on this database. The taxonomy joined the pairs of Jazz &

Blues, Rock & Punk, Folk & Ethnic as well as 3 ‘electronical’ genres to a

super-genre, while classical music constituted a genre of its own. The genre

hierarchy is depicted in Figure 4.1.

4.2.5 MIREX 2005 USPOP

The second collection of the MIREX 2005 Audio Genre Classification task

was part of the USPOP 2002 collection. The USPOP 2002 data set was

compiled for several studies by a team from Columbia University [BLEW04].

The original collection consists of 706 albums and 8764 tracks from 400
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Table 4.4: MIREX 2005 collections used for Audio Genre Classification (gen-
res and number of test instances per genre, the distribution of the training
instances was not available)

(a) Magnatune

genre # tracks

Ambient 34
Blues 34
Classical 79
Electronic 82
Ethnic 83
Folk 24
Jazz 22
New age 34
Punk 34
Rock 84

testing 510

training 1005

total 1515

(b) USPOP 2002

genre # tracks

Country 84
Electronica & Dance 67
New Age 21
Rap & Hip-hop 117
Reggae 18
Rock 167

testing 474

training 940

total 1414

b

Classical

b

Ethnic

b

Folk

b

Jazz

b
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Figure 4.1: MIREX 2005 Magnatune genre hierarchy
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artists7. The list of tracks can be obtained8, however not the actual music,

as it is copyrighted popular music (purchased by the Columbia team) and not

freely distributable. The benefit of this is that this time “real-world” music

was used for evaluation. Nevertheless, interested researchers can obtain

MFCC features computed from the USPOP 2002 data set.

Genre assignments to the USPOP 2002 data set were made artist-wise by

gathering the “style” tags from All Music Guide9 for each of the 400 artists

represented in the collection. Each of the artist was assigned multiple genre

tags, the list of assignments can also be obtained10.

In MIREX 2005 a subset of 1414 tracks of the USPOP 2002 collection

has been selected. The IMIRSEL team purchased the CDs from this subset

and compiled a set of 940 training files and 474 files for testing. Genre

assignments were not adopted from the USPOP 2002 labels but from a

public meta-data provider such as Gracenote or freedb.org.

The list of genres and number of test instances per genre is given in

Table 4.4(b). Neither the list of tracks nor the audio data was released to

the participants.

4.2.6 MIREX 2006 USPOP/USCRAP

The MIREX 2006 collection for Audio Music Similarity and Retrieval was

again selected from the USPOP data set and included also music from the

USCRAP collection and the Cover Song collection. The USCRAP collection

was compiled and acquired by the IMIRSEL team and contains another

set of US pop music. 30 cover songs with 11 versions each were included

within this collection in order to accommodate the MIREX 2006 Cover Song

Identification task. In total the collection comprised 5000 tracks from 9

genres (c.f. Table 4.5).

All tracks were handled in the exactly the same way: The CDs were

encoded into MP3 with a variable bitrate of 192 kbps and 44.1 kHz sampling

frequency and later decoded for the contest to 22 kHz mono WAV audio. It

was considered that no track should be shorter than 30 seconds or longer

than 10 minutes and that there was a maximum of 20 tracks per artist and

7http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
8http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002-aset.txt
9http://www.allmusic.com

10http://labrosa.ee.columbia.edu/projects/musicsim/aset400-styles.txt
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Table 4.5: MIREX 2006 music collection: music selected from both the
USPOP and USCRAP collections, utilized for the Audio Music Similarity
and Retrieval task (genres and number of tracks per genre; songs which were
used for Cover Song Detection were labeled with ‘Cover Song’).

genre # tracks

Country 246
Electronica & Dance 453
Jazz 87
Latin 62
New Age 69
R & B 82
Rap & Hip-Hop 1244
Reggae 93
Rock 2334
Cover Song 330

total 5000

a minimum of 50 tracks per labelled genre. This collection is the largest

database used in joint scientific evaluation until now. However, neither the

list of tracks nor the actual audio were made available.

4.2.7 Mozart Collection

This collection comprises the complete works of Wolfgang Amadeus Mozart.

The collection was available on 170 CDs and was encoded to 256 kbps con-

stant bitrate MP3 format. It originally consisted of 2443 pieces, one track

was removed because it consisted of a spoken sentence shorter than 5 sec-

onds only. The music has been divided into a set of categories, which were

derived partly from the categorization of the CD collection (according to the

CD covers) and partly by further subdivision of the main categories. There

are 17 classes in total which are listed in Table 4.6. The total playing time

of the music is 62 hours and 32 minutes.

The remarkable characteristic of this collection is that it was composed

by a single composer and is hence a very homogeneous collection, consist-

ing entirely of classical music from one specific period of time. It is thus

a particular challenge for MIR algorithms to derive features for a proper

organization of this collection.
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Table 4.6: Mozart collection: the complete works of Wolfgang Amadeus
Mozart (categories and number of pieces per category).

category # pieces

Canons 41
Church Sonatas 17
Concert Arias 53
Concertos 159
Dances 207
Divertimenti 169
Flute Quartets & Sonatas 27
Horn, Oboe & Clarinet Ensembles 10
Keyboard Works 146
Operas 768
Piano Ensembles 30
Sacred Works 324
Serenades 77
Songs 33
String Ensembles 130
Symphonies 144
Violin Sonatas 107

total 2442

4.3 Conclusions

This chapter introduced several audio collections used for benchmarking

campaigns or other evaluations. They are characterized by a different num-

ber of files, a different number of classes, different stratifications (i.e. genre

distributions) and different homogeneity (different types of categories). Con-

sequently, evaluation on many different audio databases will induce the gen-

eralization of the applied approaches to real world problems. Using these

databases for evaluation allows to not only compare the performance of

different feature sets from different research institutions. They also show

the different performance of the same feature type across different tasks,

highlighting the fact that no single one is optimal for all situations.



Chapter 5

Evaluation and

Benchmarking

5.1 Introduction: History of Evaluation in MIR

Research

The increased interest on research in the MIR domain and the growing num-

ber of approaches to different problems in MIR soon called for a standard-

ized evaluation of the different methods proposed. The idea of a common

scientific evaluation of MIR algorithms existed already at the time of the

first ISMIR symposium in the year 2000 [Dow02]. At ISMIR 2001 discus-

sion started about details such as evaluation frameworks, standardized test

collections, tasks and evaluation metrics. The need of an evaluation frame-

work for the growing MIR research community was expressed in a resolution

signed by more than 90 researchers from the multidisciplinary and multina-

tional MIR/MDL (music digital libraries) research community. A Workshop

at JCDL 2002 brought the MIR/MDL people into contact with people from

the Text REtrieval Conference (TREC), particularly Ellen Voorhees, who

gave a keynote talk about the potential applicability of the TREC evalua-

tion paradigm to the needs of the MIR/MDL community. TREC at that

time was already a well-established forum with the aim to support research

within the information retrieval community by providing the infrastructure

necessary for large-scale evaluation of text retrieval methodologies1. How-

ever, soon it was clear that the TREC evaluation methodologies are not

1http://trec.nist.gov/overview.html

46
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directly applicable to the music domain and hence from thereon the term

“TREC-like evaluation” was used for the planning of an MIR evaluation,

in fact not related to TREC more than through inspiration and occasional

inquiry. Among the particularities of MIR evaluation are the different rep-

resentations of music (audio, symbolic representations, scores, metadata),

the types of different queries and thus tasks (song retrieval, score following,

beat detection, etc.) and the identification of real-world application scenar-

ios (libraries/archives, educational, professional, personal use) [Dow03b].

In 2002 the IMIRSEL (International Music Information Retrieval Systems

Evaluation Laboratory) project was started at the University of Illinois at

Urbana-Champaign (UIUC) with J. Stephen Downie as the project princi-

pal investigator. IMIRSEL was started to bundle the ongoing efforts for the

realization of a scientific evaluation, particularly the establishment of the

necessary resources for the assembly of music databases and other necessary

data, the compilation of evaluation tasks and the selection of appropriate

evaluation metrics. At ISMIR 2002 a panel on MIR evaluation frameworks

was held, stating the question “How do we move forward on making a TREC-

like evaluation scenario for MIR/MDL a reality?” [Dow02]. It was clear

that still much work had to be done, and apart from the issues described

above, copyright issues for the compilation of a standardized, yet as much as

possible “real-world”, music database arised. The copyright issues for music

information retrieval research is still a topic of ongoing discussions, obviated

by two bypassing solutions: (1) use of copyright-free music or (2) evaluation

in a central place with a secured music database of copyrighted music, with

no access of the evaluation participants to the actual music. Intellectual

property not only in terms of music authorship but also regarding “music

information” that derives from MIR systems and the implied rights and li-

abilities were discussed in a panel at ISMIR 2003, next to another panel

on “Making Music Information Retrieval Evaluation Scenarios a Reality”,

discussing about how to arrive at a community consensus about the specific

tasks to be evaluated and the metrics to be used.

Much effort has been put from the organizers of ISMIR 2004 to realize

the first “Audio Description Contest”2. This first evaluation of MIR algo-

rithms allowed the submission of algorithms in 5 categories: Genre Clas-

sification, Artist Identification, Melody Extraction, Tempo Induction and

2http://ismir2004.ismir.net/ISMIR Contest.html
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Rhythm Classification. Knowing that these “contest” categories did not

represent the full range of MIR developments, the organizers knew as well

that this would be an important kick-off for future MIR evaluations. The

2004 evaluation was organized as a “contest”, meaning that there was a

winner in each of the categories, according to evaluation metrics that were

agreed on beforehand among the participants. In this first evaluation also

test data was made available to participants (as far as copyright licenses

allowed), in order to assist participants in assembling their algorithms in a

proper format for the evaluation. The evaluation took place at the labs of the

ISMIR 2004 organizers, MTG at University of Pompeu Fabra, Barcelona,

before the conference.

The second scientific evaluation of MIR algorithms was accomplished

by the IMIRSEL project during and before ISMIR 2005 and was hence-

forth called MIREX (Music Information Retrieval Evaluation eXchange). In

MIREX 2005 anyone who liked to participate could propose new tasks. Ten

different tasks have been defined, for which people could submit their algo-

rithms. Besides seven audio-based tasks also three tasks for symbolic music

notations were available, hence a major extension of disciplines over the

2004 evaluation. Observing that the performance of a number of algorithms

delivered results at a very similar level, it was decided that significance tests

should be introduced for future evaluations.

As a further reaction to these similar results a (partly) changed set of

tasks has been proposed for MIREX 2006: For instance, instead of a genre

classification task, similarity algorithms this time were graded by human

judgements, through the first human listening test within joint scientific

MIR/MDL evaluation. Another new task was Audio Cover Song Identi-

fication. In total nine tasks were available at MIREX 2006, which were

proposed, discussed and agreed upon beforehand by means of a mailing list3

as well as a Wiki4. A significance test that was applied to several of the tasks

showed that there were indeed no significant differences between the results

of many of the algorithms, a fact that was already presumed in MIREX

2005.

Annual scientific evaluations of algorithms play an important role in

research: Not only do they allow a comparison of the state-of-the-art in

3https://mail.lis.uiuc.edu/mailman/listinfo/evalfest
4http://www.music-ir.org/mirex2006
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a particular field, they also enable research teams to measure their own

individual progress over the years. In both aspects, evaluation not only

supports research in MIR, it actively stimulates and fosters research, giving

also new incentives and encouraging communication and exchange between

the research teams. At this point it should be stated, that the evaluation

forums are not limited to research groups, but are open to any organization

or individual who wishes to participate with his or her own approach to a

certain topic.

I have participated in each of the annual evaluations up to now, in several

tasks. The following sections describe the evaluation tasks I participated in,

the approaches I submitted and discusses the results in comparison to other

participants of the evaluations. Section 5.2 explains common evaluation

methodologies and presents typical measures used in evaluations. Section

5.3 starts with an outline of the situation when I started to work in the MIR

domain, describes the efforts I made for improvements of existing approaches

and outlines the experiments I did and the evaluations I was involved in.

Section 5.4 describes the ISMIR 2004 Audio Description Contest, the first

state-of-the-art MIR algorithm evaluation, and presents the results of the

three tasks I participated in.

Section 5.5 explains the numerous experiments I did on the evaluation

of psycho-acoustic transformations involved in audio feature extraction as

well as further experiments on two newly developed feature sets. Further-

more it describes an approach of combining the feature sets in an effort to

further improve classification results. The experiment results are then com-

pared to other published results on de-facto standard evaluation benchmark

databases.

Section 5.6 describes the tasks, approaches and results of the ISMIR

2005 evaluation forum, now called MIREX. In Section 5.7 the changed re-

quirements for the 2006 evaluation round are described, as well as an eval-

uation of distance metric for similarity-based retrieval. Eventually, Section

5.8 presents the new tasks of MIREX 2006, outlines the first human listen-

ing test done for state-of-the-art MIR evaluations and describes the many

evaluation metrics and results, closing with conclusions thereof.

Section 5.9 summarizes the evaluations described in this chapter and

outlines their implications.
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5.2 Evaluation Methods and Measures

5.2.1 Classification

Quantitative evaluations of features for Music Information Retrieval are typ-

ically performed through classification tasks. The task is to categorize pieces

of music into a pre-determined list of classes, e.g. genres. The very active

research domain of machine learning has developed numerous classifiers,

which can be employed for music classification tasks. All of them intend

to find a separation of classes within the feature space which is spanned by

the feature vectors computed from music. Obviously that space has to be

populated first with training data, i.e. classification is only possible if a part

of the data is available already labeled with classes. The classifier can then

learn from the labeled data and induce models for future items.

A simple classifier is the nearest neighbor classifier. It matches an un-

labeled data item to the closest item of the labeled ones and induces the

class prediction from the label of that item. A k-nearest neighbor classi-

fier (k-NN) considers multiple (k) items and derives the prediction from the

most frequent class label. Different distance metrics play an important role

in k-NN classification (c.f. Section 5.7.2).

The Perceptron [Ros58] is an iterative classifier that starts with a ran-

domly initialized hyperplane, which is updated as the feature vectors are

presented in each iteration. The Perceptron algorithm has been shown to

converge to an optimal solution with no mis-classification in case the data

set is linearly separable. However, the Perceptron is not deterministic since

it depends on its initialization, and the order that the samples are presented

during training.

A Support Vector Machine (SVM, [Vap95]) is a classifier that constructs

an optimal separating hyperplane between two classes. The hyperplane

is computed by solving a quadratic programming optimization problem,

such that the distance of the hyperplane from its closest data vectors is

maximized. A “soft margin” allows a number of points to violate these

boundaries. Except for linear SVMs the hyperplane is not constructed in

feature space, but a kernel is used to project the feature vectors to a higher-

dimensional space, in which the problem becomes linearly separable. Poly-

nomial or radial basis function (RBF) kernels are common.

The linear SVM usually performs better in classification than other linear
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classifiers, especially for high-dimensional data sets. However, it is signifi-

cantly more expensive to compute.

Many more classifiers exist. For an in-depth review of machine learning

and pattern classification algorithms refer to [DHS00].

5.2.2 Cross-Validation

For evaluation through a classification task a data set in which all items

(songs) are labeled by a class (genre) is needed. The labeled data set – the

so-called ground-truth – is usually split into a training and a test set. The

labeled training set is then used for training the classifier and building a

model, and afterwards the test set (without the labels) is used to predict

classes from the model. Subsequently the predictions are compared to the

test set labels and an Accuracy value (among other measures) is computed

from the result. Typically, a 2:1 training/test set split is used, i.e. 67 %

of the music in the collection is used for training and 33 % for testing. If

parameters have to be tuned for a particular classifier, also the constellation

of training – development – test set is common. The development set is then

used for selection (determination) of the best parameters, while the test set

is left for final testing.

As the results usually vary depending on what part of the collection

has been selected for training and what is the test data, the n-fold cross-

validation approach has been introduced, which is supposed to give more

stable results. In a 10-fold cross-validation for instance, the collection is

split into 10 (random) equal-sized sub-sets. In 10 runs, each sub-set is once

selected as test set, while the other 9 sub-sets are used for training. Measures

are then calculated from each of the 10 tests and the final result is averaged.

An n-fold cross-validation is referred to be “stratified” when each of the

sub-sets contains the same class distribution as the entire data set.

In my classification experiments in the following sections, a stratified 10-

fold cross-validation approach is used. The scientific evaluation campaigns

usually use a training/test set split, due to time limitations.
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5.2.3 Evaluation Measures

Feature sets and classification techniques are evaluated using a range of

measures. The most commonly used one is Accuracy. In a two-class problem

Accuracy is defined as

A =
TP + TN

N
(5.1)

TP is the number of true positives, TN is the number of true negatives, i.e.

the two cases where the classifier predicted the correct class label. A false

negative (FN) is when the classifier prediction was ‘false’ while it should

have been ‘true’. A false positive (FP ) appears, when the classifier assigns

an item, that is actually labeled as ‘false’, to the class ‘true’. N is the

number of items in the collection.

In music classification usually more than two classes exist, thus Accuracy

is computed as the sum of all correctly classified songs, divided by the total

number of songs in a collection:

A =

∑|C|
i=1 TPi

N
(5.2)

The determination of the number of correctly classified songs implies

the availability of genre (class) labels for all songs in the collection, i.e. for

evaluation a music collection with 100 % annotated data is needed, which

is called ground-truth data.

Besides Accuracy, Precision and Recall are further performance measures

often reported from classification tasks:

πi =
TPi

TPi + FPi
, PM =

∑|C|
i=1 πi

|C|
(5.3)

πi is the Precision per class, where TPi is the number of true positives in

class i and FPi is the number of false positives in class i, i.e. songs identified

as class i but actually belonging to another class. |C| is the number of

classes in a collection and PM is macro-averaged Precision. Macro-averaging

computes the Precision per class first and then averages the Precision values

over all classes, while micro-averaged Precision is computed by summing over

all classes. In micro-averaging, however, large classes are over-emphasized

and therefore only macro-averaging is used in this thesis. Precision measures
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the proportion of relevant pieces to all songs retrieved.

ρi =
TPi

TPi + FNi
, RM =

∑|C|
i=1 ρi

|C|
(5.4)

ρi is the Recall per class, where FNi is the number of false negatives of

class i, i.e. songs belonging to class i, but which the classifier assigned

to another class. RM is macro-averaged Recall, micro-averaged Recall is

computed, analogously to micro-averaged Precision, directly by summing

over all classes. Recall measures the proportion of relevant songs retrieved

out of all relevant songs available.

An additional performance measure is the F-measure, which is a com-

bined measure of Precision and Recall, computed as their weighted harmonic

mean. The most common F-measure is F1-measure, which weights Precision

and Recall equally:

F1 =
2 · PM · RM

PM + RM
(5.5)

The general definition for the F-measure is

Fα =
(1 + α) · PM · RM

α · PM + RM
(5.6)

where α influences the weighting of Precision and Recall.

As the performance measures may fluctuate depending on the particular

partitioning of the data collection into sub-sets used for training and testing,

usually a cross-validation approach is chosen in order to get a more stable

assessment of the classifier results.

5.3 Starting Point

When I started to work on MIR in 2003, one of the first works I did was

a comparison of two audio similarity feature sets by clustering music on a

Self-Organizing Map [Lid03]. I compared the MARSYAS Genre feature set

(c.f. Section 3.2.4) and the Rhythm Patterns features (c.f. Section 3.2.5),

using a small personal music collection with 335 audio files. MARSYAS

0.1 and Elias Pampalk’s Music Analysis Toolbox for Matlab, version 0.2

from 2002 were used for feature extraction. In this evaluation the Rhythm

Patterns features delivered better results than MARSYAS. I continued to



CHAPTER 5. EVALUATION AND BENCHMARKING 54

use the MA Toolbox in my further work and successively optimized the

Matlab code for the extraction of Rhythm Patterns from audio data. One

of the modifications made was the introduction of many new options which

enabled the control of which parts of the feature extraction process to be

included or not. This allowed to evaluate the influence of several psycho-

acoustic transformation steps. Other options offered automatic resampling

of the audio data and allowed to control important parameters such as the

Hanning window size, the number of critical frequency bands and the range

of modulation frequencies to be considered in the Rhythm Patterns (see

Section 3.2.5). Another important addition was to control the number of

segments to be selected for the feature extraction process as well as the time

to be skipped from the start and end of an audio file, in order to avoid

lead-in and fade-out effects. I also made an effort to optimize the processing

performance and analyzed the computational cost of each of the parts of

the algorithm. It turned out that the conversion from the Decibel to the

Phon scale, which incorporates numerous non-linear transformations and

look-ups in tables, amounted about 71 % of the total processing time. After

re-implementing the Phon conversion I reduced this portion to 3.2 % and

achieved a reduction of the total feature extraction time of about 70 %.

Furthermore, I introduced some checks to improve the robustness of the

code. One particular check – whether the options set for segment selection

and skipping of lead-in/fade-out match the actual duration of the audio

file – made the algorithm pass the unannounced ISMIR 2004 robustness

test (see Section 5.4.2). The large number of introduced options enabled a

range of experiments, which lateron led to improvements in the algorithm

itself (c.f. Sections 5.5 and 5.6). In 2005 I completely re-implemented the

Rhythm Patterns audio feature extraction in Matlab in order to do more

optimizations of the algorithm. Based on the Rhythm Patterns feature

extractor I developed two new feature sets which were then available in

the same Matlab package. Later, in 2006, the feature extractor was re-

implemented again in Java in order to be included in interactive applications

for browsing and retrieval of music archives.
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5.4 ISMIR 2004 Audio Description Contest

In 2004 the first joint scientific MIR evaluation has been started as the

“ISMIR 2004 Audio Description Contest”5. Five tasks were available:

• Genre Classification

• Artist Identification

• Melody Extraction

• Tempo Induction

• Rhythm Classification

I participated, together with Andreas Rauber and Andreas Pesenhofer in a

team, in three of the tasks: Genre Classification, Artist Identification and

Rhythm Classification. Details of the contest requirements, preparation of

the submission, training data and, most importantly, evaluation results are

discussed in the following subsections.

5.4.1 Submitted Algorithm and Contest Preparations

As the 2004 contest was the first evaluation within the MIR domain, there

were no standardized submission formats or guidelines. Therefore, each of

the tasks had its own rules of how to submit, what to submit and what to

produce as output. Also the data given to the participants differed among

the tasks: For Genre Classification a training set of complete audio files

was provided to the participants beforehand in order to enable them to

train their classifier models to music of the same genres as used in the final

test database and to test their systems for conformance to the submission

requirements. For Rhythm Classification there was also a training set avail-

able, however only as 30-seconds excerpts. For Artist Identification due to

copyright issues only low-level (MFCC) features extracted beforehand by

the contest organizers had been released (which we did not use).

The participants could experiment with that data and different classifiers

and had to submit an entire system including the classifier and, for Rhythm

Classification, also the trained model.

We used the optimized implementation of the Rhythm Patterns feature

set in our submissions to the three tasks. The full implementation including

5http://ismir2004.ismir.net/ISMIR Contest.html
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all psycho-acoustic transformation steps (c.f. Section 3.2.5) had been used.

Segmentation of the audio files was done into 5.9 seconds segments, the first

and the last segment were skipped and every third segment of the remaining

ones was processed. Rhythm Patterns were extracted on 24 critical bands

and 60 modulation frequencies (with a resolution of 0.17 Hz).

Much effort had to be done to meet the requirements of the contest,

because we did not have an entire audio classification system at that time.

Thus, a number of scripts had to be written in order to provide an en-

tire framework which would extract the features from audio, train a model,

perform the classification and write correct output corresponding to the re-

quired format. While for the Genre and Artist Classification tasks a frame-

work doing all these steps had to be submitted (i.e. the classifier model

would be trained during evaluation) the requirements of the Rhythm Clas-

sification had foreseen, that a model had to be trained in advance, which

would then be submitted together with the feature extraction algorithm and

the classifier.

We did a range of experiments with different classifiers and measured the

performance on both the training sets of the Genre and Rhythm Classifica-

tion tasks. From among the different classification algorithms we tested, we

chose Support Vector Machines (SVMs) as the one to use for the contests,

as they outperformed all other classifiers in our experiments. We used linear

SVMs in the SMO implementation of the Weka Machine Learning software6

[WF05].

5.4.2 Genre Classification

Music from Magnatune7 has been used in this task and the task was to clas-

sify the music into the same set of genres that Magnatune uses to organize

the music on their web site8. In this contest a database of 1458 songs has

been used, half of the songs were released beforehand to the participants

while the other half was kept closed for evaluation. Table 4.3(a) shows the

distribution of songs among the six genres, equal distribution existed in both

the training and test set (50 % each). Besides the training data, a sample

6http://www.cs.waikato.ac.nz/ml/weka/
7http://www.magnatune.com/ – Magnatune’s licensing scheme allows the use of the

music they publish for research.
8http://ismir2004.ismir.net/genre contest/index.htm
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Table 5.1: Results of the ISMIR 2004 Genre Classification contest: Overall
Accuracy and Accuracy normalized by genre frequency (in %)

Participant A A (norm.)

Elias Pampalk 84.1 78.8

Kris West 78.3 67.2

George Tzanetakis 71.3 58.6

Thomas Lidy and Andreas Rauber 70.4 55.7

Dan Ellis and Brian Whitman 64.3 51.5

Table 5.2: Results of the unannounced robustness test of the ISMIR 2004
Genre Classification contest: Overall Accuracy and Accuracy normalized by
genre frequency in % (other participants failed)

Participant A A (norm.)

Thomas Lidy and Andreas Rauber 63.4 52.1

George Tzanetakis 57.5 24.0

framework of scripts was provided to the participants to allow them to sim-

ulate the evaluation environment. We had to plug in a number of additional

scripts in order to perform automatic classification of the features extracted

from Matlab through the Weka Java software.

There were five participants in this task. Table 5.1 shows the evaluation

results in terms of Accuracy (percentage of correctly classified tracks) and

Accuracy normalized with respect to the probability of each class (i.e. aver-

age per-class Accuracy, which is equal to macro-averaged Recall as defined

in Section 5.2.3)9. We achieved 70.4 % Accuracy on the Genre Classification

and thus rank four.

Elias Pampalk, who won the contest, used Gaussian Mixture Models

(with 30 Gaussians) and Expectation Maximization to cluster frame-level

features and performed the Genre Classification using nearest neighbor clas-

sification on cluster similarity. 19 MFCC coefficients were extracted per

frame and a piece of audio was summarized by clustering the frame-level

features and thus finding a typical representation, variances and prior prob-

abilities. For similarity (resp. distance) computation 2000 samples were

9http://ismir2004.ismir.net/genre contest/results.htm
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drawn from each Gaussian Mixture Model. This approach exceeded by far

the maximum computation time that was introduced in later MIREX eval-

uations, i.e. it needed several days to compute.

During the realization of the Genre Classification contest an additional

– unannounced – robustness test was performed on the five participating

systems10: A 25 second excerpt was extracted from the middle of the audio

files and the five algorithms were tested whether their performance would

decrease in the case of using short audio excerpts. Three of the algorithms

failed in extracting features from 25 seconds audio, only two succeeded (c.f.

Table 5.2): Our algorithm performed the genre classification with 63.4 %

Accuracy (i.e. a decrease of 7 percentage points over the full pieces of au-

dio) and George Tzanetakis’ achieved 57.5 % (a decrease of 13.8 percentage

points, which means that it fell behind us in the ranking). This result would

not have been achieved without the additional robustness I implemented into

the algorithm prior to the contest.

5.4.3 Artist Identification

The Artist Identification contest used the same framework as the Genre

Classification contest, but a different music database. The task was to iden-

tify artists given 3 songs per artist after training the system on 7 songs per

artist11. For training and development two sets of low-level features were

provided to the participants, corresponding to songs of 105 artists from the

USPOP2002 collection [BLEW03]. The training set included 7 songs from

each artist and the development set 3 songs. However, the features provided

were MFCC features, which we could not use for our Rhythm Patterns based

approach. Therefore we submitted our algorithm without prior training on

Artist Identification and with the same parameters as for Genre Classifica-

tion. The evaluation test set consisted of about 200 artists, which were not

part of the USPOP2002 collection. During the evaluation the algorithms

were given 7 songs for training, and 3 songs per artist were used for evalua-

tion. According to the contest organizers, due to technical limitations, the

original aim of testing the algorithms on all 200 artists could not be achieved

and therefore the submissions were evaluated both with 30 and 40 artists12.

10http://ismir2004.ismir.net/download/PanelAudioContest.pdf
11http://ismir2004.ismir.net/genre contest/index.htm#artist
12http://ismir2004.ismir.net/genre contest/results.htm#ArtistResult
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Table 5.3: Results of the ISMIR 2004 Artist Identification contest: Accuracy
in % on identifying 30 resp. 40 artists

Participant 30 artists 40 artists

Dan Ellis and Brian Whitman 34 24

Thomas Lidy and Andreas Rauber 28 24

Only two teams participated in this task. Table 5.3 presents the results

of the Artist Identification contest. Dan Ellis and Brian Whitman achieved

34 % Accuracy on identifying 30 different artists, we achieved 28 %. For

the increased problem of 40 artists, both systems delivered equal results of

24 % Accuracy.

This task can be compared to Genre Classification regarding it as a

classification problem with an increased number of classes: While on the 6

class Genre Classification problem our approach achieved 55.7 % normalized

Accuracy and Ellis and Whitman’s 51 %, our result dropped to 28 % on the

30 class Artist Identification problem and theirs only to 34 %. Note that

our system was not designed for Artist Identification and we did no prior

experiments on that task, whereas Ellis and Whitman did specific research

on Artist Similarity [EWBL02].

5.4.4 Rhythm Classification

The third task we participated within the ISMIR2004 Audio Description

Contest was on Rhythm Classification. The task was to classify pieces

of ballroom dance music correctly into 8 available classes13. A set of 488

training instances (30 seconds excerpts in RealAudio format from ballroom-

dancers.com, which had to be decoded to wav format) was provided to the

participants. These training instances had to be used to train a model

with one’s system before the contest. The contest required to submit this

model together with one’s algorithm, which means, that during the contest

no training was made and the submitted algorithm had to extract features

only from the test instances and to predict their genres. Table 4.3(b) con-

tains the list of genres involved in the Rhythm Classification task as well as

the number of instances per class in the music collection. A stratified 70:30

13http://www.iua.upf.es/mtg/ismir2004/contest/rhythmContest/
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Table 5.4: Result of the ISMIR 2004 Rhythm Classification contest and
comparison with other results on the same audio collection: Accuracy in %,
A* denotes usage of a-priori knowledge about tempo15

Algorithm A A*

Lidy, Rauber and Pesenhofer 82.0 -

Gouyon and Dixon, 2004 [GD04] 67.6 -

Gouyon et al., 2004 [GDPW04] 78.9 90.1

Dixon et al., 2004 [DGW04] 85.7 96.0

training/test set split has been used on that database. Consequently, in the

contest 210 test files had to be classified – based on the model trained on

the 488 training instances – into the 8 available dance rhythms.

Our algorithm classified 82 % of the test files correctly and won the

Rhythm Classification task. No other team participated in this ISMIR2004

task, nevertheless we can compare the evaluation result to other approaches

which were published at the same time and tested on the same audio data

(however, using 10-fold cross-validation instead of the 70:30 training/test

set split). Table 5.4 shows this comparison.

The approach by Gouyon and Dixon [GD04] is based on tempo proba-

bility functions for each of the 8 ballroom dances and successive pairwise or

three-class classification and reports 67.6 % overall Accuracy. Dixon et al.

specifically address the problem of dance music classification and achieve a

result of 96 % Accuracy when using a combination of various feature sets

[DGW04]. Besides audio-based descriptors, the approach also incorporates

a-priori knowledge about tempo and thus drastically reduces the number

of possible classes for a given audio instance. The ground-truth-tempo ap-

proach has been previously described by Gouyon et al. [GDPW04], where

classification based solely on the pre-annotated tempo attribute reached

82.3 % Accuracy (k-NN classifier, k=1). The paper also describes a variety

of feature sets and reports 90.1 % Accuracy on the combination of MFCC-

like descriptors with ground-truth tempo and 78.9 % Accuracy when using

computed tempo instead.

15Result of Lidy et al. was achieved on the 70:30 training/test set split used in the
contest, the other results using 10-fold cross validation.
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5.5 Pre-MIREX 2005 Experiments and New Fea-

ture Sets

As a next step – prior to the ISMIR 2005 evaluation16 – I did a profound

evaluation of the processing steps involved in Rhythm Patterns feature ex-

traction. Of particular interest were the psycho-acoustic transformations

involved in the feature extraction and their influence to the results of classi-

fication tasks. From the results of these experiments, which are reported in

[LR05], I identified both crucial and problematic transformations under the

several psycho-acoustic processing steps. The experiments and the resulting

conclusions are explained in detail in Section 5.5.2.

In 2005 I also developed two new feature sets: Statistical Spectrum

Descriptors and Rhythm Histograms. In a further set of experiments I

evaluated the performance of the two new feature sets on the same music

databases and the same experiment setup as the Rhythm Patterns features

and compared their performance to the one of the new Rhythm Patterns

variants. The two feature sets have been described in Chapter 3, the evalu-

ation experiments are described in Section 5.5.3.

The comparison of the three feature sets is elaborated in Section 5.5.5,

which is followed by another experiment on combining the different feature

sets and employing them together for classification in Section 5.5.6. As each

feature set has different strengths and weaknesses, the combined approaches

deliver improved results over the single feature sets.

Eventually, in Section 5.5.7 a comparison of the new feature sets and

the combination approach is done with the results of the ISMIR 2004 Audio

description contest as well as other published results on the same databases

I used in my experiments. The music databases used will be presented in

the following subsection, they are described in detail in Chapter 4. Finally,

conclusions of all those experiments and evaluations are provided in Sec-

tion 5.5.8.

5.5.1 Audio Collections and Experiment Setup

For the quantitative evaluation of the three feature sets I measured their

performance in genre classification, similar as in the ISMIR 2004 Genre

16which was called MIREX from 2005 on
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Classification contest (c.f. Section 5.4.2). The experiments were performed

on three different audio collections in order to gain information about the

generalization of the results to different music repositories and thus different

genre taxonomies, or to possibly detect specific problems with certain music

styles. Three reference audio collections have been used in order to be able to

compare the results to other published measures: the GTZAN collection, the

ISMIRrhythm collection and the ISMIRgenre collection. These collections

are described in detail in Chapter 4.

The GTZAN collection consists of 1000 pieces of audio equi-distributed

among 10 popular music genres (see Table 4.2). The ISMIRrhythm collec-

tion is the one used in the ISMIR 2004 Rhythm classification contest and

consists of 698 30-second excerpts of 8 genres from ballroom dance mu-

sic (see Table 4.3(b)). The ISMIRgenre collection is from the ISMIR 2004

Genre classification contest and contains 1458 songs from Magnatune.com,

the pieces being unequally distributed over 6 genres (see Table 4.3(a)). The

tables list the genres involved in each collection and also the numbers of

songs in each genre category.

For classification, Support Vector Machines with pairwise classification

were used, utilizing the Weka Machine Learning software. A 10-fold cross

validation was performed in each experiment. From the experiments macro-

averaged Precision (PM ) and Recall (RM ) are reported, as defined in Section

5.2. Macro-averaged Precision and Recall were used in order to make up

for the unequal distribution of classes in the ISMIRgenre and ISMIRrhythm

music collections. As globally comparable criterion the F1 measure is re-

ported, and for comparability to other studies Accuracy (A) is measured,

which is the proportion of correctly classified songs to the total number of

songs in a collection.

5.5.2 Evaluation of Psycho-Acoustic Transformations in

Rhythm Patterns feature extraction

The Rhythm Patterns feature extraction algorithm includes a number of

psycho-acoustically motivated transformations:

• conversion to the Bark scale (critical bands)

• a spreading function to account for spectral masking

• transformation into the Decibel scale
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• computation of equal loudness (Phon scale)

• computation of specific loudness sensation (Sone scale)

• fluctuation strength weighting

• filtering and smoothing

Some of those transformations include logarithmic or non-linear trans-

formations, some others even look-ups in tables, which makes them com-

putationally complex. I conducted a set of experiments with the purpose

to discover how important these psycho-acoustic transformations are to the

performance of the feature set. The results from this experiments reveal

information about which are crucial parts of the feature extraction as well

as an indication of which transformations potentially pose problems to the

performance of the feature set. Both of this is valuable information for fur-

ther improvement of the feature extraction algorithm and has implications

to audio feature extraction in general.

As in the new implementation of the Rhythm Patterns extractor – due

to the introduction of many new parameters – several of the steps from the

algorithm could be processed optionally, I conducted a reasonable number

of experiments with different option settings regarding the transformations

involved in the feature extraction process. Table 5.5 summarizes the steps

involved in Rhythm Patterns calculation in each experiment. ‘S’ denotes

steps for computing the Sonogram, ‘R’ denotes the steps on the modulation

amplitudes representation computing the actual Rhythm Pattern, according

to Figure 3.2. In order to be able to assess the generalization of the results

on various genre taxonomies three different standard MIR audio collections

have been used in the evaluation (see Section 5.5.1).

Table 5.6 provides an overview of the experiments. Each experiment

is identified by a letter. The table lists the steps of the feature extraction

process involved in each experiment. Experiment A represents the baseline,

where all the feature extraction steps are involved. Experiments K through

N completely omit the transformations into the dB, Phon and Sone scales.

Experiments G to I and K to Q extract features from the audio without

accounting for Spectral Masking effects. A number of experiments evaluates

the effect of filtering/smoothing and/or the fluctuation strength weighting.

In Table 5.7 the results from experiments A through Q on the three

audio collections are presented (best and second-best result in each column
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Table 5.5: Summarization of the steps for computation of Rhythm Pattern
features

step description

S1 Power Spectrum (FFT)
S2 Critical bands (Bark)
S3 Spectral Masking
S4 Loudness (dB)
S5 Equal Loudness (Phon)
S6 Specific Loudness Sensation (Sone)
R1 Modulation Amplitudes (FFT)
R2 Fluctuation Strength
R3 Filtering and Smoothing

Table 5.6: Experiment IDs and the steps of the Rhythm Patterns feature
extraction process involved in each experiment

step A B C D E F G H I J K L M N O P Q

S1 × × × × × × × × × × × × × × × × ×

S2 × × × × × × × × × × × × × × × × ×

S3 × × × × × × ×

S4 × × × × × × × × × × × ×

S5 × × × × × × × × × ×

S6 × × × × × × × ×

R1 × × × × × × × × × × × × × × × × ×

R2 × × × × × × × × × × ×

R3 × × × × × × × × × × ×

are printed in boldface). From the results of the experiments several inter-

esting observations can be made. Probably the most salient observation is

the low performance of the experiments J through N (with the exception

of Precision on the ISMIRgenre collection). These experiments do not in-

volve transformation into decibel scale nor successive transformation into

the Phon and Sone scales. Also, experiments E and F as well as H and

I deliver quite poor results, at least on the GTZAN and ISMIRgenre data

sets. Those experiments perform decibel transformation but skip the trans-

formation into Phon and/or Sone. All these results indicate clearly that

transformation into the logarithmic decibel scale is very important, if not

essential, for the audio feature extraction and subsequent classification or

retrieval tasks. The successive application of the equal loudness curves (i.e.
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Table 5.7: Results of the Rhythm Patterns feature extraction experiments
on evaluation of psycho-acoustic transformations: Macro-averaged Precision
(PM ), macro-averaged Recall (RM ), F1 measure and Accuracy (A) in %
(highest and second highest value in each column are boldfaced)

GTZAN ISMIRrhythm ISMIRgenre

Exp. P
M

R
M

F1 A P
M

R
M

F1 A P
M

R
M

F1 A

A 58.5 58.5 58.5 58.5 82.5 81.3 81.9 81.7 59.8 56.1 57.9 71.0
B 62.6 62.3 62.5 62.3 83.4 81.6 82.4 82.4 62.4 61.8 62.1 72.6
C 59.7 59.4 59.5 59.4 83.4 82.3 82.8 82.8 59.7 56.3 57.9 71.2
D 62.6 62.3 62.5 62.3 83.2 81.4 82.3 82.2 62.5 61.6 62.0 72.6
E 55.5 55.8 55.7 55.8 81.7 80.9 81.3 81.4 59.6 58.0 58.8 70.4
F 53.6 53.6 53.6 53.6 82.0 81.1 81.6 81.7 57.2 54.7 55.9 68.2
G 63.0 62.9 62.9 62.9 82.6 81.6 82.1 82.0 65.6 60.8 63.1 73.7
H 59.1 59.5 59.3 59.5 81.9 80.6 81.3 81.4 59.6 58.6 59.1 71.5
I 59.7 60.2 60.0 60.2 82.4 81.0 81.7 81.8 59.4 57.9 58.6 70.3
J 53.1 52.3 52.7 52.3 74.1 72.7 73.4 73.5 64.5 52.0 57.6 69.3
K 53.9 53.1 53.5 53.1 74.1 72.3 73.1 73.4 66.8 52.7 58.9 70.0
L 55.1 54.4 54.7 54.4 67.1 66.5 66.8 67.8 63.8 54.5 58.8 69.6
M 54.5 53.9 54.2 53.9 74.9 72.4 73.6 73.5 66.4 52.2 58.5 69.2
N 55.4 54.7 55.0 54.7 67.0 66.3 66.6 67.3 63.4 53.8 58.2 69.1
O 64.2 64.4 64.3 64.4 80.7 79.3 80.0 80.1 65.1 64.5 64.8 75.0

P 60.5 60.5 60.5 60.5 83.2 81.9 82.5 82.2 66.2 61.6 63.8 73.9
Q 64.2 64.4 64.3 64.4 81.6 80.2 80.9 81.0 64.9 64.1 64.5 74.9

Phon transformation) and the calculation of Sone values appear also as im-

portant steps during feature extraction (experiment A compared to E and

F, or experiment G compared to H and I).

Spectral Masking (step S3) was the subject of numerous experiments.

I wanted to measure the influence of the use or omission of the spreading

function for Spectral Masking in combination with variations in the other

feature extraction steps. Table 5.7 clearly shows, that most experiments

without Spectral Masking achieved better results. The ISMIRrhythm col-

lection constitutes an exception to this. Nevertheless, the degradation of

results incorporating spectral masking raises the question whether the Spec-

tral Masking spreading function is inappropriate for music of certain styles.

However, it is also possible, that the application of the Spectral Masking

spreading function is problematic when using compressed music (e.g. in

MP3 format)17, as many encoders already consider Spectral Masking when

17The ISMIRrhythm data set was available in RealAudio format, the ISMIRgenre data
set in MP3 format, both were decoded to WAV format. The GTZAN data set was available
in uncompressed AU format.
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encoding the music.

Further focuses of investigation were the effects of the fluctuation

strength weighting curve (step R2) and the filtering/smoothing of the

Rhythm Patterns (step R3). Both the GTZAN and ISMIRgenre collec-

tions are classified considerably better without the use of gradient filter and

smoothing. The ISMIRrhythm collection, however, shows contrary results.

Its results improve when omitting the fluctuation strength weighting, but

degrade when filtering and smoothing is omitted.

One can observe in several experiments that the ISMIRrhythm collection

behaves quite contrary to the two other collections. However, the results on

the ISMIRrhythm collection were already considerably better than those on

the two other collections from the beginning using the baseline algorithm.

The reason why this collection behaves differently might be that the results

are already at a high level and variations in the algorithm only cause small

fluctuations on the results. On the other hand, contrary to the GTZAN

collection and ISMIRgenre collection, ISMIRrhythm contains music from 8

different dance music styles. The discrimination of ballroom dances relies

heavily, if not exclusively, on rhythmic structure, which makes the Rhythm

Patterns feature set an ideal descriptor (and thus justifies the good results).

Apparently, smoothing the Rhythm Patterns is important for making dances

from the same class with slightly different rhythms more similar – whereas

in the two other collections, filtering and smoothing has negative effects.

The ISMIRrhythm set appears to be independent of the Spectral Masking

effects. Best results with ISMIRrhythm were retrieved with experiment C,

which omits fluctuation strength weighting (step R2), closely followed by

experiment P, which additionally omits spectral masking (step S3).

For the GTZAN and ISMIRgenre collections best results both in terms

of F1 measure and Accuracy were achieved in experiment O, which is the

original Rhythm Patterns feature extraction without Spectral Masking (S3)

and without filtering and smoothing (R3).

5.5.3 Evaluation of Statistical Spectrum Descriptors

Statistical Spectrum Descriptors (SSD) are derived from a psycho-

acoustically transformed Bark-scale spectrogram and comprise several sta-

tistical moments, which are intended to describe fluctuations on a number of

critical frequency bands. The transformations involved in SSD computation
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Table 5.8: Results of the experiments with Statistical Spectrum Descriptors
(best results bold).

GTZAN ISMIRrhythm ISMIRgenre

Exp. P M RM F1 A P M RM F1 A P M RM F1 A
SSD (S2) / mean 60.9 60.2 60.5 60.2 36.6 21.1 26.7 25.6 40.6 25.6 31.4 51.6
SSD (S2) / median 57.7 57.0 57.3 57.0 43.5 40.0 41.7 43.8 68.2 49.9 57.6 67.8
SSD (S6) / mean 72.9 72.7 72.8 72.7 54.4 52.8 53.6 54.7 76.9 68.0 72.2 78.5

SSD (S6) / median 71.6 71.3 71.4 71.3 54.4 53.8 54.1 55.4 75.8 66.7 71.0 77.5

are outlined in Figure 3.2 and are explained in Section 3.2.6.

In the experiments with the Statistical Spectrum Descriptor (SSD) I

mainly investigated the performance of the features depending on which po-

sition in the Rhythm Patterns feature extraction process they are computed.

Two positions were chosen to test the SSD: First, the statistical measures are

derived directly after step S2, when the frequency bands of the audio spec-

trogram have been grouped to critical bands. In the second experiment, the

features are calculated after the critical bands spectrum had undergone log-

arithmic dB transformation as well as transformation into Phon and Sone,

i.e. after step S6. In order to find an adequate representation of an au-

dio track through a Statistical Spectrum Descriptor, I evaluated both the

calculation of the mean and the median of all segments of a track.

Table 5.8 gives the results of the four experiment variants. The results

clearly indicate, that in any case the calculation after step S6 is superior

to deriving the SSD already at the earlier stage, step S2. Consequently,

as in the experiments with the Rhythm Patterns feature set, logarithmic

transformation appears to be essential for the results of the content-based

audio descriptors. Comparing the summarization of an audio track by mean

and by median, results of the GTZAN and ISMIRgenre collection argue for

the use of the mean. Again, the ISMIRrhythm collection indicates contrary

results, however the differences in result measures vary only between 0.04

and 1.4 percentage points.

Note, that the SSD feature set calculated after step S6 outperforms the

Rhythm Patterns descriptor both on the GTZAN and ISMIRgenre collec-

tions. This is especially remarkable as the Statistical Spectrum Descriptors,

with 168 feature dimensions, have a dimensionality 8.5 times lower than the

Rhythm Patterns feature set.
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5.5.4 Evaluation of Rhythm Histogram Features

Rhythm Histogram features (RH) describe global rhythmic content of a

piece of audio by a measure of energy per modulation frequency (c.f. Sec-

tion 3.2.7). They are calculated from the time-invariant representation of

the Rhythm Patterns. In the next set of experiments I tried to evaluate dif-

ferent performance when computing the Rhythm Histogram Features after

feature extraction step R1, R2 or R3, respectively. Evaluation showed, that

regardless to the stage, RH features virtually always produce equal results.

Therefore I omit a separate table with detailed results; performance of the

Rhythm Histogram features can be seen in the row denoted ‘RH (R1)’ of

Table 5.9.

RH features tested on the ISMIRrhythm collection achieve nearly the

results of the Rhythm Patterns feature set. Note that the dimensionality

(60) is 24 times lower than that of RP features. Performance on GTZAN

and ISMIRgenre collections is rather low, nevertheless the Rhythm His-

togram feature set seems eligible for audio content description and shows its

strengths in combination with SSD features (c.f. Section 5.5.6).

5.5.5 Comparison of Feature Sets

Table 5.9 displays a comparison of the baseline Rhythm Patterns (RP) al-

gorithm (experiment A) to the best results of the Rhythm Patterns extrac-

tion variants, the Statistical Spectrum Descriptor (SSD) and the Rhythm

Histogram features (RH). Best results in Rhythm Patterns extraction were

achieved with the GTZAN, ISMIRrhythm and ISMIRgenre audio collections

in experiments O, C, and O respectively (c.f. Section 5.5.2). Accuracy was

64.4 %, 82.8 %, and 75.0 %, respectively. The Statistical Spectrum Descrip-

tor performed best when calculated after psycho-acoustic transformations,

and taking the simple mean of the segments of a piece of audio. Accuracy

was 72.7 %, 54.7 %, and 78.5 % on the GTZAN, ISMIRrhythm and ISMIR-

genre data sets, respectively, which exceeds the Rhythm Patterns feature

set in 2 of the 3 collections. Rhythm Histogram Features achieved 44.1 %,

79.9 %, and 63.2 % Accuracy, which rival the Rhythm Patterns features re-

garding the ISMIRrhythm data collection. The conclusions of these series of

experiments was that a combination of these feature sets would potentially

enhance classification results.
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5.5.6 Combination of Feature Sets

As the the three different feature sets evaluated in the previous experiments

performed in divergent manner on different data sets, a combination of fea-

ture sets was the next logical step. The assumption was that each feature

set has different strengths and weaknesses and that a combined approach

would deliver improved results over the single feature sets. I did a number

of experiments on all possible 2-set combinations as well as the combination

of all three feature sets, with the goal to further improve performance in

classification tasks. Results of the experiments are included in Table 5.9.

The combination of Rhythm Patterns features with the Statistical Spec-

trum Descriptor achieves 72.3 % Accuracy on the GTZAN data set, which

is slightly lower than the performance of the SSD alone. Contrary, on the

ISMIRrhythm data set, the combination achieves a slight improvement. On

the ISMIRgenre audio collection, this combination results in a significant

improvement and achieves the best result of all experiments on this data set

(80.3 % Accuracy). Combination of Rhythm Patterns features with Rhythm

Histogram Features changes the results of the Rhythm Patterns features

only insignificantly, a noticeable improvement can be seen only in the IS-

MIRrhythm data set, which is the data set where the Rhythm Histogram

features performed best.

Very interesting are the results of combining the Statistical Spectrum

Descriptor with Rhythm Histogram features: With the GTZAN collection,

this combination achieves the best Accuracy (74.9 %) of all experiments (in-

cluding the 3-set experiment). The result on the ISMIRrhythm collection

is comparable to the best Rhythm Patterns result. The 2-set combination

without Rhythm Patterns features performs also very well on the ISMIR-

genre data set, achieving the best F1 measure (73.3 %). There is a notably

high Precision value of 76.7 %, however, Recall is only at 70.2 %. Accu-

racy is 79.6 % and thus slightly lower than in the Rhythm Patterns + SSD

combination.

Finally, I investigated the combination of all three feature sets, which

further improved the results only on the ISMIRrhythm data set. Accuracy

increased to 84.2 %, compared to 82.8 % using only the Rhythm Patterns

features. As stated before, results on the ISMIRrhythm collection were

rather high from the beginning, consequently improvements on classification

in this data set were moderate.
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Table 5.9: Comparison of feature sets and combinations (best results bold-
faced)

GTZAN ISMIRrhythm ISMIRgenre

feature set(s) P M RM F1 A P M RM F1 A P M RM F1 A
RP(A) 58.5 58.5 58.5 58.5 82.5 81.3 81.9 81.7 59.8 56.1 57.9 71.0
RP(best) (O/C/O) 64.2 64.4 64.3 64.4 83.4 82.3 82.8 82.8 65.1 64.5 64.8 75.0
SSD (S6) (mean) 72.9 72.7 72.8 72.7 54.4 52.8 53.6 54.7 76.9 68.0 72.2 78.5
RH (R1) 43.6 44.1 43.8 44.1 82.1 79.1 80.6 79.9 41.6 39.2 40.4 63.2
RP(best)+SSD 72.2 72.3 72.2 72.3 84.4 82.9 83.6 83.5 72.3 72.0 72.2 80.3

RP(best)+RH 64.1 64.2 64.1 64.2 84.5 83.1 83.8 83.7 65.3 64.6 64.9 75.5
SSD+RH 74.8 74.9 74.8 74.9 83.1 81.4 82.3 82.7 76.7 70.2 73.3 79.6
RP(best)+SSD+RH 72.3 72.4 72.3 72.4 85.0 83.4 84.2 84.2 71.9 71.3 71.6 80.0

5.5.7 Comparison with Other Results

GTZAN data set

The GTZAN audio collection was assembled by George Tzanetakis and

used in experiments in his dissertation [Tza02]. The original collection

was organized in a three level hierarchy intended for discrimination into

speech/music, classification of music into 10 genres and subsequent classifi-

cation of the two genres classical and jazz into subgenres. In our experiments

we used the organization of 10 musical genres at the second level, and thus

compare our results to the performance reported in [Tza02] on that level.

The best classification result reported was 61 % Accuracy (4 % standard

deviation on 100 iterations of a 10-fold cross validation) using the 30 dimen-

sional MARSYAS genre features and Gaussian Mixture Models.

Li et al. [LOL03] used the same audio collection in their study and

compare “Daubechies Wavelet Coefficient Histograms” (DWCHs) to combi-

nations of MARSYAS features. DWCHs achieved 74.9 % classification Ac-

curacy in a 10-fold cross validation using Support Vector Machines (SVM)

with pairwise classification and 78.5 % Accuracy using SVM with one-versus-

the-rest classification.

The best performance I achieved in my experiments (in which I uni-

formly used pairwise classification) was 74.9 % – an improvement of 16.4

percentage points regarding the baseline Rhythm Patterns features, yet with

much lower-dimensional features. This is equal to the result which Li et al.

achieved with SVM using pairwise classification.
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Table 5.10: Comparison of SSD+RH result with other results on the GTZAN
audio collection: Accuracy in %

A

Tzanetakis, 2002 [Tza02] (GMM) 61.0

Li et al., 2003 [LOL03] (SVM, pairwise classification) 74.9

Li et al., 2003 [LOL03] (SVM, one-vs-the-rest classification) 78.5

SSD+RH (in this thesis) (SVM, pairwise classification) 74.9

ISMIRrhythm data set

Already in Section 5.4.4 I compared my result from the ISMIR 2004 Rhythm

Classification contest to other published results on the same data collec-

tion. Some of the approaches use a-priori tempo knowledge about the dance

rhythms and I therefore listed these results in a separate column of Table

5.4. In my current evaluation experiments, the combination of the three

feature sets (RP, SSD and RH) achieved the best performance on the IS-

MIRrhythm data set, with 84.2 % Accuracy. This is an improvement of 2.5

percentage points over the baseline algorithm, which was at an already very

high level on this data set. Dixon et al. [DGW04] report 85.7 % Accuracy

when not using ground-truth tempo information, thus I came very close to

their result. Furthermore the results of my approach are higher than two of

the other approaches investigated in Section 5.4.4, evident from Table 5.4.

ISMIRgenre data set

The ISMIRgenre data set was assembled for the ISMIR 2004 Genre Clas-

sification contest (see Section 5.4.2). Results from the Genre Classification

contest are shown in Table 5.1 in terms of Accuracy and Accuracy normal-

ized by the genre frequency, which is the same as macro-averaged Recall

(RM ) given in Table 5.9. However, in order to be able to compare the

current evaluation experiment result to the values from the 2004 contest,

instead of a 10-fold cross-validation I had to repeat the experiment on the

combination of RP(O)+SSD features (which delivered the best result on

the ISMIRgenre data set) using the same training and test set partitioning

as in the 2004 Genre Classification contest (50:50). The result was 79.7 %

Accuracy and 70.4 % normalized Accuracy (slightly lower values as using
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10-fold cross-validation, c.f. Table 5.9). Compared to the results of the

2004 Genre Classification contest this approach would have surpassed two

other approaches, making it theoretically rank second place (c.f. Table 5.1).

Though not surpassing the winner of the 2004 contest, the results of this

evaluation represent a substantial improvement to the approach submitted

to the 2004 Audio Description contest, with an improvement of 9.3 percent-

age points.

5.5.8 Conclusions

In this Section I performed a study evaluating three feature sets and combi-

nations of them, evaluated on three standard benchmark music collections,

and compared the results to published performance measures of other re-

searchers on the same data sets. These feature sets are intended for different

application scenarios in music similarity retrieval, one of them is automatic

music classification. Performance on all experiments in this Section was

measured by the results of a music genre classification task.

First, I performed a series of experiments on the importance of psycho-

acoustic transformations in within the computation of Rhythm Patterns au-

dio features. Experiments confirmed that the inclusion of a number psycho-

acoustic transformations results in a substantial improvement of classifica-

tion accuracy. In particular, these are the findings of the experiments on

psycho-acoustic transformation steps:

• The implementation of Spectral Masking in the feature extraction

might pose a potential issue in audio description.

• Transformation into the logarithmic decibel scale is crucial.

• Implementation of equal loudness curves, which transforms the spec-

trum into the Phon scale is very important.

• Computation of specific loudness sensation in terms of the Sone scale

is very important.

• The weighting of fluctuation strength according to a psycho-acoustic

model has been identified to have quite unpredictable influence de-

pending on the music collection used.
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• Applying filtering and smoothing is beneficial to music databases in

which beat is the most important factor for distinguishing genres, but

may have negative effects in other music collections.

In an additional set of experiments I evaluated two newly developed fea-

ture sets, namely Statistical Spectrum Descriptors and Rhythm Histograms,

and compared their performance on music genre classification to the optimal

setting of the Rhythm Patterns feature set according to the previous experi-

ments. Both Statistical Spectrum Descriptors and Rhythm Histograms have

specific strengths, which made them outperform the Rhythm Patterns fea-

tures on two respectively one of the three test databases. A combination of

the feature sets was the logical consequence and the subject of further exper-

iments, in which I investigated different combination settings and whether

they would achieve additional improvements in the classification task. In

terms of Accuracy, the combination of (improved) RP and SSD features

performed best on one collection, the (much lower dimensional) combina-

tion of SSD and RH features on another collection and the combination of

all three sets on the third collection.

Overall improvement, regarding best Accuracy values achieved in each

data collection compared to baseline Rhythm Patterns algorithm (experi-

ment A in Table 5.7), was +16.4 percentage points on the GTZAN music

collection, +2.5 percentage points on the ISMIRrhythm collection and +9.3

percentage points on the ISMIRgenre music collection.

The influence of the segment sizes, FFT window sizes, the Bark scale and

alternative frequency groupings has been evaluated in another set of exper-

iments by Laister [Lai06]. The filtering and weighting processes should be

investigated in an additional set of experiments using other audio databases.

5.6 MIREX 2005

The second evaluation campaign in MIR research was held in parallel to the

ISMIR 2005 conference and was now called MIREX – Music Information Re-

trieval Evaluation eXchange. It was organized by IMIRSEL (International

Music Information Retrieval Systems Evaluation Laboratory), the project

that was started in 2002 to unite the efforts of establishing a common MIR

evaluation forum. The MIREX evaluation is open to any group or individ-

ual who wants to participate with their algorithm(s) and system(s) in an
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evaluation and comparison of state-of-the-art MIR algorithms. Moreover,

any participant can propose new tasks to the MIREX forum. In 2005 the

following list of tasks was available where participants could submit their

algorithms to:18

• Audio Artist Identification

• Audio Drum Detection

• Audio Genre Classification

• Audio Melody Extraction

• Audio Onset Detection

• Audio Tempo Extraction

• Audio and Symbolic Key Finding

• Symbolic Genre Classification

• Symbolic Melodic Similarity

The number of tasks had increased from 5 to 10 over the ISMIR 2004 Audio

Description Contest. The number of problems addressed had grown and

both the symbolic and audio-based Music Information Retrieval domains

were represented.

My main interest was the evaluation of the new approaches based on the

experiments described in the previous section on the Audio Genre Classifi-

cation task. As in the 2004 evaluation we submitted the same approach also

to the Audio Artist Identification task in order to see the applicability and

generalization to a greater number of classes. However, runtime was limited

to 24 hours and our submission to the Artist Identification task ran out of

time due to a scaling problem.

5.6.1 Submitted Algorithm

From the Pre-MIREX 2005 experiments a number of observations have been

made which were important for the participation in the MIREX 2005 evalu-

ation. For instance, it was substantial to include the psycho-acoustic trans-

formations for Sonogram computation (c.f. Sections 3.2.5 and 5.5.2). It was

also obvious from the pre-evaluation that we would submit a combination of

18http://www.music-ir.org/mirex2005/index.php/Main Page
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feature sets. However, different combination settings performed differently

depending on what music database was used.

MIREX 2005 allowed each participant to submit multiple systems. In

accordance with the MIREX 2005 guidelines, we therefore submitted three

different combinations of feature sets. This allowed us to participate with

three different approaches in a state-of-the-art comparison and at the same

time to evaluate the approaches individually on two different MIREX 2005

databases used in Audio Genre Classification.

I was interested particularly in the performance of the new feature sets

which had shown contrary results: SSD and Rhythm Histograms. The com-

bination of SSD and Rhythm Histograms had by far the lowest dimension-

ality, which results in much lower computation time in the classification

task. This combination was also expected to represent a more generalized

feature set with potentially better results in a broader variety of musical

styles. Moreover, the questions was, whether classification without the much

higher-dimensional Rhythm Patterns feature set could achieve comparable

results. Besides, we submitted a combination of RP and SSD features as

well as the 3-set combination. The following combinations of feature sets

have been submitted to MIREX 2005:

• Rhythm Patterns + SSD (1608 dimensions)

• SSD + Rhythm Histograms (228 dimensions)

• Rhythm Patterns + SSD + Rhythm Histograms (1668 dimensions)

The output of the feature extractors was combined by concatenating

the attributes of the individual feature sets into a single combined feature

vector.

For learning and classification we used linear Support Vector Machines

in the SMO implementation of the WEKA Machine Learning Software with

pairwise classification, as in the previous evaluations. As far as scaling of

the submitted approaches is concerned: The feature extraction part scales

linearly with the number of audio instances and the classification part scales

quadratically with the dimensions of the feature vectors.
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5.6.2 Audio Genre Classification

In the MIREX 2005 Audio Genre Classification task19 15 algorithms from

12 participating teams or individuals have been evaluated on two different

music databases:

• Magnatune20: 10 genres, 1005 training files, 510 testing files

• USPOP 2002: 6 genres, 940 training files, 474 testing files

The list of genres and number of tracks per genre in the test sets of both

collections are given in Table 4.4. The collections are described in Sections

4.2.4 and 4.2.5. The audio files were available with a sampling frequency of

44,100 or 22,050 Hz, mono or stereo, as desired by each participant.

Performances of the participating systems have been evaluated sepa-

rately on these data sets, however, an overall score has been calculated from

both for the official end ranking of MIREX 2005.

Multiple evaluation measures were computed on both audio databases:

raw classification Accuracy and Accuracy normalized by the number of

tracks per genre. While the USPOP dataset was categorized by a single

genre level, the Magnatune dataset was organized by a hierarchical genre

taxonomy. The hierarchical genre taxonomy combined the pairs of Jazz &

Blues, Rock & Punk, Folk & Ethnic as well as 3 ‘electronical’ genres to the

same super-genre, while classical music constituted a genre of its own. The

genre hierarchy is depicted in Figure 4.1.

In the evaluation of the Magnatune database, additional measures on

hierarchical classification were computed: in this case, less penalty was given

to mis-classification into a genre which belonged to the correct super-genre.

In principal, for a genre hierarchy of n levels a score of 1/n is given for

each correctly identified level. For instance, considering the MIREX 2005

Magnatune hierarchy depicted in Figure 4.1, a mis-classification of a Rock

piece as Punk would give the score of 1/2 point, because the super-genre

of ‘Rock & Punk’ was matched, while a mis-classification of Rock as Blues

would give 0 points.

The overall measure for MIREX 2005 Audio Genre Classification was

calculated by the mean of the Magnatune hierarchical classification Accu-

19http://www.music-ir.org/mirex2005/index.php/Audio Genre Classification
20http://www.magnatune.com, the same source as in the ISMIR 2004 Genre Classifica-

tion task has been used, but a different set of music files.
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Table 5.11: MIREX 2005 Audio Genre Classification overall results (mean
Accuracy in % from 2 benchmark data sets).

Rank Participant Result

1 Bergstra, Casagrande & Eck (2) 82.34
2 Bergstra, Casagrande & Eck (1) 81.77
3 Mandel & Ellis 78.81
4 West, K. 75.29
5 Lidy & Rauber (SSD+RH) 75.27
6 Pampalk, E. 75.14
7 Lidy & Rauber (RP+SSD) 74.78
8 Lidy & Rauber (RP+SSD+RH) 74.58
9 Scaringella, N. 73.11
10 Ahrendt, P. 71.55
11 Burred, J. 62.63
12 Soares, V. 60.98
13 Tzanetakis, G. 60.72

Figure 5.1: Diagram of MIREX 2005 Audio Genre Classification overall
results
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Table 5.12: Magnatune data set: ranking and hierarchical classification Ac-
curacy

Rank Algorithm Ah

5 Lidy & Rauber (RP+SSD) 71.08

6 Lidy & Rauber (RP+SSD+RH) 70.88

7 Lidy & Rauber (SSD+RH) 70.78

Table 5.13: USPOP data set: ranking and raw classification Accuracy

Rank Algorithm A

5 Lidy & Rauber (SSD+RH) 79.75

7 Lidy & Rauber (RP+SSD) 78.48

9 Lidy & Rauber (RP+SSD+RH) 78.27

racy and the USPOP raw classification Accuracy. Our best result achieved

75.27 %, which was the 5th rank. The overall rankings and results of our

three algorithms are given in Table 5.11 and shown in Figure 5.1.

From our three submitted systems, the feature combination with the low-

est dimensionality (SSD + RH) achieved the best results of our approaches,

however, all three of our variants achieved very similar results (c.f. Fig-

ure 5.1). Also submissions of other participants (Mandel & Ellis, West,

Scaringella, Pampalk, Ahrendt) achieved very similar results (at least on

one of the data sets), and the question for significant differences opened

the call for additional statistical significance tests – which were then intro-

duced in MIREX 2006. Only the algorithms by Bergstra, Casagrande &

Eck (ranked 1st and 2nd, with 82.34 % and 81.77 % overall Accuracy, re-

spectively), as well as Mandel & Ellis with 85.65 % raw Accuracy on the

USPOP data set, seem to be significantly ahead.

Bergstra, Casagrande & Eck extracted a relatively large number of tim-

bre features (MFCCs, RCEPS, ZCR, LPC, Rolloff, among others) at an

intermediate time scale (every 13.9 seconds) and calculated mean and vari-

ance of the features for each segment. They used AdaBoost.MH [FS95] for

classification, in variant (1) they boosted decision stumps and in variant

(2), which was ranked 1st in the MIREX 2005 evaluation, they boosted 2-

level trees. They classified the features extracted from each time segment
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independently and determined the class label for a song by averaging the

outputs of the meta-feature classifiers.

Regarding our three variants, the ranking order varies depending on the

music database – c.f. Tables 5.12 and 5.13. However, considering the very

low difference in Accuracy, as a conclusion it might be better to choose

the SSD+RH combination for Genre Classification in the future, due to

performance reasons.

The comprehensive evaluation, details about the submitted approaches

as well as confusion matrices of each individual result can be obtained from

the MIREX 2005 Audio Genre Classification results web page21.

Investigation of the confusion matrices enables to identify problematic

genres and might potentially give hints for future improvements. In the con-

fusion matrix of the USPOP database (6 genres, see Table 5.14) the genre

with lowest Accuracy was Reggae, often confused with Rap & Hip-hop or

Electronica & Dance. Differences between the three algorithm variants show,

that potential improvement in discrimination by using other features is pos-

sible. The SSD+RH feature combination for instance recognized Electronic

and Rap music better than the other combinations, while Reggae music is

discriminated better when RP features are included, as can be seen from

the confusion matrices of the other feature sets which are available on the

results web site. The low Accuracy on Reggae might also be a result of the

low number of Reggae instances in the database (54 in total, 36 for train-

ing and 18 for testing). Contrarily, the genre New Age has been classified

with 90.5 to 95.2 % Accuracy, although there are only 61 pieces in total

in the database. Electronica & Dance as well as Country pieces were often

mis-classified as Rock pieces.

The best discriminated classes within the Magnatune data set (10 genres,

see Table 5.15) were Blues and Classical with over 97 % Accuracy. The

SSD+RH approach also achieved 97 % on the Punk genre. The genre with

the worst performance was New Age, which was more often classified as

Ethnic music. Note that in the USPOP database New Age was the best

recognized genre. The SSD+RH approach also heavily confused Jazz music

with Ethnic music. The reason might be the sometimes very blurry genre

boundaries, especially with genres like Ethnic or New Age. However, as with

the USPOP database, Electronic music has been confused with Rock music,

21http://www.music-ir.org/evaluation/mirex-results/audio-genre/index.html
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Table 5.14: Confusion Matrix of SSD+RH algorithm on USPOP data set
(%). Abbreviations are the first two letters of the genres listed in Ta-
ble 4.4(b). Columns: true classes, rows: predictions

Co El Ne Ra Re Ro

Co 76.2 1.5 0.0 0.9 0.0 6.6

El 0.0 64.2 0.0 4.3 16.7 4.8

Ne 0.0 3.0 90.5 0.0 0.0 0.0

Ra 0.0 9.0 0.0 88.0 22.2 4.8

Re 0.0 0.0 0.0 2.6 50.0 0.0

Ro 23.8 22.4 9.5 4.3 11.1 83.8

Table 5.15: Confusion Matrix of SSD+RH algorithm on Magnatune data
set (%). Abbreviations are the first two letters of the genres listed in Ta-
ble 4.4(a). Columns: true classes, rows: predictions

Am Bl Cl El Et Fo Ja Ne Pu Ro

Am 70.6 0.0 0.0 2.4 6.0 0.0 4.6 11.8 0.0 2.4

Bl 0.0 97.1 0.0 0.0 0.0 8.3 9.1 5.9 0.0 3.6

Cl 5.9 0.0 97.5 0.0 10.8 0.0 0.0 2.9 0.0 2.4

El 8.8 0.0 0.0 62.2 7.2 12.5 9.1 14.7 0.0 13.1

Et 8.8 0.0 2.5 9.8 55.4 8.3 22.7 32.4 2.9 8.3

Fo 0.0 0.0 0.0 2.4 9.6 58.3 0.0 0.0 0.0 2.4

Ja 0.0 0.0 0.0 1.2 0.0 0.0 31.8 0.0 0.0 0.0

Ne 5.9 0.0 0.0 0.0 4.8 0.0 4.6 23.5 0.0 1.2

Pu 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.1 4.8

Ro 0.0 2.9 0.0 22.0 6.0 12.5 18.2 8.8 0.0 61.9

which calls for further investigation of the feature representations.

A big advantage of joint evaluation campaigns is that detailed results

can be compared directly. From the confusion matrices on the results web

pagewe see, that also many other participants had problems with the con-

fusion of Electronic music with Rock music and/or New Age with Ethnic

music.
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5.7 Pre-MIREX 2006 Distance Metric Evaluation

5.7.1 New Task Definitions for MIREX 2006

Participants in the MIREX 2005 classification tasks had put many effort

to optimize classifier parameters and to tweak classification algorithms, e.g.

kernels of Support Vector Machines, to improve the results on Genre Classi-

fication and/or Artist Identification. This, however, was not the intention of

the Music Information Retrieval Evaluation eXchange, which aims at being

an evaluation campaign for Audio and Symbolic Music Description rather

than for Machine Learning algorithms.

As a consequence, in the Pre-MIREX 2006 phase it was discussed to

evaluate “Music Similarity” in a different manner than a Genre Classification

task. The idea was to evaluate algorithms in a retrieval task, in which

algorithms would have to return a given number of songs “similar” to a

query song from a music database. The issue of each of the participants

using different classification approaches would then be obsolete, and the

evaluation based on the percentage of top k retrieved songs having the same

genre label as the query song would essentially come close to a classification

by k-nearest neighbors. Furthermore, one goal for MIREX 2006 was to

massively increase the size of the music database(s) in order to come closer

to evaluations of real-world scenarios, which would make complex Machine

Learning algorithms very costly. It was defined as a requirement for the

MIREX 2006 tasks to compute an N × N distance matrix between all N

songs in a database in order to enable numerous evaluation statistics for

MIREX 2006 as well as for post-MIREX evaluations.

Moreover, participants in the Pre-MIREX 2006 Music Similarity mail-

ing list22 discussed the realization of a large-scale human listening test for

MIREX 2006 Audio Music Similarity and Retrieval. The top k retrieval re-

sults of a number of query songs would be judged by human graders giving

scores of “similarity” to each retrieved song. The actual problem definition

or application of the “Music Similarity” task, however, was left open, and

so was the interpretation of the term “similarity”. Music similarity can be

useful in a number of different tasks, such as playlist generation, retrieval of

“similar” sounds from a database, clustering, classification, etc. The actual

dimension(s) of “similarity” which should be applied in the MIREX 2006

22https://mail.lis.uiuc.edu/mailman/listinfo/mrx-com00
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Music Similarity task was left open to both the participants and the human

evaluators, which were free to decide if “similarity” would include similar

rhythm, melody, tempo, etc. or not.

5.7.2 Evaluation of Distance Metrics for Music Similarity

Retrieval

Until now I had employed the feature sets under investigation either to clas-

sification tasks or in clustering-based applications (see Chapter 6), but not

directly in (ranked) retrieval. For clustering using Self-Organizing Maps (c.f.

Section 6.2) the Euclidean distance was used for neighborhood calculation.

A study of different approaches for distance computations had yet to be

done.

A new Java implementation of the RP, RH and SSD feature sets was

submitted to MIREX 2006 (see Section 5.8.1) and I also used features com-

puted with the Java version in the following study of different distance met-

rics. The feature space of these descriptors is high-dimensional and it is

not obvious which method to use for distance computation. More advanced

approaches analyze distribution and evolution of features computed at sev-

eral temporal positions in the music. Among them are Gaussian Mixture

Models or Hidden Markov Models. However, I did not use these more com-

plex approaches and instead studied different metrics which could be applied

directly within the feature space.

A common set of distance metrics for normed vector spaces are the

Minkowski metrics, derived from the Lp norms, and computed as:

dp(x, y) = Lp(x, y) = (
d∑

i=1

|xi − yi|
p)1/p (5.7)

For p ≥ 1 the Minkowski metrics have the following properties:

1. positivity: dp(x, y) ≥ 0

2. symmetry: dp(x, y) = dp(y, x)

3. non-degeneracy: dp(x, y) = 0 ⇔ x = y

4. they fulfill the triangle inequality: dp(x, y) ≤ dp(z, x) + dp(z, y)
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In theory, p can be any real value, however, for p < 1 the triangle inequality

does not hold any more.

A value of p = 1 results in the so-called Cityblock metric, also known as

Manhattan distance or Taxicab metric, because the distance is computed by

summing the distances of each vector component. A value of p = 2 is equal

to the Euclidean distance and p = ∞ results in the Maximum distance, also

known as Chebychev distance, computed as:

L∞(x, y) = maxd
i=1|xi − yi| (5.8)

The following evaluation of distance metrics was done using seven dif-

ferent Minkowski metrics, for p ∈ {1, 1.2, 1.5, 1.7, 2, 2.2, 2.5} as well as the

cosine distance, which is measured by the cosine between the vectors x and

y. The evaluation was done using three data sets – GTZAN, ISMIRgenre

and ISMIRrhythm (see Chapter 4), as in Section 5.5 – and using the three

feature sets (RH, RP and SSD) as well as four feature set combinations.

The performance was measured by computing a distance matrix between all

songs in a database and retrieving the five most similar songs to each song.

The average percentage of retrieved songs having the same genre label as

the query song is computed.

Diagrams from the evaluation are plotted in Figures 5.2 to 5.4. A line

is depicted for each of the seven feature sets, the distance metrics used are

given on the x-axis and the percentage of matching genres at the y-axis.

On both the GTZAN and ISMIRgenre data sets (Fig. 5.2 and 5.3, resp.)

the SSD features achieved the best results. Combinations with other feature

sets resulted in lower performance. Rhythm Histograms alone or in combina-

tion with Statistical Spectrum Descriptors achieved the lowest performance.

The results on the ISMIRrhythm data set are completely contradictory –

all but the SSD features performed very well. Oppositional performance on

this database of some of the feature sets had been already observed in the

experiments in Section 5.5. This behavior is probably due to the collection

containing only dance rhythms of different styles with a distinct beat. As the

Similarity task in MIREX 2006 was intended to evaluate similarity within

a wide range of (particular popular) music, I did not further consider the

results on the ISMIRrhythm data set. From the graphs of the two remain-

ing collections the L1-metric, i.e. the Cityblock metric, was identified to
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Figure 5.2: Distance metric evaluation. Percentage of matching genres for
5 similar songs, evaluated for 7 feature sets on the GTZAN collection.

Figure 5.3: Distance metric evaluation. Percentage of matching genres for
5 similar songs, evaluated for 7 feature sets on the ISMIRgenre collection.
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Figure 5.4: Distance metric evaluation. Percentage of matching genres for
5 similar songs, evaluated for 7 feature sets on the ISMIRrhythm collection.

deliver the best results on similarity retrieval with most of the feature sets,

particularly using the SSD feature set, which showed the best performance.

The positive implications for MIREX 2006 were, that a feature set that was

computationally less costly than the other two and a distance metric which

was simple to compute would deliver very reasonable results. These aspects

were particularly important, as the computation times of the submitted al-

gorithms would be considered in the MIREX 2006 evaluation and there were

also restrictions on total runtime of the algorithms.

5.8 MIREX 2006

In MIREX 2006 the set of tasks had changed slightly, partly to follow the de-

mands identified during MIREX 2005. For instance, instead of a Genre Clas-

sification task the “Audio Music Similarity and Retrieval” was introduced,

comprising a human evaluation and an objective evaluation both based on

a larger-scale music database containing 5000 pieces of audio. A similar

strategy was pursued for Symbolic Similarity, hence the “Symbolic Melodic

Similarity” task was created. Furthermore, a Query-by-Singing/Humming

and a Score Following task had been introduced as well as an Audio Cover

Song Identification task. This is the comprehensive MIREX 2006 task list:23

23http://www.music-ir.org/mirexwiki/index.php/Main Page
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• Audio Beat Tracking

• Audio Melody Extraction

• Audio Music Similarity and Retrieval

• Audio Cover Song Identification

• Audio Onset Detection

• Audio Tempo Extraction

• Query-by-Singing/Humming

• Score Following

• Symbolic Melodic Similarity

I participated in the MIREX 2006 Audio Music Similarity and Retrieval

task and, with secondary interest, also in the Audio Cover Song Identifica-

tion task. The submission to both tasks, described in the next section, was

identical. In fact, submissions to the Audio Music Similarity and Retrieval

task were evaluated automatically also on the Audio Cover Song Identifica-

tion task, unless the participant disagreed.

5.8.1 Submitted Algorithm

An application that I was working on required the implementation of

audio feature extractors in the Java programming language. The re-

implementation of the Rhythm Patterns, Statistical Spectrum Descriptors

and Rhythm Histograms feature sets was done by Simon Diesenreiter and

me. The Java implementation has a number of advantages over the previous

Matlab implementation, namely being more robust against errors, allowing

the mixed usage of different audio formats and different sampling rates and

recursion into arbitrary directory structures containing any number of au-

dio files, among others. More interesting to this evaluation, however, was

the fact that some parts of the feature extraction algorithms had to be im-

plemented in slightly different ways, for instance using another library for

FFT computation. Therefore I decided to participate with the new Java

version in the large scale evaluation of MIREX 2006. As feature set, the

SSD features have been chosen, according to the results of the pre-MIREX

2006 evaluation (see Section 5.7). The implementation of the SSD features

followed largely the description of the algorithm in Section 3.2.6.
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In MIREX 2006 audio files with 22.050 Hz sampling rate in mono for-

mat were provided. After segmentation of an audio file into segments of

217 samples, the first and the last segment were skipped, from the remain-

ing segments, every third one was processed. A feature vector was then

calculated for each of the remaining segments.

First, the spectrogram was computed with an FFT using a Hanning

window with a size of 512 samples and 50 % overlap. Then, the spectrum was

aggregated to 23 critical bands according to the Bark scale. The Bark-scale

spectrogram was then transformed into the decibel scale and subsequently

into the Sone scale. From this representation of a segment’s spectrogram

seven statistical moments were computed per critical band, according to

the description in Section 3.2.6, in order to describe fluctuations within the

critical bands. The feature vector for an audio file was then constructed as

the median of the SSD features of all extracted file segments.

For distance computation we submitted a script that loaded the feature

vector file written by the Java SSD feature extractor software to Matlab,

and computed a distance matrix from the feature vector space using the

Cityblock metric (c.f. metric evaluation in Section 5.7).

5.8.2 Audio Music Similarity and Retrieval

The task was to submit an audio feature extraction algorithm and subse-

quently compute music similarity measures from which a distance matrix

should be produced, i.e. a matrix containing the distances between all pairs

of music tracks in a music database24. Feature extraction algorithms, any

models and their parameters had to be trained and optimized in advance

without the use of any data which has been part of the MIREX test database.

The music database comprised 5000 pieces of (Western) music from 9 gen-

res (see Table 4.5) in 22 kHz, mono, 16 bit Wave Audio format (including

the tracks of the Audio Cover Song task - see Section 5.8.3 below). From

the distance matrices, two forms of evaluations were performed: Evaluation

based on human judgments and objective evaluation by statistic measures.

Besides, the runtimes of the algorithms were recorded.

24http://www.music-ir.org/mirex2006/index.php/Audio Music Similarity and

Retrieval
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Human Evaluation

The primary evaluation focus of this MIREX 2006 task was on the judge-

ments of the human evaluators. The human listening test was realized as

follows:

60 songs were randomly selected as queries from the total of 5000 songs

in the database. Each participating algorithm had to return the 5 most

similar songs to the query (after filtering out the query itself, members of

the cover song collection, as well as songs of the same artist as the query,

in order to avoid the task to be an artist identification task). The results

from all 6 participating algorithms then formed a list of 30 results per query,

which had to be evaluated by human graders, who rated each retrieved song

on two scales: one broad scale, stating whether the song is not, somewhat

or very similar to the query song, and one fine-grained scale, where they

had to score the retrieved songs on a real-value scale between 0 (not similar)

and 10 (very similar). Each query/candidate list pair was evaluated by 3

different graders. 24 graders participated in the human evaluation, hence

each person had to evaluate 7-8 query/candidate lists. The listening test

was performed through the Evalutron 6000 web interface25 created by the

IMIRSEL team.

There were six participants in this task: Elias Pampalk (EP), Tim Pohle

(TP), Vitor Soares (VS), Thomas Lidy & Andreas Rauber (LR), Kris West

- Transcription model (KWT), Kris West - Likelihood model (KWL).

From the human judgments both the fine-grained score and the broad

scale have been evaluated: The score for the fine-grained scale has been

computed as the mean of all human ratings. For the broad scale, several

different scoring systems have been applied, with different weighting of the

‘very similar’ and/or ‘somewhat similar’ grades. A table with all the scores

for these different measures is available from the MIREX 2006 Audio Similar-

ity and Retrieval results page26. The 6 different scoring systems resulted in

a consistent ordering of the submitted algorithms, also the fine-grained and

the broad scale results were consistent. A significance test has been applied

to the results of the human evaluation in order to determine whether they

indicate significant differences between the performance of the algorithms.

25http://www.music-ir.org/evaluation/eval6000/
26http://www.music-ir.org/mirex2006/index.php/Audio Music Similarity and

Retrieval Results
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Figure 5.5: MIREX 2006 results from human listening tests, using the Fried-
man test. Circles mark the mean of the fine-grained human similarity scores,
the lines depict the significance bounds at a level of p = 0.05.

The Friedman test [Fri37] was chosen because it is a non-parametric test

which does not assume a normal distribution of the data. The Friedman

test has been performed in Matlab with pairwise comparison of algorithms

for each of the 60 queries, based on the fine-grained score. The results of the

test at a confidence level of p = 0.05 showed that there are no significant

differences between the top 5 algorithms (see Figure 5.5). Only the Like-

lihood algorithm by Kris West (KWL) performed significantly worse than

three of the other algorithms. (The author however stated that there was a

bug in his submissions.) As a consequence, there was no official ranking for

this MIREX 2006 task.

Statistics

Computation of full distance matrices containing distances between all 5000

songs in the database enabled the computation of meta-data based statistics,

such as: Average percentage of Genre, Artist and Album matches in the top

5, 10, 20 and 50 results, before and after artist filtering, Normalized average

distance between examples of the same Genre, Artist or Album, Ratio of the

average artist distance to the average genre distance, Number of times a song

was similar to any of the 5000 queries, i.e. revealing songs that are always

similar or never similar, Confusion Matrices, and more. One submission
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(Vitor Soares, VS) has not been evaluated through these statistics, because

the algorithm was not able to compute the full 5000 × 5000 distance matrix

within the maximum time allowed for this MIREX 2006 task, which was 36

hours.

The results of this evaluation should be considered with caution, as the

genre distribution in the music database was highly skewed: 50 % of the

data was Rock music, 26.6 % Rap & Hip-Hop, 9.7 % Electronica & Dance,

5.3 % Country music and the remaining genres (Reggae, New Age, R & B,

Latin and Jazz) were represented by 2 % or less, each. “Similar” songs,

however, do not necessarily have the same genre label. This might be the

reason why the ordering of the results from these statistics partly differs

from the one of human listening results.

Figures 5.6 and 5.7 present the results of the percentages of how many

within the retrieved 5 respectively 20 most similar songs had the same genre,

artist or album as the query song. The numbers have been computed ex-

cluding the 330 cover songs and considering normalization for genres, artists

or albums with less than 20 matches available in the database. The genre

statistic is given before and after filtering out the query artist. The mea-

surement of artist-filtered statistics is important, because many algorithms

detect songs from the same artist as the most similar songs and unfiltered re-

sults evaluate mainly the capability of algorithms to identify artists. Further

statistics for the top 10 and top 50 results are available from the Audio Music

Similarity and Retrieval Statistics result web page27. In most of the cases our

algorithm was ranked third, with a result of 74 % in a 5-nearest-neighbor-like

genre recognition task. Considering the percentage of top 20 album matches

our algorithm was ranked second (c.f. Figure 5.7). The changing order of

result ranking seems to be an indication of the non-significant differences

between the algorithms as revealed by the human evaluation.

Runtimes

Computation times have been recorded individually for audio feature ex-

traction and distance computation (except for the KWL model, where only

the total time could be recorded). The runtimes were measured on Dual

AMD Opteron 64 computers with 1.6 GHz and 4 GB RAM, running Linux

27http://www.music-ir.org/mirex2006/index.php/Audio Music Similarity and

Retrieval Other Automatic Evaluation Results
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Figure 5.6: MIREX 2006 Audio Music Similarity and Retrieval: Average
percentage of Genre (before and after artist filtering), Artist and Album
matches in the top 5 query results (normalized).

Figure 5.7: MIREX 2006 Audio Music Similarity and Retrieval: Average
percentage of Genre (before and after artist filtering), Artist and Album
matches in the top 20 query results (normalized).
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Figure 5.8: MIREX 2006: Runtimes of Audio Music Similarity algorithms
in seconds (audio feature extraction and distance matrix computation).

(CentOS). The runtime of Soares’ algorithm (VS) is not part of this com-

parison as it did not compute the full distance matrix. Pampalk’s algorithm

(EP) was the fastest in total (3 hours, 19 minutes) closely followed by ours

(3 hours, 52 minutes) – c.f. Figure 5.8. Our algorithm was by far the fastest

one in distance matrix computation (2 minutes only), which is due to the

direct computation of distances in feature space using a simple distance met-

ric, namely the Cityblock metric. Other algorithms needed a factor of 25 to

193 more time for distance computation. The total runtime of the slowest

participating algorithm was about 4 times the runtime of ours.

5.8.3 Audio Cover Song Identification

The cover song database consisted of 30 different “cover songs” each rep-

resented by 11 different “versions”, hence a total of 330 audio files. The

cover songs represent a variety of genres (e.g., classical, jazz, gospel, rock,

folk-rock, etc.) and the variations span a variety of styles and orchestrations.

Each of these cover song files has been used as a query and the top 10

returned items have been examined for the presence of the other 10 versions

of the query file28. The 330 cover songs have been embedded within the 5000

songs database used for the Audio Music Similarity and Retrieval task which

enabled an evaluation of the Similarity algorithms for the Cover Song task

28http://www.music-ir.org/mirex2006/index.php/Audio Cover Song
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Figure 5.9: MIREX 2006 Audio Cover Song Identification results (total num-
ber of identified cover songs). Algorithms marked with * were specifically
designed for the Cover Song Identification task.

without any extra effort except for retrieving the cover song queries from

the distance matrices. For the evaluation of the Cover Song task, however, a

reduced data set of 1000 songs has been used to accommodate more complex

systems which have been particularly designed and submitted for cover song

identification.

There were four submissions with systems which have been particularly

designed for cover song identification – Dan Ellis (DE), Christian Sailer &

Karin Dressler (CS), Kyogu Lee (KL, 2 models) – and four systems which

have been evaluated as by-product of the Audio Music Similarity and Re-

trieval task (TP, LR, KWT and KWL – see Section 5.8.2).

The total number of correctly identified cover songs – out of the 3300

potentially detectable covers – is depicted in Figure 5.9. It can be seen

from the results in the figure, that our submission was the best-performing

“Audio Music Similarity and Retrieval” algorithm, outperformed however

by the four specific cover song identification systems. Further measures

– the mean number of covers identified, the mean of maxima (average of

best-case performance) and the mean reciprocal rank of the first correctly

identified cover (MRR) – are provided in a table on the Audio Cover Song

Identification web page29. A Friedman test has been run against the MRR

29http://www.music-ir.org/mirex2006/index.php/Audio Cover Song

Identification Results
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measure and identified Ellis’ system (DE) as the clear winner of this task,

while there was no significant difference between the 7 other algorithms.

5.8.4 Conclusions

The first large-scale human listening test for Music Similarity and Retrieval

in MIREX showed, that our algorithms are competing with state-of-the-

art algorithms – no significant difference in performance was determined

between the top 5 algorithms. It is also one of the two fastest algorithms,

with by far the most efficient distance calculation. Different statistics have

been derived from genre, artist and album assignments, which gave our

algorithm the third rank in most of the cases, and second rank in one case.

Our algorithm has also been evaluated on Audio Cover Song Identifi-

cation together with three of the other Audio Music Similarity and Re-

trieval submissions and four submissions specifically designed for finding

cover songs. It was the best on identifying covers out of the four Similarity

algorithms, outperformed by the four specific Cover Song algorithms.

5.9 Conclusions

In this chapter a number of experiments were reported, aiming at evaluating

and improving the performance of three different feature sets for MIR ap-

proaches. Most of the experiments were evaluated by the use of supervised

classification, which enables quantitative performance measures of the em-

ployed approaches. Differences in classification results for various classifiers

are dependent on the type and dimensionality of the feature set used. For

feature sets with high dimension, such as for instance the Rhythm Patterns

feature set, Support Vector Machines usually achieve better results than

other classifiers.

Benchmarking in Music Information Retrieval has proven to be very

important. Annual comparisons of state-of-the-art algorithms evaluate the

progress and achievements that have been made and at the same time stim-

ulate research for further improvements of the approaches.

An investigation of psycho-acoustic transformation steps within audio

feature calculation has improved the performance of the Rhythm Patterns

feature set. Two novel feature sets, as well as their combination, have been

evaluated as being very competitive both on music genre classification and
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music similarity retrieval. The Rhythm Patterns feature set won the cate-

gory of Rhythm Classification in the ISMIR 2004 Audio Description Contest.

Various distance metrics have been evaluated in experiments and even-

tually in the MIREX 2006 benchmark evaluation the presented approach,

using Statistical Spectrum Descriptors, has been determined as being equally

effective as four other top state-of-the-art algorithms, according to a signif-

icance test, and evaluated by a human listening test.



Chapter 6

Applications

6.1 Introduction

This chapter presents applications of content-based music descriptors (c.f.

Chapter 3) for the efficient organization and visualization of music archives.

Particularly, the Rhythm Patterns feature set is employed for the applica-

tions described in the following sections, but in principal every other feature

set can be used. In 2001 the first map visualization of a music archive

based on the Self-Organizing Map (SOM) has been presented [RF01]. The

approach has been later extended to new visualizations [Pam01] and new

interaction possibilities [NDR05]. The applications of these Music Maps are

manifold. They can be used to represent music libraries graphically, to ex-

plore and browse music archives, to create playlist from ones personal music

collection, to discover new music, etc.

After introducing the Self-Organizing Map algorithm in Section 6.2 a

variety of different visualizations on top of such maps are reviewed in Section

6.3. Section 6.4 presents the interactive PlaySOM software, that allows to

explore any kind of digital music archive and supports numerous interaction

possibilities as well as the creation of playlists through trajectories of similar

music. In Section 6.5 a lightweight application that is available for mobile

devices such as PDAs and mobile phones is described. Eventually, in Section

6.6 an interesting example of the creation of a Music Map is shown, the

analysis and the clustering of the complete works of Wolfgang Amadeus

Mozart, which led to the creation of the Map of Mozart. Finally, in Section

6.7 conclusions of these application scenarios are given.

96
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6.2 Self-Organizing Maps

There are numerous clustering algorithms that can be employed to organize

audio by sound similarity based on a variety of feature sets. One model that

is particularly suitable, is the Self-Organizing Map (SOM), an unsupervised

neural network that provides a mapping from a high-dimensional input space

to a usually two-dimensional output space [Koh01].

A SOM is initialized with an appropriate number i of units, proportional

to the number of tracks in the music collection. Commonly, a rectangular

map is chosen, but also toroidal maps are common, which avoid saturations

at the borders of the map, but usually need unfolding for display on a

2D screen. With the MnemonicSOM [MMR05], the algorithm has been

modified so that maps with virtually arbitrary shapes can be created. The

i units are arranged on a two-dimensional grid. A weight vector mi ∈ ℜn

is attached to each unit. The input space is formed by the feature vectors

x ∈ ℜn extracted from the music. Elements from the high-dimensional

input space (i.e. the input vectors) are randomly presented to the SOM

and the activation of each unit for the presented input vector is calculated

using an activation function. The Euclidean distance between the weight

vector of the unit and the input vector is commonly used for the activation

function, nonetheless other distance functions can be employed. In the next

step the weight vector of the unit showing the highest activation (i.e. having

the smallest distance) is selected as the “winner” and is modified as to

more closely resemble the presented input vector. The weight vector of the

winner is moved towards the presented input signal by a certain fraction of

the Euclidean distance as indicated by a time-decreasing learning rate α.

Consequently, the next time the same input signal is presented, the unit’s

activation will be even higher. Furthermore, the weight vectors of units

neighboring the winner are modified accordingly, yet to a smaller amount

as compared to the winner. The magnitude of modification of the neighbors

is described by a time-decreasing neighborhood function. This process is

repeated for a large number of iterations, presenting each input vector in

the input space multiple times to the SOM. The result of the SOM training

procedure is a topologically ordered mapping of the presented input signals

in the two-dimensional space. The SOM associates patterns in the input

data with units on the grid, hence similarities present in the audio signals
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are reflected as faithfully as possible on the map, using the feature vectors

extracted from audio.

The result is a similarity map, in which music is placed according to

perceived similarity: Similar music is located close to each other, building

clusters, while pieces with more distinct content are located farther away. If

the pieces in the music collection are not from clearly distinguishable genres

the map will reflect this by placing pieces along smooth transitions.

6.3 Visualizing Structures on the Self-Organizing

Map

Due to the fact that the clusters and structures found by the trained music

map are not inherently visible, several visualization techniques have been

developed. Choosing appropriate visualization algorithms and appealing

color palettes facilitate insight into the structures of the SOM from different

perspectives. The influence of color palettes is important, as the different

views on the data can be interpreted accordingly as mountains and valleys,

islands in the sea, etc. For the following visualization examples the ISMIR-

rhythm collection described in Section 4.2.3 was used to train a rectangular

map with 20 x 14 units. As feature set for music similarity Rhythm Pat-

tern features (see Section 3.2.5) have been used. The collection and hence

the map contains music from eight different Latin American and Ballroom

dances: ChaChaCha, Tango, Jive, Samba, Rumba, Quickstep, Slow Waltz,

and Viennese Waltz. In order to elicit the cluster information a number of

visualization techniques have been devised to analyze the map’s structures.

An additional visualization which is not based on the map structures but on

external meta-data is the class visualization. In order to give an overview of

the music map used in the examples the class visualization will be described

first. An interactive web demo of a music map trained from the same music

collection is available in the Web1.

Class Visualization

While the Self-Organizing Map does not rely on any manual classification,

nevertheless there are often genre labels available for the music titles (or at

1http://www.ifs.tuwien.ac.at/mir/playsom/demo/
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(a) Pie chart overlay (b) Voronoi-like tessellation

Figure 6.1: Class Visualization. Classes: ChaChaCha (red), Tango (cyan),
Jive (blue), Samba (orange), Rumba (yellow), Quickstep (green), SlowWaltz
(pink), VienneseWaltz (magenta)

least for the artists). Also, music collections sometimes have been manually

sorted into different classes. The availability of genre or class information

allows the creation of a visualization which assists with the analysis of the

clustered structures on the map. External genre information allows to color-

code the genres and to overlay the genre information onto other existing

visualizations. Commonly, pie-charts (c.f. Figure 6.1(a)) are used to visual-

ize the distribution of the classes within a map unit, thus, one pie-chart is

placed on every unit of the map. Alternatively, if a full-area visualization is

preferred, a Voronoi-like approach (c.f. Figure 6.1(b)) is taken to fill regions

covered by a single genre with its respective color. If units contain a mixed

set of classes, an approach similar to dithering is used to represent multiple

classes within the area covered by that unit [Azi06]. The additional clues

provided by genre or class visualization vastly facilitate the description of

regions or clusters identified by other visualizations, such as Smoothed Data

Histograms.

Describing the map (c.f. Figure 6.1), the cluster on the top left contains

ChaChaCha, Samba was clustered bottom left, with Quickstep just to its

right. Jive music is found in a cluster slightly left of the center, Rumba at

the bottom, Slow Waltz at the outer right, with Viennese Waltz to its left.

Tango has been partitioned into three clusters, one at the center left, one

at the top and another part below Viennese Waltz. Parts of Quickstep are

also found left of the latter two Tango clusters.
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(a) color-coded Hit Histogram (b) Hit Histogram with markers

(c) Hit Histogram of a query for Jive music
(flat)

(d) Hit Histogram of a query for Jive music
(spline interpolated)

Figure 6.2: Hit Histograms

Hit Histograms

A Hit Histogram visualization depicts the distribution of data over the SOM.

For each unit the number of items (songs) mapped is counted to compute

the Hit Histogram. Different visualizations of Hit Histograms are possible:

Likewise to other visualizations, the number of mapped songs can be vi-

sualized by different colors (Figure 6.2(a)). Another variant is the use of

markers (circles, bars, etc.) on top of the map grid, where the number of

hits for each unit is reflected by the size of the marker (Figure 6.2(b)). Hit

Histograms are good for getting an overview of the map and an indication

where much of the data is concentrated. In Figures 6.2(a) and 6.2(b) for

example the highest peaks correspond to the ChaChaCha, Samba and Slow

Waltz clusters, while the visualization also exhibits lower peaks for other

clusters.

The approach is also very useful if not the entire data set is to be visual-

ized, but only a part of it. With the same techniques it is possible to display
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(statistical) information about a sub-set of the data collection. This is used,

for instance, to visualize results of a query to the music map: Querying the

map with the name of a certain artist, a Hit Histogram is constructed by

counting the number of times this artist is present with a piece of music

on every unit. Only a part of the map will have hits on that query, the

histogram values of the respective units are increased by one for each hit,

while the values of the remaining units are set to zero. The visualization

provides an immediate overview of where the resulting items of the query

are located. Depending on the graphical result, one receives an indication

of whether the music of a given artist is rather distributed or aggregated in

a certain area of the map. Hit Histograms can be employed in a number of

situations: If genre or class labels of the songs are available, the distribution

of a particular genre can be visualized with Hit Histograms. Figure 6.2(c)

shows a Hit Histogram of the distribution of “Jive” music within the ex-

ample music collection in a color-coded representation similar to the one in

Figure 6.2(a). In Figure 6.2(d) spline interpolation has been used in order

to improve the intuitive perception of clusters in the query results. Another

possibility would be the visualization of cover songs, having the same title,

but different performers. Hit Histograms may be a useful visualization for

virtually any other sort of query where frequency counts are involved.

U-Matrix

One of the first and most prominent SOM visualizations developed is the

U-Matrix [US90]. The U-Matrix visualizes distances between the weight

vectors of adjacent units. The local distances are mapped onto a color

palette: small distances between neighboring units are depicted with another

color than large distances, the color is gradually changing with distance. As

a consequence the U-Matrix reveals homogeneous clusters as areas with one

particular color, while the cluster boundaries, having larger distances, are

visualized with another color. In Figure 6.3(a) the cluster boundaries are

shown by bright colors. There is e.g. a particularly strong boundary between

Tango and Samba music as well as between Quickstep and Rumba. With

an appropriate color palette one can give this visualization the metaphor of

mountains and valleys: Large distances are visualized with brown or even

white color (for the mountain tops), lower distances are visualized with

different shadings of green color. The mountains then indicate the barriers
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(a) U-Matrix. (b) U-Height-Matrix.

(c) P-Matrix. (d) U*-Matrix

Figure 6.3: U-Matrix, U-Height-Matrix, P-Matrix and U*-Matrix

between homogeneous (flat) regions. As the U-Matrix is computed from

distances between adjacent units, the visualization result is depicted at a

finer level as other (per-unit) visualizations. The U-Height-Matrix depicted

in Figure 6.3(b) is a unit-wise aggregation of adjacent U-Matrix values.

P-Matrix

The P-Matrix visualization shows local relative data densities based on an

estimated radius around the unit prototype vectors of the SOM. First, the

so-called Pareto-Radius is determined as a quantile of the pair-wise distances

between the data vectors [Ult03a]. Then, for each map unit, the number of

data points within the sphere of the previously calculated radius is counted

and visualized on the map grid. The purpose of this visualization is to show

the relative density of the map units. The map nodes in the center of the

map usually have a higher P value than the ones at the border, which is also

the case in Figure 6.3(c).
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U*-Matrix

The U*-Matrix aims at showing cluster boundaries taking both the local dis-

tances between the unit vectors and the data density into account [Ult03b].

It is derived from the P-Matrix and the U-Matrix. This is performed by

weighting the U-Matrix values according to the P-Matrix values: Local dis-

tances within a cluster with high density (high P-Matrix values) are weighted

less than distances in areas with low density, resulting in a smoother version

of the U-Matrix. The intention is to reduce the effects of inhomogeneous

visualization in actually dense regions. Comparing Figures 6.3(b) to 6.3(d)),

it can be seen that the dense region exhibited in the P-Matrix is visualized

more homogeneously in the U*-Matrix visualization than in the U-Matrix.

Consequently, the smaller distances in the dense areas have vanished while

the cluster boundaries between Tango and Samba as well as Quickstep and

Rumba are depicted more clearly. The U*-Matrix has been particularly de-

signed for Emergent SOMs [Ult99], i.e. very large SOMs, where the number

of units on the map is much larger than the number of input data.

Gradient Fields

The Gradient Field visualization [PDR06] aims at making the SOM readable

for persons with engineering background who have experience with flow and

gradient visualizations. It is displayed as a vector field overlay on top of the

map. The information communicated through the gradient field visualiza-

tion is similar to the U-Matrix, identifying clusters and coherent areas on the

map, but allowing for extending the neighborhood width, and thus showing

more global distances. Another goal is to make explicit the direction of the

most similar cluster center, represented by arrows pointing to this center.

The method turns out to be very useful for SOMs with a large numbers of

map units. The neighborhood radius is an adjustable parameter: a higher

radius has a smoothing effect, emphasizing the global structures over local

ones. Thus, this parameter is selected depending on the level of detail one

is interested in. Figure 6.4(a) depicts a gradient field with a neighborhood

radius of 2, with the arrows indicating the direction to the center of each

genre cluster (compare Figure 6.1). In Figure 6.4(b) the parameter was set

to 7, with the result of the arrows pointing mostly to the most salient cluster

peaks exhibited in the Hit Histogram (c.f. Figures 6.2(a) and 6.2(b)).
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(a) σ = 2 (b) σ = 7

Figure 6.4: Gradient Field visualization with neighborhood parameter σ set
to different values

Component Planes

Component planes visualize the distribution of particular features or at-

tributes (components) of the feature set. A single component of the unit

weight vectors is used to create the visualization allowing to investigate the

influence of a particular feature (such as the Zero Crossing Rate or a mod-

ulation frequency on a specific band within the Rhythm Patterns feature

set) to the mapping of certain pieces of music on particular regions of the

map. For the component planes visualization, each unit on the map is color-

coded, where the color reflects the magnitude of a particular component of

the weight vector of each unit. With the appropriate color palette, this

visualization is comparable to “Weather Charts” [PRM02].

When maps are created using feature sets with large dimensions, the

visualization of every component of the feature set is probably not desired.

Especially feature sets that allow the aggregation of attributes to semantic

sub-sets are suitable to create a “Weather Chart”-like visualization, permit-

ting the description of map regions by comprehensive terms. For this pur-

pose sub-sets of feature vector components are being accumulated. Particu-

larly for the Rhythm Patterns feature set (c.f. Section 3.2.5) four “Weather

Chart” visualizations have been created reflecting the psycho-acoustic char-

acteristics inherent in the feature set:

Maximum fluctuation strength is calculated as the highest value con-

tained in the Rhythm Pattern. Its Weather Chart indicates regions

with music dominated by strong beats.



CHAPTER 6. APPLICATIONS 105

(a) Maximum fluctuation strength. (b) Bass.

(c) Non-aggressiveness. (d) Low frequencies dominant.

Figure 6.5: Component Planes: Weather Chart visualizations of character-
istics inherent in the Rhythm Patterns feature set

Bass denotes the aggregation of the values in the lowest two critical bands

with a modulation frequency higher than 1Hz indicating music with

bass beats faster than 60 beats per minute.

Non-aggressiveness takes into account values with a modulation fre-

quency lower than 0.5 Hz of all critical bands except the lowest two.

The respective Weather Chart indicates rather calm songs with slow

rhythm.

Low frequencies dominant is the ratio of the five lowest and highest crit-

ical bands and measures in how far the low frequencies dominate.

As these examples show, Component Planes provide an intuitive ex-

planation of the map, its regions and the underlying features. Figure 6.5

shows examples of the four Rhythm Patterns Weather Charts visualizations

explained. Regarding the figures we see that the maximum magnitude of

fluctuation strength corresponds to Quickstep and Jive music. Bass cov-
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ers the genres ChaChaCha, Jive, Samba, Quickstep and Rumba and partly

Tango. ChaChaCha and Rumba have been identified to have the least ag-

gressive rhythm, while in Slow Waltz and Viennese Waltz the low frequencies

dominate.

Smoothed Data Histograms

Detecting and visualizing the actual cluster structure of a map is a challeng-

ing problem. The U-matrix described above visualizes the distances between

the model vectors of units which are immediate neighbors, aiming at cluster

boundary detection. Smoothed Data Histograms [RPM03] are an approach

to visualize the cluster structure of the data set in a more global manner.

The concept of this visualization technique is basically a density estimation

and resembles the probability density of the whole data set on the map.

When a SOM is trained, each data item is assigned to the map unit which

best represents it, i.e. the unit which has the smallest distance between its

model vector and the respective feature vector. However, by continuation of

these distance calculations it is also possible to determine the second best,

third best, and so on, matching units for a given feature vector. A voting

function is introduced using a robust ranking, which assigns points to each

map unit: For every data item, the best matching unit gets n points, the

second best n− 1 points, the third n− 2 and so forth, for the n closest map

units, where n is the user-adjustable smoothing parameter. All votes are

accumulated resulting in a histogram over the entire map. The histogram

is then visualized using spline interpolation and appropriate color palettes.

Depending on the palette used, map units in the centers of clusters are rep-

resented by mountain peaks while map units located between clusters are

represented as valleys. Using another palette the SDH visualization creates

the Islands of Music [Pam01] metaphor, ranging from dark blue (deep sea),

via light blue (shallow water), yellow (beach), dark green (forest), light green

(hills), to gray (rocks) and finally white (snow).

The SDH visualization, contrary to the U-Matrix, offers a sort of hier-

archical representation of the cluster structures on the map. On a higher

level the overall structure of the music archive is represented by large conti-

nents or islands. These larger genres or styles of music might be connected

through land passages or might be completely isolated by the sea. On lower

levels the structure is represented by mountains and hills, which can be con-



CHAPTER 6. APPLICATIONS 107

(a) smoothing factor n = 12 (b) smoothing factor n = 33

Figure 6.6: Smoothed Data Histograms

nected through a ridge or separated by valleys. For example, there might

be an island (or even a “continent”) comprising non-aggressive, calm mu-

sic without strong beats. On this island there might be two mountains,

one representing classical and the other one orchestral film music, which is

somewhat more dynamic. Another example might be an island comprising

electronic music and the hills and mountains on it representing sub-genres

with different rhythm or beat. This does not imply that the most inter-

esting pieces are always located on or around mountains, interesting pieces

might also be located between two strongly represented distinctive groups of

music, and would thus be found either in the valleys between mountains or

even in the sea between islands, in the case of pieces which are not typical

members of the main genres or music styles represented by the large islands

(clusters) on the map.

The parameter n mentioned before, which determines the number of

best matching units to be considered in the voting scheme for the SDH, can

be adjusted by the user to interactively change the appearance of the SDH

visualization. A low value of n creates more and smaller clusters (islands)

on the map, with an increasing value of n the islands grow and eventually

merge building greater islands or continents. Analogous to the hierarchical

representation described before, this enables the user of the map to create a

cluster structure visualization at different levels, depending if a more general

aggregation of the data or a more specialized one is desired.

Figure 6.6 shows two SDH visualizations of the ISMIRrhythm music

collection described at the beginning of this section (and in more detail
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in Section 4.2.3): in the left visualization, the smoothing parameter was

set to 12, showing the dominant clusters of ChaChaCha, Samba and Slow

Waltz, as well as the peaks of Tango and Quickstep. On the right image

the smoothing parameter was set to 33, showing large clusters which are

beginning to merge, joining also the two parts of the ChaChaCha cluster and

the Slow Waltz clusters which were separated in Figure 6.6(a). Moreover,

Jive music is found by a “sea-ground level” cluster in the center of the map,

surrounded by “islands”. Jive was the genre with the lowest number of pieces

in the collection which is probably the reason why the SDH visualization

does not show an “island” cluster of Jive as well.

6.4 PlaySOM – Interaction with Music Maps

Music Maps provide a convenient overview of the content of music archives.

Yet, their advantages are augmented by the PlaySOM application, which

enriches music maps with facilities for interaction, intuitive browsing and

exploration, semantic zooming, panning and playlist creation. This moves

the SOM from a purely analytical machine learning tool for analyzing the

high-dimensional feature space to an actual and direct application platform.

PlaySOM is based on the SOMViewer application originally developed by

Michael Dittenbach. Lateron, new interaction models [NDR05], new visu-

alizations [Azi06] (among others) and a modified SOM algorithm (Mnemo-

nicSOM, [MMR05]) were added step by step. My own contributions include

a new query interface as well as the spline-interpolated query-result Hit

Histograms described in Section 6.3.

Interface

The main PlaySOM interface is shown in Figure 6.7. Its largest part is

covered by the interactive map on the right, where squares represent single

units of the SOM. At the outmost zooming level, the units are labeled with

numbers indicating the quantity of songs per unit. The left hand side of the

user interface contains

• a birds-eye-view showing which part of the potentially very large map

is currently displayed in the main view

• the color palette used in the currently active visualization
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Figure 6.7: PlaySOM desktop application: main interface

• the playlist containing titles of the last selection made on the map,

alongside with buttons to refine, play or export the playlist

• search fields for queries to the map

• a visualization control to influence the parameters of the currently

active visualization

The menu bar at the top of the window contains menus for additional set-

tings, for switching between the visualization, changing the palette and for

exporting the map into different formats, including the PocketSOMPlayer

format. Also, if genre tags are available for the music titles, the distribution

of genres on the music map can be displayed as colored overlay as an addi-

tional clue. A toolbar allows the user to switch between the two different

selection models and to automatically zoom out to fit the map to the current

screen size.
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(a) Low zooming level: the number of songs
mapped on the units are indicated.

(b) High zooming level: song titles and ad-
ditional information are displayed on the
respective units.

Figure 6.8: Semantic zooming and its influence on the amount of information
displayed

Interaction

PlaySOM allows the user to select from and to switch between the different

visualizations described in the previous section. The Weather Charts visu-

alization for instance, indicating particular musical attributes (see Section

6.3), aids the user in finding the music of a particular genre or style. With

the SDH visualization creating an Islands of Music interface a metaphor for

a geographic map is offered, which allows for intuitive interaction with the

music map. Users can move across the map, zoom into areas of interest

and select songs they want to listen to. With increasing level of zoom the

amount and type of data displayed is changed (c.f. Figure 6.8), providing

more details about the items on the units. The interaction model allows

to conveniently traverse and explore the music map. At any level of detail

users can select single songs and play them, or create playlists directly by

selection on the map. Playlists can either be played immediately or exported

for later use.

The application also offers traditional search by artist name or song title,

and locates the retrieved titles on the map by marking the respective units

with a different color. Alternatively, the results of a query are visualized

using Hit Histograms (see Section 6.3), showing the distribution of the search

results on the map including the number of hits per unit. From the retrieved

locations it is easy to browse for and to discover similar (yet unknown) music

simply by selecting the SOM units close to the marked location.
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(a) Rectangle selection model. (b) Trajectory selection model.

Figure 6.9: Different models of selecting music on the PlaySOM music map

Playlist Creation

The two selection models offered by PlaySOM allow the user to directly

create playlists by interacting with the map. Thus the application not only

allows for convenient browsing of music collections containing hundreds or

thousands of songs, it also enables the creation of playlists based on real

music similarity instead of albums or meta-data. This relieves users from

traditional browsing through lists and hierarchies of genres and albums,

which often leads to rather monotonous playlists consisting of complete al-

bums from a single artist. Instead of the burdensome compilation of playlists

title by title, PlaySOM allows to directly select a region of the map with

the music style of interest. Moreover, by drawing trajectories on the map,

it is possible to generate playlists which are traversing multiple genres. Fig-

ure 6.9 depicts the playlist creation models that are supported by PlaySOM.

The rectangular selection model (c.f. Figure 6.9(a)) allows the user to drag a

rectangle and select the songs belonging to units inside that rectangle with-

out preserving any order of the selected tracks. This model is used to select

music from one particular cluster or region on the map and is useful if music

from a particular genre or sub-genre well-represented by a cluster is desired.

The path selection model allows users to draw trajectories and select all

songs belonging to units beneath that trajectory. Figure 6.9(b) shows a

trajectory that moves from one music cluster to another one, including the

music that is located on the transition between those clusters. Paths can

be drawn on the map, for instance, starting with Slow Waltz music going
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Figure 6.10: PlaySOM running on a Tablet PC with pen input

via Tango to Jive music and back to Slow Waltz via Viennese Waltz. It

can be fixed from the beginning that such a “tour” should take, for exam-

ple, two hours. The PlaySOM application then automatically selects music

along these path lines, or, optionally, plays music randomly from within the

trajectory drawn. Such an approach offers a wonderful possibility to quickly

prepare a playlist for particular situations (party, dinner, background music,

etc.). Once a user has selected songs on the map the playlist element in the

interface displays the list of selected titles. It is possible to play the music

in the list directly or to refine the list by manually dropping single songs

from the selection. The playlist can also be exported for later use on the

desktop computer or on other devices like mobile phones, PDAs or audio

players. The music can be either played locally or, if the music collection is

stored on a server, via a streaming environment. Furthermore, the PlaySOM

application can be conveniently and efficiently used on a Tablet PC (see Fig-

ure 6.10), because its interface is easily controllable via pen input. It is even

usable as a touch screen application.

Summarizing, the PlaySOM interface allows the interactive exploration

of entire music archives and the creation of personal playlists directly by

selecting regions of one’s personal taste, without having to browse a list of

available titles and manually sorting them into playlists. Thus, the map

metaphor constitutes a completely novel experience of music retrieval by

navigation through “music spaces”.
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6.5 PocketSOMPlayer – Music Maps on Mobile

Devices

Traditional selection methods such as browsing long lists of music titles or

selecting artists from alphabetical lists or entering queries into a search field

are particularly cumbersome when used on mobile devices, such as PDAs,

mobile phones or portable audio players. Yet, this issue becomes even more

annoying with people’s music collections constantly getting larger.

The need for improved access to music collections on portable devices

motivated the implementation of music maps on those devices, allowing for

direct and intuitive access to the desired music. Like for PlaySOM a Self-

Organizing Map builds the basis for creating intuitive visualizations and

forms the application interface. A lightweight application has been created

that runs on Java-enabled PDAs and mobile phones (see Figure 6.11). The

application takes an image export (e.g. an Islands of Music (SDH) visual-

ization) from the PlaySOM application for its interface, i.e. currently the

PlaySOM application is needed to create a map for the PocketSOMPlayer.

Interaction

The interface offered by the PocketSOMPlayer [NDR05] is similar to its desk-

top counterpart PlaySOM. It also offers exploring a music map by zooming

and selection and playlists are created by drawing paths with a pen on the

screen (provided the device supports pen input). Due to the limitations in

screen size, playlists are displayed on the full screen after a selection was

made, offering the choice of fine-tuning the playlist.

Playing Scenarios

Several play modes exist for the PocketSOMPlayer:

First, if the device has sufficient capacity to store entire music collections

on it, music can be played directly from the device.

Alternatively, the PocketSOMPlayer can also be used for streaming one’s

personal music collection from the desktop computer at home. A connection

is opened from the mobile device to one’s personal computer and each time

a playlist is created by drawing a path on the mobile device, the Pocket-

SOMPlayer starts to stream the music from the desktop computer to the
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(a) on a PDA (iPAQ) (b) on a PDA phone
(BenQ P50)

(c) on a mobile phone
(Sony Ericsson emu-
lator)

(d) on a multimedia phone (Nokia 7710 emulator)

Figure 6.11: Different implementations of the PocketSOMPlayer
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handheld device.

Instead of streaming the music to the mobile device, the PocketSOM-

Player can be used also as convenient remote control to select music one

wants to listen to in one’s living room. After selecting a path or an area on

the music map on the PDA or mobile phone a playlist is sent to the desktop

computer which then plays the music.

With an active connection to the Internet the PocketSOMPlayer is able

to stream the music on the selected map trajectory from a server. Thus,

while traveling around, with this technology one can access a music reposi-

tory from wherever one has access to the Internet, be it via GPRS, UMTS or

Wireless LAN. This enables also the idea of a central music repository with

a huge archive of music in it and a multitude of users accessing this music

from wherever they are, offering room for portal-based service providers.

Conclusion

Selecting music via drawing trajectories on a touch screen is straight-

forward, easy to learn and intuitive as opposed to clicking through hier-

archies of genres or interprets. The PocketSOMPlayer offers a convenient

alternative to traditional music selection and may also constitute a new

model of how to access a music collection on portable audio players.

6.6 The Map of Mozart

The 250th anniversary of Wolfgang Amadeus Mozart in 2006 was the moti-

vation to acquire the collection of his complete works and to analyze all the

pieces of music that W. A. Mozart ever created by content-based audio fea-

ture extraction. This collection of 2442 pieces of music by a single composer

from a specific period of time is characterized by being very homogeneous,

nevertheless the music can be divided into a set of categories, such as sym-

phonies, serenades, sacred works, violin sonatas, operas, etc. (17 classes in

total, see Table 4.6, which also includes the number of works in each cate-

gory). This categorization is based partly on the covers of the original CDs

and some categories have been manually further subdivided, where it made

sense.

The Map of Mozart clusters the entire Mozart collection without the use

of any genre information, solely based on the automatically extracted audio
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features. The genre information can be later overlaid on the Map of Mozart

as a visual hint to evaluate the clustering of the music.

Feature Extraction

For feature extraction from the digital audio, the Rhythm Patterns feature

set (see Section 3.2.5) has been employed. The standard algorithm (in the

Matlab version) which includes psycho-acoustic processing has been used,

however without considering Spectral Masking and without the subsequent

filtering and smoothing step. Every fourth 6 second segment of the pieces

has been considered, without the first and the last segment of a piece of

music. Capturing fluctuations on all human audible frequency regions, the

features are capable not only to discover rhythmics, but also timbral features

and thus are able to recognize different instrumentation in music.

Clustering

In the subsequent step, the features extracted have been used for input to

clustering using a Self-Organizing Map. A rectangular map might be sub-

optimal for memorizing the orientation of a map, i.e. the location of different

types of music on the map, and for explaining to people where genre-like

clusters are located on the map. Therefore, a modified SOM algorithm

has been used, the so-called Mnemonic SOM [MMR05]. Instead of creating

rectangular maps this novel SOM method enables the use of memorizable

shapes, e.g. in the form of countries, geometrical figures,etc. In the case

of Mozart’s map the silhouette of Mozart’s head was chosen as the shape

of the map. The map consists of 776 units, which are aligned according

to this shape. For the clustering algorithm, a learning rate of 0.75 and an

initial neighborhood radius of 20 were chosen, clustering was done in 25,000

iterations.

Description of the Map of Mozart

On the resulting map, pieces of music with similar features are mapped

close to each other, and pieces with low similarity are located in distant

regions. Groups of many songs with similar characteristics are building

clusters. With the SDH visualization these clusters are exhibited as “is-

lands” on the Map of Mozart. The further away two pieces are from each
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Figure 6.12: Map of Mozart (semi-transparent Smoothed Data Histograms
(SDH) and background visualization, with categories as overlay)
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other, the more divergent are their musical characteristics. If the pieces in

the collection are not from clearly distinguishable categories the map reflects

this by placing pieces along continuous transitions.

The map can be explored acoustically with the PlaySOM application (see

Section 6.4), but with the use of the class overlay, it is possible to describe

the structures of the Map of Mozart also by referring to an image. Figure

6.12 shows the Map of Mozart in a hybrid visualization, including Mozart’s

head, a semi-transparent SDH visualization and the class overlay.

In this image it can be seen clearly that almost all operas composed by

Mozart are located in the lower part of the Map of Mozart. The operas

are further divided into different regions, for example recitatives, located in

the region of Mozart’s neck. Operas with male voices are located at the left

while female voices are clustered at the right. There is also a transition from

the operas to sacred works.

One can find string ensembles in the region of Mozart’s right ear, while

the dances are arranged left-above of the string ensembles in the region of

the back of the head. A cluster of piano music can be found on the top

edge containing piano sonatas and piano concerts. Faster pieces are usually

mapped more to the left than to the right, which is also the reason why

symphonies are divided up into two clusters: presto (fast) pieces are located

in a cluster at the top and adagio (slow) pieces in the area of Mozart’s left

ear (at the right).

It becomes apparent that the clustering abilities of the Self-Organizing

Map and the features extracted by the Rhythm Pattern algorithm are work-

ing very well on an as homogeneous data set as this specific music collection

by Mozart. The automatic organization of the complete works of Mozart is

particularly remarkable as the algorithm was based solely on the audio con-

tent of the music, without considering any musical knowledge or meta-data.

The Mnemonic Map of Mozart offers attractive and eye-catching visual-

izations to the user, and a playful alternative to the Köchel-Verzeichnis for

exploring Mozart’s music.

In addition to the PlaySOM application which is used for exploration,

an interactive web demo of the Map of Mozart has been created. In the web

version the user can choose between different visualization variants: (1) the

map with the image of Mozart as background, (2) only the shape of Mozart

with the SDH visualization and (3) a combination of both, using a semi-
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transparent SDH on the image. Additionally, the user can choose to show

the class distribution as an overlay to these visualizations. Even though the

web version allows less ways of interaction, the user can still easily navigate

through all the pieces of music on the map, and select music to listen to.

The Map of Mozart can be explored with limited amounts of free music

available online at http://www.ifs.tuwien.ac.at/mir/mozart.

6.7 Conclusions

In this chapter an approach for clustering music collections has been pre-

sented together with intuitive interactive applications based thereon.

The Self-Organizing Map has been introduced which is a clustering al-

gorithm that maps high-dimensional data – which has been previously ex-

tracted from audio signals – to a two-dimensional map. A large range of

visualizations is available to render the inherent structures and relations

between songs in a music collection more explicitly in an intuitive manner.

Based on these forms of representing music libraries new applications

have been created which allow for browsing music collections by similarity,

without the need for meta-information such as artist names and song ti-

tles. Meta-data, of course, may be used in addition to the content-based

approaches, if available, e.g. to search and locate particular music. Further-

more, a Music Map can be utilized directly to select and play back music.

The model for the selection of paths through the “landscape” allows to cre-

ate specific playlists for particular situations, e.g. a playlist for a relaxing

dinner or for a party. This novel form of interaction with music libraries has

also been ported to mobile devices, which enable the streaming of desired

music from a repository to mobile players independently from one’s location.

My contributions to the software programs and applications were

• a query interface for the PlaySOM application that allows for meta-

data based queries

• a modified Hit Histogram visualization that applies spline interpola-

tion and is able to present results of different queries to the music

collection in an attractive visualization similar to the SDH visualiza-

tion
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• tests and improvements concerning the usability of the PocketSOM-

Player on a PDA and a PDA phone

• the extraction of audio features from Mozart’s complete works

• the training and creation of the MnemonicSOM-based Map of Mozart

and its presentation on a web site

• porting of the Map of Mozart to the PocketSOMPlayer format

The applicability of the SOM-based approach to cluster music collections

was demonstrated by the creation of the “Map of Mozart”, which drew at-

tention from international press and media. The Map of Mozart clusters the

complete works of W. A. Mozart on a specially shaped SOM (a Mnemonic

SOM that takes the silhouette of Mozart’s head) according to acoustical

similarity which has been extracted from the music by an automatic audio

feature extraction algorithm presented in Chapter 3 and evaluated in several

benchmarks in Chapter 5. The automatic clustering of Mozart’s music on

the Map of Mozart shows the feasibility of the entire approach.



Chapter 7

Summary and Conclusions

In this thesis the problems of categorizing, organizing, searching in and in-

teracting with music collections have been outlined. Chapter 1 illustrated

the motivation for the work described in this thesis. In Chapter 2 publica-

tions related to this work have been reviewed, in particular approaches to

feature extraction from audio, music classification, benchmarking, clustering

and visualization of music archives as well as new interfaces to music collec-

tions. Various approaches to audio feature extraction have been explained in

Chapter 3 including low-level temporal and spectral audio features, MPEG-7

audio descriptors, Mel Frequency Cepstral Coefficients, Wavelet Transform

Features, Beat Histograms, Pitch Histograms, Statistical Spectrum Descrip-

tors, Rhythm Patterns and Rhythm Histograms. The three latter feature

sets have undergone detailed evaluations and benchmarkings described in

Chapter 5. Chapter 4 provided a detailed overview of the music collections

involved in benchmarking and evaluation, describing the distinct character-

istics of those audio collections.

Chapter 5 started with a summarization of the efforts for establishing

standard scientific benchmarkings in Music Information Retrieval research

followed by a short introduction to classification approaches and appropri-

ate measures. Starting with the Rhythm Patterns feature set, a number

of benchmarkings have been performed. The baseline algorithm won the

ISMIR 2004 Rhythm Classification contest. Subsequently, a study of the

influence of psycho-acoustics in feature extraction has been conducted, with

the result of identifying a number of psycho-acoustic transformations (in par-

ticular Decibel, Phon and Sone) as crucial for application in classification

121
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tasks, while discovering potential issues with others (e.g. Spectral Masking,

smoothing). Two new feature sets have been presented: Statistical Spec-

trum Descriptors and Rhythm Histograms. These feature sets, alongside

the improvements on the Rhythm Patterns feature set, have been evaluated

thoroughly on three reference audio collections. The new feature sets have

been characterized as being competitive in comparison to other state-of-

the-art approaches. Multiple combinations of them were submitted to the

MIREX 2005 evaluation on Genre Classification where it was competitive

with several other approaches, outperformed only by the approaches of two

other participants. In the MIREX 2006 benchmarking on Music Similarity

Retrieval the Statistical Spectrum Descriptors were identified to perform

equally well as the top 5 state-of-the-art algorithms, as determined by a

statistical significance test on the results of a human listening test. Prior to

MIREX 2006 a study has been performed on evaluating different distance

metrics for similarity computations in music databases.

In Chapter 6 the devised, evaluated and benchmarked feature sets were

applied to music organization applications, which utilize the Self-Organizing

Map clustering algorithm. After introducing the Self-Organizing Map algo-

rithm, a number of possible visualizations for exhibiting the clustered struc-

tures within music collections are described. The clustering is purely acous-

tics based, according to sound similarity inherent in the audio feature sets.

The PlaySOM and PocketSOMPlayer applications were presented, which

enable new forms of interaction with music collections. They support brows-

ing, zooming and selection of clusters of similar music and consequently the

discovery of new music based on music one already knows and one likes.

Furthermore, the selection of trajectories through the clustered music col-

lection facilitates the creation of playlists by music similarity, suitable for

particular situations or moods.

For a demonstration of the practicability of both the clustering and fea-

ture extraction approaches, Mozart’s complete works have been analyzed,

clustered and organized on a Music Map, creating the Map of Mozart.

Though this particular example contains music from one single composer

and is thus supposed to be very homogeneous, the feature extraction and

clustering approaches managed to organize the music very well, dividing

the works of Mozart into different clusters containing e.g. operas, dances,

symphonies, piano works, etc.
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To summarize, the approaches presented for feature extraction from mu-

sical audio signals have been evaluated in established standard scientific

benchmarkings and have proven to be very well suited for music classifi-

cation tasks, for music similarity, as well as clustering-based organization

of music on Music Maps. Consequently, they are valuable for novel music

retrieval applications, which facilitate searching for music and relieve users

from cumbersome manual annotation and categorization tasks.
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