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�Music is the one incorporeal entrance into the higher world of knowledge which

comprehends mankind but which mankind cannot comprehend.�

Ludwig van Beethoven (1770-1827), German Composer
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Abstract

The introduction of digital music representation considerably altered the ways of creating, ac-

cessing and using music. Until today an immense number of music archives has been made

available so that the actual attitude of �music consumption� has changed fundamentally. Both

the commercial domain as for instance represented by music producers or music distributors

and the private domain play a major role in the increasing importance of digital music archives.

Yet, the size of music archives which can often be enormous demands new requirements accord-

ing to the internal organization of included musical pieces as well as the individual access and

search of musical pieces. Consequently, this means that scalable methods must be provided to

automatically establish organizations of music archives according to speci�c musical semantics.

The research �eld of Music Information Retrieval (MIR) aims to develop such methods which

make possible a grouping, i. e. clustering or classi�cation, of music pieces according to speci�-

cally de�ned musical semantics. Basically, such a musical semantics refers to the measuring the

similarity of the underlying musical content. The de�nition of this content-based similarity is

based on individual musical characteristics like for instance rhythm, melody, instrumentation or

others.

Musical genres represent a very popular and frequently used musical category to organize

music collections. In comparison to other possible musical categories, musical genres provide an

intuitive understanding for categorization and are frequently used by humans to organize music.

For instance, music retailers or music libraries widely use genre categorization to provide an

e�ective organization of o�ered music collections. Within the MIR community the assumption

generally holds true that the understanding of genres is potentially based on the descriptive power

of certain content-based characteristics of the included musical pieces. Consequently, speci�c

genres may be actually related to a certain rhythmic, melodic or other musical characteristics.

Unfortunately, this assumption of music genre representation based on content-based semantics

appears to be insu�cient as not content-based characteristics like for instance the cultural origin

of artists and the cultural context of lyrics also play a role in the de�nition of musical genres.

Based on that potentially descriptive power of genres this master thesis examines the discrim-

ination of musical genres in terms of rhythmic characteristics. Since various rhythmic descriptors

exist in MIR, the three descriptor Rhythm Pattern (RP), Statistical Spectrum Descriptor (SSD)

and Rhythm Histogram (RH) have been used throughout this thesis only. Each of these three

descriptors contains a large number of features to constitute the speci�c rhythmic component of
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an individual piece of music. In particular two key questions were analyzed based on extensive

empirical evaluations. The �rst question was dedicated to the possible discrimination of genres

based on speci�c feature patterns within the descriptor which were suited for genre discrimina-

tion. Such feature patterns were determined by applying �ve di�erent heuristic discrimination

models in order to estimate the contribution of every feature to distinguish a speci�c genre.

For this purpose the DiscriminationAnalyzer tool was designed to compute and to visualize the

discriminative power of features according to class discrimination. Moreover, the processing of

arbitrary feature sets, the selection of di�erent calculation models and an appropriate visualiza-

tion of the results are key properties of this application. The second question focused on the

evaluation of the usefulness concerning dimensionality reduction, i. e. feature selection, based

on the discriminative power of the features to correctly distinguish the underlying classes. In

usual classi�cation applications, feature selection is especially important not only because of the

potential run-time optimization but also because of the deteriorating in�uence of the curse of

dimensionality. The presented application also includes an embedded evaluation of the most

discriminative features with arbitrary learning algorithms.
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Zusammenfassung

Die Einführung der digitalen Repräsentation von Musik hat die Erstellung, den Zugri� sowie

die Verwendung von Musikarchiven entscheidend verändert. Bis zum heutigen Zeitpunkt exis-

tiert bereits eine immense Anzahl von Musikarchiven, so dass sich die Einstellung gegenüber des

�Konsumierens von Musik� fundamental verändert hat. Sowohl der kommerzielle Bereich, wie

u. a. Musikproduzenten oder Musikdistributoren, als auch der private Bereich tragen dazu bei,

dass die Bedeutung von digitalen Musikarchiven weiterhin zunimmt. Aufgrund der Gröÿe von

Musikarchiven müssen jedoch neue Anforderungen an die Organisation von Musikstücken bzw.

an den individuellen Zugri� auf und die Suche von Musikstücken berücksichtigt werden. Um

einen e�ektiven Zugri� bzw. eine e�ektive Suche zu garantieren, sind skalierbare Methoden zur

automatisierten Erstellung einer Organisation von Musikarchiven basierend auf einer spezi�schen

musikalisch-orientierten Semantik notwendig. Das Forschungsgebiet Music Information Retrie-

val (MIR) widmet sich der Entwicklung von solchen Methoden, welche einerseits die Bildung

von semantischen Gruppen (clusters) von Musikstücken und andererseits dem Klassi�zieren von

Musikstücken ermöglichen soll. Grundsätzlich bezieht sich eine solche musikalische Semantik auf

ein spezi�sches Maÿ, welches die Ähnlichkeit des musikalischen Inhaltes abbildet. Eine solche

inhaltliche Ähnlichkeit wird über den Vergleich von musikalischen Aspekten wie Rhythmus, Me-

lodie, Instrumentierung, usw. der einzelnen Musikstücke ermittelt, welche zuvor automatisiert

extrahiert werden müssen. Die semantische Beziehung von Musikstücke derselben Gruppe wird

somit über eine spezi�sche Ähnlichkeit des musikalischen Inhaltes de�niert.

Eine der interessantesten Kategorien für die Organisation von beliebigen Musikarchiven stel-

len Genres dar. Im Vergleich zu anderen möglichen Kategorien bieten Genres ein intuitives Ver-

ständnis zur Organisation von Musikarchiven. Beispielsweise �ndet man etwa in Musikgeschäften

oder in Musikbibliotheken sehr häu�g nach Genres strukturierte Musiksammlungen. Innerhalb

der Forschungsgemeinschaft von MIR wird angenommen, dass dieses intuitive Verständnis der

Kategorisierung von Musikstücken auf die inhärente Aussagekraft von Genres bezüglich bestimm-

ter musikalischer Aspekte der einzelnen Musikstücke desselben Genres basiert. Daraus könnte

man folgern, dass ein bestimmtes Genre durch spezi�sche rhythmische, melodische oder andere

musikalische Aspekte eindeutig beschrieben werden kann. Jedoch ist diese Annahme bezüglich

einer rein inhaltlich basierenden Repräsentation von musikalischen Genres ungenügend, da auch

nicht inhaltsbezogene Aspekte wie beispielsweise die kulturelle Herkunft von Musiker bzw. der

kulturelle Kontext von Songtexten die De�nition von Genres beein�ussen.
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Ausgehend von dieser potentiellen Aussagekraft von Genres wurde im Rahmen dieser Mas-

terarbeit die Unterscheidbarkeit von Genres hinsichtlich des musikalischen Aspektes Rhythmus

untersucht. Da viele unterschiedliche Ansätze zur Rhythmusrepräsentation innerhalb von MIR

existieren, wurden ausschlieÿlich die drei Deskriptoren Rhythm Patterns (RP), Statistical Spec-

trum Descriptor (SSD) sowie Rhythm Histogram (RH) verwendet. Diese drei Deskriptoren de�nie-

ren jeweils eine groÿe Anzahl an einzelnen Merkmalen (features) zur Repräsentation des Rhyth-

mus einzelner Musikstücke im weitesten Sinn. Zwei grundsätzliche Fragenstellungen wurden in

der Masterarbeit durch eine eingehende empirische Analyse evaluiert. Die erste Fragestellung wid-

mete sich der möglichen Beschreibung von Genres durch eindeutige, nur dem jeweiligem Genre

zugeordnete, Rhythmusmuster. Diese Zuordnung wurde jeweils mit Hilfe von fünf verschiedenen

heuristischen Berechnungsmodellen ermittelt, welche die Unterscheidbarkeit eines spezi�schen

Genres durch das jeweilig untersuchte Rhythmus-Merkmal ermittelt. Zu diesem Zwecke wurde

eigens die Applikation DiscriminationAnalyzer entwickelt, mit dessen Hilfe beliebige Merkmale

aus einer gegebenen Merkmalsmenge dahingehend untersucht werden können, ob und wie stark

eine Unterscheidbarkeit von Genres bezüglich der untersuchten Merkmale gegeben ist. Vor allem

die Verarbeitung beliebiger Deskriptoren, die Auswahl von verschiedenen Berechnungsmodellen

und eine angemessene Visualisierung der Ergebnisse zeichnen diese Applikation aus. Die zwei-

te Fragestellung beschäftigte sich mit der Evaluierung einer Merkmalsreduktion basierend auf

diesem Unterscheidbarkeitspotential der einzelnen Merkmale im Zusammenhang mit der auto-

matischen Klassi�zierung von Musikstücken nach Genres. Die Reduktion von Merkmalen hat

im Kontext der Klassi�zierung eine besondere Bedeutung, da neben der Laufzeitoptimierung

insbesondere auch der negative Ein�uss des so genannten Fluch der Dimensionalität (curse of

dimensionality) durch eine entsprechende Reduktion der verwendeten Merkmale möglichst mi-

nimiert wird. Als Kriterium für diese Merkmalsreduktion wurde die jeweilige Unterscheidbarkeit

jedes einzelnen Merkmals bezüglich der Genres verwendet. Hierzu bietet DiscriminationAnalyzer

eine integrierte Evaluation mittels beliebiger Lernalgorithmen an.
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Chapter 1

Introduction

The digital representation of music has become a very important part of not only information

science and technology but also to a huge number of people around the world who recognize the

advantages of using digital music in comparison to traditional musical representations. Music

collections of almost innumerable musical works have been collected, distributed and published

for commercial or private use in recent years. The global community of users who want to

capitalize on the public access to such music collections has immensely grown by now and,

certainly, will steadily grow in the future.

Music Information Retrieval (MIR) has been founded as an interdisciplinary research �eld

to encounter various problems which are directly related to the needs of automatic organization

and browsing of such music collections. As already today numerous musical collections are

publicly available over the World-Wide-Web, for example, automatic techniques to organize

music collections are crucial to provide e�ective handling of digital music. Section 1.1 gives

an introduction into motivation and main contributions of MIR and de�nes a selection of the

most relevant research areas which are concerned by MIR. The successive section 1.2 lists the

key questions and goals which are focused in this thesis. Eventually, section 1.3 presents the

structural outline of the thesis.

1.1 Motivation

Digital information a�ects deployment and common use of computers and computer networks as

it was unimaginable few decades ago. Due to the rapid development of hardware resources and

network capacities the creation, processing and transfer of digital information like text, images,

music or video have become very important and the size of legally, and unfortunately also illegally,

accessible digital information has grown extensively. In recent years, large collections of digital

information have been created by commercial vendors and private users. Considering the increas-

ing popularity of Web 2.0 applications around the world, the proportion of information which is

created by private users becomes signi�cant and main requirement is the public availability over

the world�wide web. Consequently, this can lead to the assumption that the World-Wide-Web

1
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itself can be de�ned as a huge single and globally accessible collection of very di�erent informa-

tion contents. However, the immense and still growing scale of both the availability of collections

containing arbitrary digital content and the World-Wide-Web itself raises eligible questions how

to access particular content e�ectively and to provide an intuitive organization of such collections

to everyone.

Since the early 1990's the importance of digital music has continuously increased. Intuitively,

this development can be explained by two main arguments. First, music has a particular meaning

to humans regardless of ethical, cultural or political origin. Almost every human being perceives

music either directly by listening to or playing some speci�c musical work, or indirectly by

watching movies, TV/Radio shows or even stores and shopping malls. Thus, music constitutes

an important good for humans in a global sense. But why is music so popular? The answer

obviously lies in the human perception itself. Humans do not only perceive the basic musical

information alone, but also connects musical information with certain impressions in�uenced by

emotions, moods or memories. This means that music is also a kind of medium for additional

meta data. On the one hand, this meta data is highly subjective but, on the other hand, it is also

a key factor for humans to decide which musical pieces will be listened in a particular situation.

Second, the digital representation of musical content has become an ideal way for editing,

saving or transferring music. As e�cient coding methods, like MP3 in particular, had been

introduced, various applications have been developed to handle digital music content in whatever

way possible. Until today large number of publicly available music databases or collections have

been created1 by either companies like music labels as well as retailers or private users. This

increasing demand of digital music urges for e�ective ways to browse, organize and dynamically

update music collections by the aggregation of su�cient meta data or annotations describing

the content of musical pieces. Consequently, the key goal of MIR research is to develop new

techniques to automatically extract content descriptions of musical pieces which can be directly

used to organize music collections. Organization of musical collections means the corresponding

categorization of every musical work and, respectively, or de�ning certain musical similarity

measures to de�ne relationships between musical works. But this obviously implies that some

meta data about certain categories of similar musical works must be either annotated manually or

automatically by some extraction process. In order to guarantee scalability of music collections,

a manual annotation process can not provide a satisfying organization of music collection. Due

to the limitations of manual annotation in terms of scalability, the question of e�ective access can

only be solved by introducing new techniques which automatically perform musical categorization

and compute similarity structures in connection to a scalable and extensible music collection. As

a consequence, the performance of these methods strongly determines the e�ciency and usability

of music retrieval.

Music Information Retrieval (MIR) has been founded as the research area for giving solu-

tions and methods to above questions. MIR constitutes an interdisciplinary research area and

1Unfortunately, the progress of handling digital music has also led to the still ongoing problem of illegal
distribution of music mostly over the World-Wide-Web.
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combines knowledge of diverse scienti�c �elds like information retrieval and machine learning,

musicology and music theory, audio engineering and digital signal processing, cognitive science,

library science, publishing, and even law. The aims of MIR are to develop methods which,

more or less, automatically organize large music collections and provide semantic structures to

guarantee access, comparison or even research requirements of arbitrary musical works. A rec-

ommended introduction into MIR research is provided in [16] by Stephen Downie. Virtually all

problems of MIR research include information retrieval and machine learning techniques which

must be adequately adapted due to the very speci�c musical content representation. Again,

Downie describes several important aspects of the musical content representation in [16] but also

Byrd and Crawford [10] give a comprehensive insight into the problem of music representation.

In order to demonstrate the complexity of MIR problems concerning musical representation, the

following list introduces some important and widely recognized musical representation aspects

a�ecting MIR research and its embedded challenges.

� The existence of symbolic-based or audio-based or a mixture of both to represent music in

digital form. Symbolic representation assumes an abstract view of the underlying musi-

cal work which explicitly includes structural elements of the underlying music. Examples

are either notation (scores, charts), event-based recordings (MIDI), or hybrid representa-

tions. Since the larger part of music recordings and in particular audio CDs and DVDs

use composite audio signals to represent the musical content, audio-based representations

of musical pieces are far more available. Basically, audio-based representation involves the

discretization of composite audio signals into sets of measurement samples, whereas the

composite audio signal describes the corresponding musical work physically. As a conse-

quence, audio-based representation originally includes no meta data concerning musical

structure, instrumentation or notation.

� The complex interaction between music's pitch, temporal, harmonic, timbral facets. One

of the main MIR research areas is the extraction of these musical facets to get better

representation of the musical content itself. The complexity of this problem depends on

the musical representation. In particular audio-based representation does not directly

contain any information about the pitch of single notes or temporal information. Thus,

the annotation of those musical facets must be entirely extracted from raw audio signals

involving the unpleasant ambiguous nature of musical facets.

� Possible distortion of the original musical content during recording and, especially, encod-

ing. The limits of storage devices, network bandwidth or computational resources often

require the encoding, i. e. compression, of the originally recorded musical representation.

Unfortunately, most encoding methods introduce the possible generation of artifacts which

are certainly not desirable but, eventually, unavoidable since a certain degree of compres-

sion has to be reached.

� Music strongly depends on its cultural origin. In order to characterize the problem of ex-
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panding MIR research from usual Western music (popular or classical music) to other music

styles, the speci�c and origin-depended treatment of di�erent instrumentation, notation or

scores must be considered as well. Thus, MIR must also recognize multicultural aspects of

music and music representation.

Considering these relevant aspects of music and music representation, it becomes apparent

that MIR and its main tasks have to challenge a variety of hard and complex problems. A

comprehensive overview of MIR problems concerning applications in real world can be reviewed

in a very interesting work of Byrd and Crawford [10]. As basic di�erences to other applications

of information retrieval and machine learning are obvious, MIR tasks can not be solved by

knowledge of information or computer science alone.

Although the core motivation of MIR is to develop e�ective retrieval techniques for digital

music collections, continuing advance in various interrelated research areas must also be con-

sidered to describe MIR research entirely. In recent years, numerous MIR systems have been

introduced to provide tools and methods to organize musical works on di�erent levels and in

di�erent musical representations. However, MIR systems strongly depend on the chosen musical

representation and further explicitly de�ned requirements. An overview of some interesting and

exemplary MIR systems is described in [51, 52]. In spite of MIR research being always directly

related to retrieval and access techniques, a wide range of subproblems have been formulated.

The main MIR subproblems are:

� Music search describes approaches to �nd musical pieces based on a given query de�ned

by users. Although the aim of music search always concerns the retrieval of speci�c music

pieces, possible types of queries refer to di�erent musical representations and meta data.

Therefore, music search is divided into several search applications which depend on very

di�erent preconditions and properties. Possible types of search queries are introduced in

table 1.1.

Query-by-example or
Query-by-similarity Searching by a given exemplary music sample
Query-by-humming/singing Searching by a hummed or sung example
Query-by-category Searching by a certain content category (e. g.

style, genre, mood)

Table 1.1: Possible types of search queries for music search applications

� Music identi�cation aims to assign speci�c annotations like for instance title or artist to

given musical pieces. In other words, the application of music identi�cation is to retrieve

meta data of basically unknown musical pieces. The basic approach to realize this task is

to build a unique content representation of musical pieces contained in a sample collection.

To evaluate a particular identi�cation query, the given query example will be compared

with all sample representations. Consequently, the crucial task of music identi�cation is
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to e�ectively extract a unique representation. A common approach is the deployment of

acoustic �ngerprints which constitute uniquely generated code sequences from the original

audio waveform of musical pieces. An important requirement of acoustic �ngerprints is the

robustness against transformations such as e. g. encoding, change of bit rate, etc.

� Music classi�cation creates content-based annotations with respect to entire music pieces

or segments of those pieces. Since humans categorize and organize music by a large number

of di�erent categories and attributes, an automatic approach to generate similar content-

based annotation is crucial. Possible categories can be mood, genre, style classes but many

more are imaginable. Unfortunately, those categories are related to each other in a very

restricted sense. Moreover, classes or single categories are often ambiguous and therefore

they can hardly be divided due to fuzzy borders. Considering the organization of music

collection and the problem of e�ective and suitable access, correct annotation of human-

de�ned categories are obviously important and, thus, have to be an intrinsic part of a MIR

system. Also segments or elements of notations (e. g. scores) of musical pieces can also be

annotated. Numerous practical examples can be found which need to annotate structural

components or notations. For example, imagine the problem of identifying typical song-

based structures like verses, choruses or bridges within a given music piece.

� Music similarity establishes relational structures within music collections. The similarity

of music pieces is indicated by some prede�ned measure which is built upon a mathematical

model based on a selection of musical descriptors. The choice of musical descriptors to be

used is crucial in order to guarantee su�cient musical similarity structures. But which

descriptors are actually e�ective to correctly represent musical similarity? This question

is still to be answered yet. Music similarity is strongly related to music recommendation

which aims to create user-speci�c play lists based on a selection of musical samples.

� Music synchronization and music matching describe the task of �nding similar musi-

cal structures embedded in arbitrary music pieces. Typically, music collections contain for a

single musical work various musical variations depending on di�erent interpreters or artists,

di�erent recordings or digital representations. E�ective browsing or retrieval in such music

collections must consider these possible variations of musical works. Furthermore, music

synchronization also provides techniques to identify similar parts of such interpretations

despite of temporal or timbral di�erences. Exact time position synchronization according

to separate digital representations of similar musical works has also become an interesting

task of MIR research.

This thesis focuses on the assignment of musical genre categories to given musical pieces of

underlying collections and will be further called musical genre classi�cation.

Musical genres introduce a very popular and frequently used musical category to organize

arbitrary music collections. In comparison to other possible musical categories, musical genres

provide an intuitive understanding for categorization and are frequently used by humans to
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organize music. Just think of record retailers or music libraries where o�ered music pieces are

usually organized by corresponding musical genres. Due to the long use and its popularity, the

automatic extraction of musical genres as a meta data of the underlying musical piece is of great

interest to MIR research. This conclusion is particularly emphasized in the work of Aucouturier

and Pachet [3]. Unfortunately, musical genres inherit an undesirable ambiguity due to imprecise

genre de�nitions and boundaries as they rise through a complex interaction between public,

marketing, historical, and cultural factors. By now a full description of musical genres on the

base of music content alone can only be insu�ciently solved.

Nevertheless, musical genre classi�cation has matured to a top way for categorizing musical

pieces, where two basic assumptions are essentially made within MIR research. First, for most

current musical genres it can be assumed that the members of a particular genre share certain

characteristics typically related to the instrumentation, rhythmic structure, and/or timbral con-

tent of the music. Second, genres can be related to each other in a hierarchical manner. This

aspect can be speci�cally used by MIR techniques, for instance by hierarchical classi�cation.

Although a suitable hierarchical structure of genres (i. e. taxonomy) can not be automatically

generated yet, the use of a user-de�ned taxonomy can increase the classi�cation performance

according to the genre de�nitions of the user itself.

This assumed descriptive power of musical genres is the initial point of two key questions

raised in this thesis. The motivation of the �st question directly lies in the possible relation of

some rhythmic content to a particular musical genre. �Do some speci�c rhythmic feature subsets

exist which uniquely determine the genre of the corresponding musical piece?� To answer this

question, a discriminant analysis will be applied based on music representations of three speci�c

rhythmic descriptors. The discriminant analysis determines those features which signi�cantly

distinguish the correct genre of the corresponding musical piece. The second key question of this

thesis examines the e�ects of using those discriminative features only for musical genre classi-

�cation. Based on the results of the discriminant analysis, a feature subset selection approach

will be evaluated which reduces the dimensionality by selecting discriminative features only. The

following two aspects are evaluated in particular. First, which musical genres are related to a

signi�cant feature set reduction. Perhaps observable reductions can be even obtained for all ex-

amined genres? The second aspect deals with the question whether such a feature set reduction

does a�ect the classi�cation performance and in which way. The conclusions these two key ques-

tions aim to increase the understanding of genre-based rhythmic representation and usefulness

of feature selection based on the discriminative power of class determination.

To summarize, MIR research develops techniques to provide e�ective ways to organize, to

browse or to search large and scalable collections of digital music which are already frequently

available today and become even more important in the near future. To meet the challenges

of automatically creating meta data for annotation, appropriate descriptors of musical content

must be extracted. In order to guarantee consistency and arbitrary scale of music collections, an

automatic approach of describing musical pieces by certain meta data is crucial. Obviously, man-

ual annotation can not su�ciently encounter these challenges. MIR research consists of several
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interrelated subproblems which aim to o�er possibilities to browse or autonomously generating

play lists. For instance, music classi�cation or music recommendation provide very promising

prospects to interact within future music collections and applications. In recent years, MIR

research has rapidly grown and due to the amazingly dynamic and creative MIR research com-

munity, it appears to be very likely that this progress will continue in the future.

1.2 Thesis contributions

The following list precisely formulates the contributions of this thesis:

� An examination of rhythmic descriptors which are introduced in [38, 42, 46, 47] empiri-

cally evaluates the question whether feature ranking based on the discriminative power

of features to distinguish the correct musical genre is a promising approach for e�ective

dimensionality reduction. Basically, ranking methods based upon the discriminative power

of features for class determination have been widely used in information retrieval applica-

tions for many years. However, an employment of this approach on musical data in context

of genre classi�cation has not been adequately discussed yet. Another question of this

examination tends to evaluate whether some rhythmic descriptors or patterns of rhythmic

descriptors are signi�cantly discriminative to particular musical genres.

� Based upon the results of the discriminative feature ranking, a straight forward �lter-based

feature selection will be examined in context of musical genre classi�cation. An extensive

evaluation presents conclusions concerning the usefulness and potential improvement in

genre classi�cation performance of this feature selection approach.

� In order to e�ectively perform a discriminant analysis on arbitrary music collections and

various musical descriptors, a comprehensive application has been developed in MATLAB.

The core of this application is an examination tool providing various heuristic discrimina-

tion models to calculate and to evaluate the discrimination of genres according to speci�c

features. Successively, basic evaluations of given feature selections can be performed. As

input both the popular dataset format ARFF [57] of the open-source data mining work-

bench WEKA and the more speci�c format SOMLib [49] are accepted and can also be used

to save selected feature sets into the corresponding data format.

� As hierarchical genre classi�cation constitutes another promising application of the discrim-

inant analysis, another focus of this thesis is the implementation of a particular hierarchical

genre classi�cation within the open source machine learning WEKA workbench. The key

goal of this implementation is to provide a generic learning algorithm based on arbitrar-

ily de�ned class taxonomies. Together with an additional ensemble learning algorithm

and other required components, the �nal implementation constitutes an extension of the

WEKA workbench. An analysis of the classi�cation performance achieved by this imple-

mentation is not included in this thesis, only the framework and aspects according to the
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implementation are discussed.

1.3 Thesis outline

In order to investigate the research questions which are raised in this thesis, expertise and tech-

niques concerning multiple research areas of computer science must be considered. Chapter 2

reviews particular methods and techniques originally developed in the research areas machine

learning, Information Retrieval and its sub-domains Text Information Retrieval and Music In-

formation Retrieval. An overview of fundamental approaches and de�nitions is given as well

as references to relevant literature. Moreover, an introduction into three speci�c audio-based

rhythmic descriptors known as Rhythm Patterns, Statistical Spectrum Descriptor and Rhythm

Histogram is also given in this chapter. It should be noted that only these three audio descrip-

tors are used for evaluations within this thesis. Eventually, the three standard benchmark music

collections used in this thesis are outlined brie�y.

Chapter 3 focuses on the main research contribution of this thesis which is the analysis of

the discriminative power of features de�ned by rhythmic descriptors according to musical genre

classi�cation. On the one hand this analysis is based on the three rhythmic audio descriptors

introduced in the preceding chapter. On the other hand �ve heuristic discrimination models are

employed to estimate the discriminative power of particular features. The following heuristic

discrimination models are used in this thesis: Chi-square statistics, Information Gain, Gain

Ratio, Balanced Information Gain and ReliefF. Detailed de�nitions and summarizations of the

properties of these heuristic discrimination models are given as well. The �nal conclusion gives

answers to two basic questions concerning the existence of discriminative features or feature

patterns with respect to single musical genres. The �rst question is dedicated to which features

or feature patterns are actually discriminative according to the �ve heuristic discrimination

models. The second question is given by how consistent are the results of those �ve calculation

models for each of the three rhythmic descriptors and di�erent music collections.

Chapter 4 evaluates a �lter-based feature selection approach for musical genre classi�cation

based the results of the discriminative feature ranking analysis of the previous chapter. In order

to compare the e�ectiveness of this feature selection approach, music pieces from three music

collections are deployed to three separate learning algorithms � to the Support vector machine

learner, to the Decision tree learner (J48) and also to the probabilistic learner Naive Bayes. These
three learning algorithms have been chosen because they represent quite di�erent approaches

to learning and classi�cation. Moreover, the crucial de�nition of an adequate problem-based

similarity measure to compare instances within the feature space can be omitted because the

SVM learner usually works well with the Euclidean distance measure and the other two learning

algorithms do not use such a similarity measure at all. Contrarily, the classi�cation performance

of learning algorithms like for instance Nearest neighbor learners or Gaussian mixture models

is strongly in�uenced by whether intrinsic similarity measure has been employed. The key

conclusion at the end of this chapter is whether a notable feature set reduction with constant
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or even increased classi�cation accuracy can be obtained by this feature selection approach in

comparison to use the complete feature set.

Chapter 5 presents an overview of two particular applications which are created to perform

the evaluation tasks of this thesis. Most importantly, usage and functionality of the discrimi-

native feature analysis tool DiscriminationAnalyzer are explained. The DiscriminationAnalyzer

tool is developed under MATLAB and, furthermore, is built upon the powerful open-source,

Java-based data mining workbench WEKA [57]. Another part of this chapter focuses on the

implementation and usage of a hierarchical learning algorithm as well as a speci�c ensemble

learning algorithm working on various feature sets simultaneously. Both learning algorithms are

completely embedded into the WEKA framework.

Finally, a summarization of this theses as well as proposals for future work are given in

chapter 6.





Chapter 2

Related Work

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

This chapter gives an overview of �ve major scienti�c research application areas and some

particular considerations of using audio benchmark collections which were crucial to achieve all

de�ned contributions of this master thesis. Each of the following sections includes a short topical

introduction as well as an overview of state-of-the-art techniques and emphasizes references to

relevant literature sources.

At the beginning, the sections 2.1 and 2.2 provide an overview of concepts and literature

concerning important learning algorithms and feature selection methods. Since ensembles of

learning algorithms play a major role in the applications of this thesis, this section reviews basic

approaches and, in particular, the combination of multiple learning algorithms. Feature selection

is also a fundamental part of this thesis and is introduced in this section. Feature selection

involves methods to reduce the original, usually high dimensional feature space. Considering

the assumption of adequate and meaningful feature selection, this feature space reduction can

actually increase the classi�cation accuracy. A crucial factor for the signi�cance of discriminant

analysis is the choice of an appropriate heuristic method. The aim of this heuristic is to estimate

the actual discrimination value for a particular feature and the underlying classes. Section

2.3 refers to literature which introduce such methods. Section 2.4 focuses on musical genre

classi�cation and reviews relevant methods and approaches which solve this speci�c problem of

music classi�cation. Since rhythm is one of the most frequently used musical content descriptors,

section 2.5 introduces some main aspects of extracting rhythmic descriptors. Both audio and

symbolic representation can be the source of extracting quantitative information which represents

rhythm. In this thesis, three certain rhythmic descriptors are being used as feature input and are

discussed as well. Finally, section 2.6 refers to the importance of music collections and introduces

the three music collection which are used to evaluate the key questions of this thesis.

11
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2.1 Learning algorithms

In order to provide e�ective techniques for organizing and browsing large music collection, music

information retrieval is fundamentally related to the general research areas of machine learning.

In particular, machine learning provides e�ective learning algorithms which can be applied to a

wide range of real-world applications regarding for instance information retrieval, pattern recog-

nition or regression problems. These applications have at least one common aspect, namely,

the e�ort to describe some complex problem which is usually in�uenced by various and mostly

unknown factors. In computer science, the usual approach of solving a given problem starts

with the explicit and precise mathematical formulation of the given problem model. Unfortu-

nately, many real-world problems involve a high degree complexity since the functional rela-

tion between included factors and/or the factors themselves are unknown. Thus, an explicit

mathematical formulation of such problems can not be de�ned at all. Actually, today's most

interesting problems do have such a high complexity. Yet, approximated solutions of such prob-

lems can be estimated by directly simulating the transition from some particular input to the

corresponding output by a particular approximation. This approach is called learning and is a

crucial part of any machine learning method. The goal of learning is to �nd an approximation

ŷi = h(xi), 1 ≤ i ≤ m of some unknown function yi = f(xi)1 for each data point (xi, yi) of

a dataset D = {(x1, y1), (x2, y2), · · · , (xm, ym)}. This dataset D is known as training set (or

learning set) and the number m of included data points (xi, yi) is crucial to retrieve a good

approximation of f(·). In some literature, xi of a the data point (xi, yi) is frequently denoted

as the feature vector and yi the corresponding output. The function h represents the learning

algorithm or classi�er. If y is known for each available data point, the determination of h is

called supervised learning. Otherwise it is called as unsupervised learning.

To get an overview of basic machine learning methods and techniques, the textbooks of

Bishop [6] and Witten [57] are of particular interest. Both books include a detailed introduc-

tion into most popular learning algorithms like Decision Trees, Support Vector Machines (SVM),

Hidden Markov Models (HMM) Gaussian Mixture Models (GMM) or probabilistic learners suchg

as the Naive Bayes. More learning methods exist but these mentioned learning algorithms are

employed most frequently in applications. Additionally, [57] also includes a detailed documen-

tation of the machine learning workbench WEKA, which is an open-source, Java-based library

and is frequently used within the MIR community.

Besides these two introductory machine learning references, a selection of literature regarding

di�erent aspects and general concepts of learning should also be mentioned. In most machine

learning applications the assumption holds true that the classi�cation accuracy obtained by

a single classi�er is lower than the corresponding accuracy archived by the simultaneous use of

multiple classi�ers. Such a use of multiple classi�ers is known as ensemble learning. One possible

justi�cation of this assumption is that a single learning algorithm is more a�ected by the learning

problems of over�tting or under�tting. The �rst problem means that the approximated function

1The unknown function f(·) is the mathematical synonym for some complex and unknown problem.
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h depends too strongly on the training data. This leads to unsatisfying behavior to arbitrary real-

world data, although the approximation error corresponding to the training data can be extremely

low. The latter problem describes the inverse situation. The applied learning algorithm produces

signi�cant approximation errors in relation to the training data. One approach to avoid over�tted

learning is to apply an ensemble of similar or di�erent learning algorithms, where the output

of each model will be accordingly aggregated to a �nal approximation. Several approaches

for realizing ensembles are known and the work of Diettrich [14] gives a detailed insight into

existing ensemble techniques. Kittler et al. [30] and Tax et al. [50] introduce a speci�c concept of

ensembles in which the probabilistic outputs of learning algorithms are combined by applying a

certain probability aggregation function, e. g. averaging, minimum or maximum probability. This

ensemble technique has been implemented for this thesis as a speci�c WEKA extension and is

presented in section 5.2. Unfortunately, this approach can only include such learning algorithms

which output a probability density of the possible output realizations. Especially, SVM do not

support this requirement originally but, fortunately, there exists a transition of the marginal

output to probabilistic output according to the work of Platt [43]. Ensembles can also be used to

split an originally multiple class problem into separate binary class problems. Allwein et al. [2]

describe this important approach of reducing a multiple class problem to an ensemble of binary

class problems.

2.2 Feature selection

Another important aspect of machine learning is the choice of features which are used as the

quantitative input for the underlying problem. Learning strongly depends on the quality of

features which means whether a certain feature type possesses su�cient power to describe the

underlying data to be classi�ed. Apart from the basic questions of using which feature type or fea-

ture extraction algorithm, the number of features can also signi�cantly a�ect the approximation

accuracy of learning algorithms. More precisely, using a large set of features does not necessarily

imply better accuracy. Quite the contrary, the inverse e�ect of decreasing performance can often

be observed. This e�ect is known as curse of dimensionality and basically means that the num-

ber of training data must grow exponentially with the number of used features. Thus, a large

set of features in relation to few training data will actually decrease the approximation accuracy.

The usual way of avoiding the curse of dimensionality is to select a certain number of most

descriptive features by considering some criteria, all other features will be omitted during learn-

ing. This approach is commonly called feature selection (or variable selection). Guyon et al. [24]

published a fundamental introduction to feature selection. In [31], Kohavi and John describe

two alternative basic feature selection approaches which they denote as �lter-based and Wrapper

feature selection. The Wrapper feature selection refers to a subset of feature selection techniques

wherein each candidate feature subset visited in the algorithm's search is evaluated by training

and testing a learning model using only that feature subset. Consequently, an individual train-

ing set which must be independent from the training set of the actual classi�cation realization
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is required to evaluate a statistically reliable feature selection. The classi�cation accuracy for

the visited candidate subsets is used to guide the search to new subsets where forward selection

and genetic algorithms are frequently used algorithms for �nding new (better) feature subsets to

evaluate. Contrarily, the �lter-based feature selection does not involve any learning model but

the search of a proper feature subset is guided by a particular measure. Such a measure can be

for instance the correlation among the features, the dependencies between features and genres.

Basically, many feature selection studies concluded that a general recommendation of either

the Wrapper of the �lter-based feature selection can not be given but the actual choice of the

feature selection algorithm depends on various decisive factors whereupon the dimensionality of

the feature set and the applied learning model are most important. Nevertheless, the feature

selection studies [25,31] proposed that the Wrapper feature selection achieves better classi�cation

accuracy as the �lter-based feature selection based on popular learning models like Support

Vector Machines if speed is not an issue. Thus, the key advantage of the �lter-based feature

selection is the fastness of the feature selection compared with the Wrapper feature selection.

Wu and Zhang [58] particularly emphasized this key property of �lter-based feature selection

for high-dimensional numeric data sets. It is important to note that music classi�cation often

involves high-dimensional numeric data sets. Another important advantage is that a separate

training set for feature selection is not necessarily required. In this thesis, only the �lter-based

feature selection is used. As proposed in section 2.3, the use of heuristic discrimination models

to rank features represents a particular implementation of the �lter-based feature selection by

ranking every feature based on its discriminative power to distinguish correct class membership.

Considering music classi�cation and, musical genre classi�cation in particular, frequently

rather large sets of features are extracted to describe the musical content. From the perspective

of machine learning this content representation can actually lead to deteriorated classi�cation

accuracy, especially, if few training samples are available. Thus, feature selection must be con-

sidered. Chapter 4 of this thesis proposes a speci�c feature selection approach for musical genre

classi�cation based on discriminative ranking of features. Alternatively, Fiebrink et al. [20] sug-

gest a feature selection approach based on feature weighting by estimating the contribution of

every feature to the classi�cation task. These estimations of according feature weights were

done by a genetic algorithm implementation. Grimaldi et al. [23] compared the performances of

the three �lter-based feature selection approaches Information Gain (R see 3.2.2), Gain Ra-

tio (R see 3.2.3) and Principal Component Analysis based on two di�erent ensemble strategies

and a k-Nearest Neighbor learning algorithm in terms of musical genre classi�cation. Further-

more, Fiebrink and Fujinaga [19] summarize some very interesting conclusions of e�ective feature

selection and emphasize existing pitfalls in music classi�cation. In particular they pointed out

in terms of the Wrapper feature selection that a feature subset must be veri�ed with a separate

test set. This means that the Wrapper feature selection actually requires a separate training and

test set for feature selection.
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2.3 Heuristics discrimination models

The basic idea of evaluate the contribution of a feature to distinguish the correct genre evolved

from the use of impurity functions in the context of rule-based learning algorithms. Such learning

algorithms use explicitly created rules based on feature values to determine a class label. The

popular rule-based learning algorithm Decision tree was the �rst application in which various

heuristic discrimination models had been applied as an approximation of the underlying impurity

function. According to decision trees the impurity function formally de�nes the interdependencies

among included features. In other words, the impurity function is a quality measure of how

strong a particular feature depends on others. Considering the problem of �nding an e�ective

rule structure, the order of rules related to di�erent features is crucial. If an insu�cient order of

features is chosen, the size of the rule structure will grow exponentially in the worst case � this

e�ect is also called combinatorial explosion. Thus, the de�nition of an impurity function implies

a systematical choice of feature order because it favors features with low interdependencies. In

that sense the impurity function is directly related to the estimation of the genre discrimination

because a feature which has low interdependencies also possesses more discriminative power in

order to distinguish correct class labels.

Various heuristic discrimination models exist in to estimate the discriminative power2 of

features as well as to approximate the impurity function. The most frequently used models

are probabilistic models based on the concept of mutual information which is contributed to

a particular feature. In literature, such models are also frequently called impurity models or

impurity functions. In the case of classi�cation which implies that the target concept is a discrete

variable, one of the best known impurity models is the Information Gain [26] which is often used

to e�ciently construct rule-based learning models like Decision trees. Unfortunately, Information

Gain tends to overestimate multi-valued features because the estimate of the Information Gain

also grows with the entropy of the features. In order to avoid this tendency, various normalization

heuristics have been introduced like the Gain Ratio [45], the Symmetrical Uncertainty [58], the

Balanced Information Gain [58]. Also the Gini-index Gain [8] as well as the Chi-square X 2 and

G statistics are used to estimate the quality of features.

Kira and Rendell [29] introduce another probabilistic but di�erent model known as Relief

which utilizes the nearest-neighbor algorithm to estimate the quality of features. Relief does not

measure the uncertainty of a certain feature as entropy models do, but alternatively, it estimates

how well the feature values distinguish between data points that are close to each other. In other

words, if a small value change of a certain feature will cause a di�erent class assignment, that

feature probably possesses a signi�cantly higher discriminative power for genre determination.

Based on this work, Kononenko introduced the enhanced ReliefF measure [33] which has actually

replaced Relief. A decisive theoretical and empirical study of Relief and ReliefF models can be

reviewed in [48]. In [32], Kononenko also publishes an interesting evaluation of the heuristic dis-

crimination models mentioned so far. In particular Robnik-�ikonja and Kononenko [48] pointed

2In this thesis, the quality and the discriminative power of a feature are synonymous terms.
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out an interesting aspect of Relief and ReliefF. To estimate the quality of a speci�c feature, both

algorithms also take into account the context of other features, i. e. the conditional dependencies

between the features given the observed value. This inclusion of the feature dependencies is

due to the intrinsic nearest-neighbor algorithm which uses the neighborhood of the input space

to estimate the quality of a feature. Heuristic discrimination models based on impurity func-

tions only use the correlation between the feature and the class disregarding the dependencies

to other features. The authors of [48] concluded that the power of Relief and ReliefF is the

ability to exploit information locally, taking feature dependencies into account, but still regard

the correlation between the feature and the class.

Another heuristic discrimination model has been originally developed in context of text

retrieval and is called Attribute Discrimination (or term-discrimination within text information

retrieval). Contrary to the previous models, it is not based on probabilistic foundations, but

rather, it determines the discriminative power of a particular feature according to its contribution

in order to re�ect changes on the average class similarity. The average class similarity can be

seen as a measure to compare the a�nity concerning location and expansion of included class

structures within the multi-dimensional feature space. The works [11,18] give a detailed insight

into the de�nition of the Attribute Discrimination value measure.

In this thesis, the heuristic discrimination models Chi-square, Information Gain, Gain Ratio,

Balanced Information Gain and ReliefF were used. The precise de�nition and main properties

of these calculation models can be reviewed in section 3.2.

2.4 Musical genre classi�cation

Musical genres are widely used and very popular descriptors for categorizing and organizing music

collections. Contrary to other existing musical descriptors, genres are directly related to the way

humans do browse and select musical pieces within large music collections. Consequently, genres

are very suitable to describe the musical content and musical genre classi�cation, which aims to

automatically assign genres, represents an important application of MIR research.

Unfortunately, musical genre de�nitions are often very fuzzy and, therefore, clear borders

can not be recognized to separate genres from each other accurately and uniformly. This genre

ambiguity strongly depends on the power of those descriptors which are used to represent musical

content. Considering the preferred way of representing musical content by using audio-based

descriptors containing pitch, tempo or timbre facets only, the raise of doubts concerning e�ective

classi�cation is justi�ed. The fundamental question is whether audio-based descriptors are really

su�cient for describing musical genres. In general, there are limitations to automatically de�ne

and classify musical genres by using audio-based descriptors only. Many genres do not really

di�er on a strict musical level but rather on cultural origin due to interpreter or artist. Even

language and speci�c forms of lyrics can determine genre membership. A direct conclusion of

this possible genre fuzziness is that non-audio content descriptions should also be taken into

account to correctly de�ne and classify musical genres. In spite of the limitations of automatic
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genre classi�cation, it still possesses promising potential for organizing music collections because

it provides an intuitive and very common approach for humans. Several scienti�c works indicate

this unavoidable ambiguity of musical genre classi�cation and give some interesting insight. In [3],

Aucouturier and Pachet introduce an interesting view of genre ambiguity by suggesting that every

genre always consists of an intentional and an extensional concept which both do not coincide

in real world. Despite of that they actually emphasize the importance of genre classi�cation.

Additionally, McKay and Fujinaga [40] formulate an interesting argument in which they also

emphasize the importance of musical genre classi�cation, although little progress has been made

in recent years due to the fuzziness of genre descriptions.

Another interesting aspect of musical genre classi�cation is the application of genre tax-

onomies to perform hierarchical classi�cation. Basically, hierarchical classi�cation has two very

useful e�ects in context of genre classi�cation. First, it provides an enhanced way to browse

musical collections by starting from some very general genre and continuously re�ne the mu-

sic search by choosing some more speci�c sub-genre. Second, it introduces a promising way to

divide a �at but complex genre classi�cation problem into smaller subproblems. These subprob-

lems potentially yield better classi�cation accuracy individually. But in general, a signi�cant

improvement of classi�cation accuracy can not always be expected in comparison to �at genre

classi�cation approaches. However, the hierarchical approach of genre classi�cation can improve

the overall needed calculation time because each classi�er has usually to deal with a more easily

separable subproblem. Moreover, every classi�er can use an independently optimized feature set

where feature can be respectively reduced.

Obviously, the de�nition of a genre taxonomy is mainly responsible for successful hierarchi-

cal genre classi�cation. In order to underline the importance of genre taxonomies, Pachet and

Cazaly [41] describe a conceptional guideline to build e�ective genre taxonomies. In [34], Tao Li

and Mitsunori Ogihara introduce a basic outline of using a taxonomy-based musical genre clas-

si�cation. Alternatively, Burred and Lerch [9] show another hierarchical classi�cation approach

based on a more complex taxonomy which includes speech content along with music content.

Contrary to those works, Brecheisen et al. [7] use an individual feature subset selection at every

node of the taxonomy instead of using the same the feature subsets at every node. Consequently,

the actual feature set selection depends on those genres only which are incorporated by the re-

spective node. All these works suggest that the primary choice of a more general genre already

determines the possible set of sub genres which can be �nally assigned. In other words, if a cer-

tain branch of the taxonomy is chosen, all genres located in di�erent branches will be omitted.

Yet, this restricted approach can signi�cantly deteriorate classi�cation accuracy. Thus, a less

rigorous approach in which transitions exist between genres of di�erent branches of the same

re�nement level probably promises better accuracy. DeCoro et al. introduce such an approach

in [12] in which the inter-branch transitions are established by a Bayesian network.

In recent years, many di�erent approaches to musical genre classi�cation have been intro-

duced. Best known due to the ground-breaking results are the works of Tzanetakis and Cook [54]

and Bergstra et al. [5]. Tzanetakis and Cook achieved remarkable genre classi�cation results by
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using several di�erent feature sets together with a hierarchical genre classi�cation approach.

Those feature sets correspond to di�erent music content descriptors describing timbral texture,

rhythmic content and pitch facets. The classi�cation results proved that the combination of

features representing di�erent content description can actually improve the class separation of

the underlying problem which leads to an improvement of the classi�cation accuracy according

to a real-world music collection. Since the di�erent feature sets have been employed this is no

contradiction to the previous conclusion that too many features (but from the same feature set)

can deteriorate the classi�cation performance due to the curse of dimensionality. Flexer et al. [21]

also pointed out the classi�cation improvement by using di�erent feature sets together with a

�at musical genre classi�cation system.

Instead of classifying on a song domain only, Bergstra et al. introduce an approach in which

every song is divided into several segments and genre classi�cation is applied on those segments

individually �rst. In a second step those partial classi�cation results are aggregated to assign a

genre label to the entire song itself. Tao Li publishes comparative studies [35,36] based on Tzane-

takis and Cook in which in�uences of audio feature and learning algorithms according to musical

genre classi�cation are examined. In [34], Li also shows signi�cant improvement by using Sup-

port Vector Machines in musical genre classi�cation. Another work which de�nitely approves the

positive a�ects of SVM in musical genre classi�cation is done by Xu et al. in [59]. Although they

use rhythmic descriptors and standard Mel-Frequency Cepstral Coe�cients (MFCCs) together

with a rather simple classi�cation approach, remarkable improvements are obtained compared

with other learning algorithm. Besides this excellent performance of SVM in musical genre

classi�cation, another advantage is that SVM can be applied without any further adoptions or

modi�cation. Contrarily, Hidden Markov Models require de�nitions of a speci�c transition struc-

ture and probabilities or Gaussian Mixture Models inherit the assumption of a certain similarity

metric. Unfortunately, these assumptions strongly depend on the musical descriptors which are

actually used.

As audio-based representations are far more available, most works concerning musical genre

classi�cation use combinations of audio-based content descriptors. Symbolic content descriptors

extracted from MIDI representations are rather seldom used, in spite the fact that the inclusion

of symbolic descriptors introduces better determination of musical facets like timbre of tempo.

As an example of the use symbolic descriptors, McKay and Fujinaga [39] develop a remarkable

approach by using several musical features from symbolic MIDI. The classi�cation is done hi-

erarchically whereas di�erent sets of features are used on di�erent taxonomy levels. It should

be noted that a comparison of classi�cation systems where some systems work with audio-based

descriptors or some other systems use symbolic descriptors are invalid because of the intrinsic

di�erence of these two representation types.
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2.5 Rhythmic descriptors in MIR

According to Western music and to Western musicology, the rhythm component of a musical

work contains numerous di�erent temporal indicators. As mentioned in [16], temporal indicators

are for instance tempo, meter, the duration of pitches3, the duration of harmonic and accents but

many more temporal indicators a�ect the rhythmic perception of humans. Rhythm constitutes an

important musical content descriptor because humans perceive even minor rhythm di�erences

very well. As a consequence various approaches to extract the rhythmic content have been

proposed in MIR. As outlined in [22], two separate concepts can be basically recognized for

extracting rhythmic information. One group of extraction algorithms focuses on the measurement

of metrical elements to describe the underlying rhythmic structure. Popular metrical elements

are for instance tempo, fastest pulse, quantized durations or tempo variations. Another group

of rhythm descriptors is tightly linked to physical properties of the audio signal itself. This

means that raw signal descriptors, e. g. frequency, modulation or amplitude properties, are used

to describe the rhythmic structure of a corresponding musical work. Also the identi�cation of

continuous periodical frequency components can be used as a descriptor. Unfortunately, rhythmic

descriptors based on physical properties tend to represent the rhythmic content less explicit.

Apart from the question which extraction approach yields the better description of the

rhythmic component, many researchers emphasize the importance and e�ectiveness of using

rhythmic descriptors in various music classi�cation applications including musical genre classi�-

cation. Although musical genres inhere an ambiguous de�nition due to the diversity of in�uences

which actually determine a certain genre assignment, rhythmic content propose a very valuable

contribution to identify genres su�ciently.

Considering rhythmic descriptors in a narrow sense, Dixon et al. [15] conclude that only a

small selection of metrical elements including tempo, beat and measure are su�cient to describe

rhythm and to predict the genre of the musical work. The metrical representation is based on the

analysis of relationships of detected periodicity patterns. Those extracted periodicity patterns

establish a certain metrical hierarchy containing the selected metrical elements for rhythmic

description. The e�ectiveness of this approach is veri�ed by using a set of standard and Latin

dance music. Based on these results, the work of Gouyon et al. [22] propose an interesting

evaluation concerning the relevance of di�erent rhythmic descriptors for predicting genre labels.

They conclude that a tempo descriptor and a set of 15 Mel-Frequency Cepstrum Coe�cients

descriptors are actually signi�cant for their genre classi�cation application. This conclusion is

veri�ed by classifying a set of standard and Latin dance music, almost the same set of dance

music as in [15]. The use of the tempo descriptor yields a classi�cation accuracy over 80 %,

whereas the rhythmic representation by the set of MFCC descriptors gives the best result with

an accuracy of 90 %.

Another relevant approach of de�ning a descriptive representation of the rhythmic compo-

nent is to transform �uctuations according to loudness sensation of selected frequency bands into

3The supposition is that metrically prominent pitches are longer in duration
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a time invariant representation. Since loudness �uctuations represent the directly perceivable

part of the rhythmic component, descriptors based on this approach can also be assumed to

describe rhythm in a narrow sense. According to this approach, the Rhythm Pattern (RP) fea-

ture set has been introduced in [42,46] as a time-invariant representation of loudness variations.

In [47], Rauber et al. enhance the basic version of Rhythm Patterns by also incorporating psycho-

acoustic phenomena of human audio perception. Two further rhythmic descriptors have been

presented by Lidy et al. [37,38] which are basically based on the very same extraction algorithm

as Rhythm Patterns. These descriptors are known as Statistical Spectrum Descriptor (SSD) and

Rhythm Histogram (RH). It is worth noting that these three rhythmic descriptors are being used

in this thesis only. Further details concerning the processing of these descriptors are discussed

in the following subsections. An extensive comparison of the classi�cation performance based on

the deployment of these three rhythmic descriptors is given in et al. [38].

2.5.1 Rhythm Pattern

The basic idea of the Rhythm Pattern descriptor is the quanti�cation of loudness sensation

�uctuations in a time-invariant description. Since the human perception of rhythm strongly

depends on the composed loudness levels and variation of the perceived musical piece, The

Rhythm Pattern descriptor can be de�ned as a rhythm representation in a narrow sense. The

Rhythm Pattern descriptor is de�ned as a matrix representation of the dependency between

certain critical frequency bands and corresponding frequency amplitude modulations. These

critical frequency bands are directly obtained from a psycho-acoustic frequency transformation

of the original frequency spectrum. This frequency transformation is motivated by the speci�c

perception of loudness and energy of certain frequency bands by the human auditory system.

In order to obtain a time-invariant description of the rhythmic structure representing an entire

musical piece, a modulation frequency is extracted over the time range of the critical bands.

Contrary to the raw amplitude energy of frequency bands which is time-depended, the modulation

frequency is time-invariant.

The Rhythm Pattern descriptor is �rst introduced in the works [42,46] in context of a musical

jukebox system. The musical organization of this jukebox is implemented with Self-Organizing

Maps on the basis of rhythm patterns. In [47], the original processing of Rhythm Patterns has

been drastically improved by applying a psycho-acoustic frequency transformation based on the

Bark scale. Eventually, Lidy et al. [38] give a detailed description of the entire extraction process

of the Rhythm Pattern descriptor with an evaluation of the in�uence of the individual processing

steps.

Nevertheless, a short overview of the extraction algorithm of Rhythm Patterns should be

given here. The quantization of the original audio source into the �nal descriptor is organized

in two separate parts. The �rst part concerns the computation of a frequency spectrum by em-

ploying a Fast Fourier Transformation (FFT) with overlapping Hanning window. The obtained

frequency components are grouped into 24 critical frequency bands according to the Bark scale.

Additionally, some further psycho-acoustic enhancements are being applied. First, a transforma-
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(a) Rhythm Pattern descriptor (RP)
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(b) Rhythm Pattern descriptor (RP)

statistical moments

cr
iti

ca
l b

an
d 

[B
ar

k]

mean median var skewness kurtosis min max

5

10

15

20

24

(c) Statistical Spectrum Descriptor (SSD)
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(d) Statistical Spectrum Descriptor (SSD)
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(f) Rhythm Histogram descriptor (RH)

Figure 2.1: Speci�c representations of the rhythmic content of two music pieces related to two
di�erent musical genres by the descriptors RP, SSD and RH. The descriptors of �gures (a), (c)
and (e) are extracted from an interpretation of a classical music piece included in the ISMIR 2004
Genre (R see 2.6.3) audio collection. Contrarily, the descriptors of �gures (b), (d) and (f) are
computed from the rock song Rotten �owers included in the ISMIR 2004 Genre (R see 2.6.2)
audio collection.

tion of the spectrogram into decibel scale is employed. In a successive step, the soundness levels

are further transformed into Phon scale. The last step concerns the eventual calculation of the

speci�c soundness sensation per critical band (Sone scale). The resulting �Bark scale Sonogram�

describes the loudness sensation of human hearing and determines the loudness perception in

relation of the underlying frequency.
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The aim of the second part is to calculate a time-invariant representation of the enhanced

spectrogram which has been obtained from the �rst part of this algorithm. In order to achieve a

time-invariant representation, the time-depended amplitude energy of every critical band is con-

verted into a spectral representation by the application of the FFT. The resulting spectral coe�-

cients describe amplitude energy as amplitude modulations which are actually time-independent.

It is worth noting that the amplitude modulation frequency range is de�ned up to 10 Hz because

modulation frequencies above this boundary are mostly related to arbitrary noise (roughness)

rather than useful rhythmic content. As the modulation frequency range is divided into 60

equally spaced samples, the entire descriptor contains 24× 60 = 1440 features.

Figure 2.1(a) illustrates the rhythmic representation of a classical music piece according to

the Rhythm Pattern descriptor. Due to the high polyphonic composition of orchestral classical

music and the variation of tempo according to speci�c instruments, a wider region of high

energy modulation frequencies related to numerous critical bands can be identi�ed. Contrarily,

�gure 2.1(b) visualizes the rhythmic representation of a rock music piece in which a clearer

impression of the underlying rhythm can be observed due to only few critical bands including

high modulation frequencies.

In terms of the e�ectiveness of the Rhythm Patterns, Lidy et al. [38] present a detailed

evaluation according to musical genre classi�cation. Two related rhythmic descriptors are also

compared which are the Statistical Spectrum Descriptor and Rhythm Histogram. This evaluation

shows that classi�cation results based on the Rhythm Pattern descriptor which are extracted form

the GTZANmusic collection (R see 2.6.1) are competitive to results obtained by Tzanetakis [53]

or by Li [35]. Even the use of other music collections also implies the e�ectiveness of the Rhythm

Pattern descriptor. However, the best classi�cation results are obtained by the combination of

the Rhythm Pattern and Rhythm Histogram descriptors.

2.5.2 Statistical Spectrum Descriptor

The extraction of the Statistical Spectrum Descriptor (SSD) is directly derived from the original

Rhythm Patterns algorithm [47] and, therefore, also intends to describe the perceived �uctuations

of loudness sensations. Basically, the raw signal data is transformed into a frequency spectrum

by a Fast Fourier Transformation with a Hanning window. Additionally, a psycho-acoustic

transformation of this spectrum into 24 critical bands is consecutively applied as proposed by

Lidy et al. [38]. Similar to the Rhythm Patterns, the psycho-acoustic transformation groups all

included frequencies into 24 critical bands according to the Bark scale. This psycho-acoustic

transformation contains the same processing steps comparing with the Rhythm Patterns. Thus,

the spectrogram is transformed into decibel scale at �rst. Successively, transformations into

Phon scale and Sone scale are performed to get a frequency representation according to the 24

critical Bark bands.

Contrary to the processing of the Rhythm Pattern descriptor, the Statistical Spectrum

Descriptor is composed of seven statistical components which are calculated for every Bark scale

critical frequency band. This statistical representation provides a very compact representation
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of rhythmic in�uences in relation to the respective critical band energy. The following statistical

moments have been chosen to describe the rhythmic band �uctuations: mean, median, variance,

skewness, kurtosis and min- and max-value. Thus, the Statistical Spectrum Descriptor contains

24 × 7 = 168 features for all 24 critical bands. Successively, a representation of the entire

music piece can be aggregated by calculating the mean or median of the descriptors for every

extracted part of the track where every part has a duration of 6 seconds. Figures 2.1(c) and

2.1(d) demonstrate exemplary representations of a classical and a rock music piece by using the

Statistical Spectrum Descriptor.

2.5.3 Rhythm Histogram

In comparison to Rhythm Patterns and Statistical Spectrum Descriptor, the idea of the Rhythm

Histogram description is to aggregate the rhythmic information by building modulation frequency

bins. In order to build a descriptive histogram, the sample magnitudes of all 24 critical bands are

summarized into 60 modulation frequency bins. Consequently, a Rhythm Histogram intuitively

constitutes the relation of rhythmic energy per modulation frequency.

The extraction of rhythmic histograms is also similar to the �rst part of the Rhythm Pat-

terns algorithm and is illustrated in [37]. The Rhythm Histogram descriptor consists of 60 bins

which aggregate energy on the entire available frequency ranges for individual modulation fre-

quency between 0.2 and 10.1 Hz. It should be noted that a speci�c rhythmic representation of

a given musical piece is obtained by calculating the median of the histograms of every 6 second

segment, Thus, the Rhythm Histogram descriptor contains 60 features. Figures 2.1(e) and 2.1(f)

visualize an exemplary representation of a classical and rock music piece by Rhythm Histogram

descriptors.

2.6 Audio collections

Openly available music collections are crucial to compare the e�ectiveness of di�erent music

classi�cation systems. Since for most music classi�cation systems a theoretical evaluation is not

appropriate or even feasible, an empirical evaluation is the only way to compare such systems

with respect to classi�cation accuracy and computation time. Consequently, the creation of

carefully selected music collections, which resemble most possible to �real-world�, assures reliable

benchmark tests. But the following requirements must be considered at least in order to build

proper music collections:

� A su�cient number of included music pieces. The actual number depends on the speci�c

application but, eventually in order to closer resemble �real-world� applications, the more

music pieces are included the better it is.

� Choose all music pieces systematically. According to musical genre classi�cation this means

that every genre incorporates a su�cient number of related music tracks within the corre-

sponding music collection.
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� The encoding of included music pieces must be considered. Although music classi�cation

systems should be designed to be robust against artifacts derived from the speci�c encoding,

i. e. compression of the input data, a benchmark collection should only contain equally

encoded musical pieces. Artifacts constitute speci�c alterations of original musical content

due to the content compression. Basically, the inclusion of artifacts should be avoided in a

benchmark collection at all.

� The duration of music pieces is also important. Su�cient representations of underlying

musical contents signi�cantly depend on the respective duration of included musical pieces.

Since benchmark collections are used in music classi�cation, i. e. a supervised approach,

additional annotations for every included music piece must also be provided. Annotations can

be assigned to entire music pieces or even to segments or musical facets of a single music piece.

This annotation is usually called ground truth. It is worth noting that among the MIR community

the MIREX project [17] is the most important try for providing benchmark music collections

according to various music classi�cation applications and other tasks. MIREX was initiated by

the IMIRSEL group [27] led by Stephen Downie and his team at the University of Illinois at

Urbana-Champaign, US.

Since this thesis only concentrates on musical genre classi�cation, three distinctive musical

genre music collections are reviewed in the following part of this section. These three music

collections are the only ones employed in the thesis and a compact description is given in table 2.1.

Name Encoding Genres Pieces tSample tOverall

GTZAN au, 22 kHz, mono 10 1000 30 sec 05:20
ISMIR 2004 Genre mp3, 44 kHz, stereo 6 1458 full length 18:14
ISMIR 2004 Rhythm RealAudio 8 698 30 sec 05:39

Table 2.1: Overview of three benchmark music collections which are employed in this thesis. The
total duration tOverall of each collection is measured in [hh:min].

2.6.1 GTZAN

The GTZAN musical genre collection is named after its creator George Tzanetakis who intro-

duced this collection in his PhD thesis [53] for evaluating musical genre classi�cation systems.

It contains 10 popular musical genres and provides an equal number of music pieces for every

genre. Considering the preprocessing of included music samples, the originally uncompressed

music data was reduced to mono and was sampled at a sampling frequency of 22 kHz. In order

to avoid some unwanted e�ects like lead-in or lead-out, a 30 seconds segment from the center

of each song was extracted. Since many works in MIR employ the GTZAN music collection

to evaluate the classi�cation performance, this collection is chosen to be the main benchmark

collection of this thesis. The upper section of table 2.2 o�ers a detailed overview of all included

genres.
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Class name Absolute Frequency Relative Frequency

Blues 100 0.1
Classical 100 0.1
Country 100 0.1
Disco 100 0.1
Hip hop 100 0.1
Jazz 100 0.1
Metal 100 0.1
Pop 100 0.1
Reggae 100 0.1
Rock 100 0.1

(a) GTZAN

Class name Absolute Frequency Relative Frequency

Classical 640 0.44
Electronic 229 0.16
Jazz & Blues 52 0.04
Metal & Punk 90 0.06
Rock & Pop 203 0.13
World 244 0.17

(b) ISMIR 2004 Genre

Class name Absolute Frequency Relative Frequency

ChaChaCha 111 0.16
Jive 60 0.09
Quickstep 82 0.12
Rumba 98 0.14
Samba 86 0.12
SlowWaltz 110 0.16
Tango 86 0.12
VienneseWaltz 65 0.09

(c) ISMIR 2004 Rhythm

Table 2.2: Classes of the benchmark music collections GTZAN, ISMIR 2004 Genre and ISMIR
2004 Rhythm.

2.6.2 ISMIR 2004 Genre

At the ISMIR 2004 Audio Description Contest [28] which was operated by the Music Technology

Group (MTG) of the University Pompeu Fabra of Barcelona, Spain, this music collection was

introduced to compare algorithms dedicated to the particular music classi�cation problems genre

classi�cation, artist identi�cation and artist similarity. The contest organizers made available a

training and a development set with 729 musical pieces each before the contest. This thesis used

the combined set of 1458 musical pieces for the evaluations. According to genre classi�cation the

ISMIR 2004 music collection consists of 1458 music pieces unequally distributed over 6 popular

genres. Since musical genres are never represented by equal numbers of included music pieces in

real world, this collection simulates this observation by deliberately de�ning an unequal genre

distribution with favor to the classical genre. The middle section of table 2.2 lists all included
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genres and the corresponding amount of related music pieces. Concerning the compilation of the

ISMIR 2004 genre collection, full length music pieces were used which were encoded in 128 kbps,

MP3 stereo format sampled at a frequency of 44 kHz.

2.6.3 ISMIR 2004 Rhythm

Another music collection was introduced for the ISMIR 2004 Rhythm Classi�cation Contest.

Since this music collection contains pieces of Latin and Ballroom dance music only, the aim

of the contest was to compare algorithms for automatic classi�cation of the 8 de�ned rhythm

classes. The organizers divided the total number of 698 musical pieces into a training and test set
containing 488 and 210 pieces respectively. This thesis employed all 698 musical pieces for the

evaluations, where all pieces are approximately 30 seconds long. The de�ned rhythmic classes are

listed in the bottom section of table 2.2. Again, an unequal genre distribution was deliberately

chosen to simulate �real-world� music collections. The collection includes 698 rhythmic music

pieces, The original data was originally fetched in Real Music format with a sampling rate of

22 kHz. This music collection is publicly available over the website of BallroomDancers.com [4]

and a complete list of the musical pieces used in the Rhythm Classi�cation Contest is available

at the ISMIR 2004 contest website [28].
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This chapter focuses on the discriminant analysis of audio-based rhythmic descriptors in order

to distinguish correct genres in terms of musical genre classi�cation. The analysis is based on

�ve di�erent heuristic discrimination models to estimate the discriminative power of rhythmic

features according to Rhythm Patterns, Statistical Spectrum Descriptor and Rhythm Histogram.

These models also represent di�erent approaches to express the discriminative power of variables.

Usually, statistical models are used to de�ne the density discrimination of a random variable by

another variable due to statistical variable interdependencies. In this chapter, the heuristic dis-

crimination models Chi-square, Information Gain, Gain Ratio and Balanced Information Gain

are applied which all actually represent a speci�c realization of the impurity function. Addition-

ally, the ReliefF model is used as the �fth calculation model, since it utilizes a di�erent approach

to estimate the discriminative power of a feature.

27
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The key goal of this chapter is to examine how the di�erent calculation models performs

on di�erent music collections and whether a consistency of the discrimination values according

to correlated genres can be concluded among the heuristic discrimination models. Another

important goal of this analysis is whether speci�c features related to each of the three descriptors

express consistent genre discrimination or not. All computations of the discrimination analysis

will be done based on one-vs.-rest genre situations, i. e. binary class situations, only.

Section 3.1 gives insight into fundamental assumptions of the importance of features for

classi�cation and, furthermore, emphasizes meaning and signi�cance of discriminant analysis in

terms of musical genre classi�cation. All �ve heuristic discrimination models which are employed

to estimate the discriminative power of features are reviewed in section 3.2. The experiment en-

vironment and all relevant experiment results are discussed in section 3.3. Eventually, section 3.4

summarizes key conclusions based on the presented results for music genre classi�cation.

3.1 Overview

In most classi�cation problems, the intrinsic interaction between possible feature realizations

and corresponding class values is very complex because class regions are usually inhomogeneous

projected within the feature space. Unfortunately, if class regions are not clearly separable then

the performance of the employed learning algorithm will deteriorate due to the poor approx-

imation of the real but unknown discrimination function. Various reasons are responsible for

obtaining such complex class regions, and the number of used features is de�nitely not the only

factor which has to be considered. Actually, the inclusion of too few features leads to imprecise

prediction of class regions which do not correlate with real world. According to the �curse of

dimensionality�, a proper approximation of class regions can also su�er by taking into account

too many features unless the size of the training set will grow accordingly. Interactions between

features also in�uence the complexity and accuracy of class regions in terms of the classi�cation

problem.

In order to guarantee a proper number of features and to avoid problems due to the �curse

of dimensionality�, feature selection represents a frequently used approach which is introduced

in section 2.2. The goal of feature selection is to rank the original set of features by the re-

spective contribution of every feature in terms of how good a single feature can distinguish the

correct class. Unfortunately, a precise determination of such feature contributions is not feasible

in su�ciently complex classi�cation problems and therefore an approximation must be found

instead. Basically, two concepts are used to obtain the proper feature ranking according to the

discriminative power of every single feature. First, the feature selection can be performed by

attempting to identify the best feature subset to use with a particular algorithm. This concept

is known as the Wrapper feature selection and is extensively reviewed in [31]. Although the ease

of implementation and good quality of the yielded feature selection are on the positive side of

this approach, calculation time considerations and the need of separate data sets for training and

evaluating must also be considered. Especially in case of a restricted number of training data in
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�rst place a Wrapper feature selection is not suitable to yield an e�ective feature selection.

Thus, the second feature selection approach evaluates the contribution of every feature to

distinguish the correct class value from the data alone. In [31] this approach is denoted as

the �lter-based feature selection and also the Wrapper feature selection is compared with this

approach. Contrary to the Wrapper feature selection, a feature subset identi�ed by the �lter-

based feature selection is independent from any learning algorithm. Thus, the key advantage of

this approach is that the approximation of the feature contributions can be performed on the very

same training set which will be successively used by the learning algorithm. Since no additional

learning algorithm is applied in the �lter-based feature selection, a statistically independent data

set for feature selection is not required. Moreover, the calculation time of most implementations

is signi�cantly lower than in the case of wrapper implementations.

However, for both feature selection holds that the actual discriminative power of a feature

can only be approximated. In case of the Wrapper feature selection this is obviously due to the

intrinsic use of learning algorithms for feature evaluation. In terms of the �lter-based feature

selection various heuristic discrimination models o�er an e�ective way to evaluate the contribu-

tion of features. In this chapter, �ve heuristic discrimination models are applied to estimate the

discriminative power of features extracted from three di�erent music collections in terms of mu-

sical genre classi�cation. These �ve heuristic discrimination models are: Chi-square statistics,

Information Gain, Gain Ratio, Balanced Information Gain and ReliefF. Subsection 3.2 gives

precise de�nitions for each model.

The results of these heuristic discrimination models rate the contribution of a feature to

distinguish classes. Besides the key goal of selecting and ranking an e�ective feature subset

for successive learning, those results can also be used to examine possible correlations between

certain features and classes. In terms of musical genre classi�cation that implies the interesting

question whether some particular features do signi�cantly represent a single musical genre better

than others. This question actually promises very interesting conclusions for representing genres

or for separating genres from each other. Let me introduce a short example to emphasize the

meaning of such feature-genre correlations.

Consider a large music collection which uses rhythmic descriptors to describe the musical

content properly. This means that the rhythmic component of every musical piece is de�ned in

some way. Additionally, tag inf ormation like genre, style or mood is also provided by the music

collection. A very interesting question is whether a member of one of these musical tags can

be directly related to a speci�c rhythmic pattern or a set of rhythmic pattern at least. A more

intuitive formulation of this question can be given as follows: �Can some speci�c musical genre

be su�ciently described with particular types of rhythm which are represented by the underlying

rhythmic descriptors? �. If such rhythmic patterns actually correspond to di�erent musical genres

musical genre classi�cation could be adapted accordingly to gain better classi�cation accuracy.

But also from the view point of musicology, the possible connection between speci�c rhythmic

content and musical genres opens interesting perspectives for a better description of such genres.

Section 3.3 focuses on an extended discriminant analysis due to the result of those �ve
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heuristic discrimination models in order to conclude such promising feature-genre correlations.

Three di�erent audio-based rhythmic descriptors are used to represent the rhythmic content of

musical pieces which are contained in the musical collections GTZAN, ISMIR 2004 Genre and

ISMIR 2004 Rhythm. Those rhythmic descriptors are Rhythm Patterns, Statistical Spectrum

Descriptor and Rhythm Histogram and are reviewed in subsection 2.5. Moreover, each of the

included musical collections is described in subsection 2.6. An extensive analysis of discrimina-

tion calculations with the �ve heuristic discrimination models and the three introduced music

collections GTZAN, ISMIR 2004 Genre and Rhythm is given in section 3.3. The key goal of

this analysis is to conclude whether particular genre-speci�c feature patterns actually exist. A

possible application of genre-speci�c feature correlations is hierarchical genre classi�cation where

decisions between speci�c genres occur frequently.

Eventually, the results of the discriminant analysis can also be used to select only those

features which actually possess a particular minimum class correlation. An empirical evaluation

of this feature selection approach is given in chapter 4.

3.2 Heuristic discrimination models

The key idea of heuristic discrimination models is to estimate the contributions of a random vari-

able to predict realizations of another random variable. In terms of an arbitrary classi�cation

problem, most discrimination models can be reformulated to the estimation of the discrimina-

tive power of some feature in order to distinguish the correct class. The underlying dataset

D of a classi�cation problem can be de�ned as D = {(x1, y1), (x2, y2), · · · , (xm, ym)} where

X = (x1,x2, · · · ,xm) is the set of data instances and the target vector Y = (y1, y2, · · · , ym)
constitutes the corresponding class assignments. A single data instance xi ∈ Rn with 1 ≤ i ≤ m
is formally de�ned as a vector xi = (x1, x2, · · · , xn). The feature set is denoted by the set

A = {a1,a2, · · · ,an}, while a certain attribute aj ∈ A with 1 ≤ j ≤ n is related to D by

aj = (xj1,x
j
2, · · · ,x

j
m). In that sense j denotes the unique index of the attribute a with respect

to the feature set A. To get a convenient notation, the function η : Rm 7→ {1, · · · , |A|} will be
used to denote the index of a. Eventually, all class labels of the underlying classi�cation problem

are aggregated in the set C = {c1, c2, · · · , ck}. The relation of a speci�c target value y ∈ Y to a

corresponding class c ∈ C is uniquely described by the function γ : R 7→ C. An overview of impor-

tant mathematical notations used for the de�nitions of the following �ve heuristic discrimination

heuristic is provided in appendix A.

For the actual implementation of a heuristic discrimination model two fundamental mathe-

matical approaches can basically be used. The primary group of heuristic discrimination model

is founded on probabilistic formulations. Because of usual imprecision of random variable real-

izations due to measurement errors or internal computational representation, the probabilistic

formulation of the feature's discriminative power guarantees robust and e�ective estimates. The

key idea of probabilistic discrimination models is to distinguish the distribution of a certain

random variable by the distribution of another variable without any particular knowledge of the
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underling distributional parameters. Possible variable interdependencies are directly computed

from the corresponding random samples. In terms of classi�cation, the application of such mod-

els is straight forward since the two random variables can also be interpreted as the feature and

the respective class variable. Popular representatives of probabilistic discrimination models are

based on the concept of mutual information. The mutual information I(X;Y ) states the inter-
dependency between two random variables X and Y . Consequently, I(X;Y ) also o�ers good

estimates to reduce the uncertainty of X achieved by learning the state of the random variable Y .

In information theory, the uncertainty of X with respect to the knowledge of Y is known as the

entropy H(X). In terms of classi�cation, the formulation of the class-based entropy H(c), the
feature-based entropy H(a) and the joint entropy H(a, c) are given in the following equations:

H(c) = −p(c) log p(c) (3.1)

H(a) = −p(a) log p(a) (3.2)

H(a, c) = −p(a, c) log p(a, c) (3.3)

where a and c represent a speci�c feature and class respectively. In statistical-based heuristic

models, the elementary feature and class probabilities are denoted with p(a) and p(c) where

a ∈ A denotes a selected feature and c ∈ C represents a speci�c class. The respective inverse

probabilities are p(ā) = 1 − p(a) and p(c̄) = 1 − p(c). Moreover, some models also involve the

joint probabilities. In addition to the joint probability p(a, c) of a speci�c feature and class the

following joint probabilities are de�ned as

p(ā, c) =
∏

a′∈A\a

p(a′, c) (3.4)

p(a, c̄) =
∏
c′∈C\c

p(a, c′) (3.5)

p(ā, c̄) =
∏

a′∈A\a

∏
c′∈C\c

p(a′, c′) (3.6)

where ā := A \ a is the set of all features but feature a and c̄ := C \ c constitutes the set of all
classes expect of the class c respectively. A general probabilistic independence is assumed due

to obvious simpli�cation considerations.

As various probabilistic models are based on the impurity function and use the entropy as

the core mechanism to determine the discriminative power, the Information Gain (R see 3.2.2),

the Gain Ratio (R see 3.2.3) and the Balanced Information Gain (R see 3.2.4) are included

in this thesis because of their importance and frequent use in machine learning.

Apart from speci�c realizations of the impurity function, di�erent probabilistic approaches

are also known to de�ne interdependency between two random variables and therefore o�er

possible reformulations of the desired variable discrimination. In this thesis, the probabilistic

approaches Chi-square statistics (R see 3.2.1) and ReliefF (R see 3.2.5) are also deployed.
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3.2.1 Chi-square statistics

The Chi-square (X 2) statistics are frequently used in empirical science to measure the di�erence

between observations and their expected results according to an initial hypothesis. More pre-

cisely, for given observations X and assumed results Y the X 2 statistics investigates whether the

unknown statistical distributions of X and Y actually di�er from each other by estimating the

dependency of these distributions. Thus, this approach provides a convenient way to empirically

verify a given hypothesis by considering measured observations and concluded results only. In

particular, from the statistical point of view is not required to describe the mostly unknown

distributions of the variables X and Y in some way.

Considering arbitrary classi�cation problems and music genre classi�cation in particular,

the X 2 statistics can be used in order to measure how independent a certain feature a ∈ A and

a class c ∈ C approximately are. To estimate the value X 2(a, c), the following de�nition

X 2(a, c) =
[p(a, c)p(ā, c̄)− p(a, c̄)p(ā, c)]2

p(a)p(ā)p(c)p(c̄)
(3.7)

can be used where the dependency a in relation to a class c is described. See (3.6) for further

details on the calculation of particular probabilities which are applied in (3.7). In the case of a

low value for X 2(a, c), the feature a is relatively independent to class c, and therefore this feature

does not possess signi�cant discriminative power to distinguish class c. Contrarily, a high value

for X 2(a, c) implies a high dependency and good discrimination. In order to obtain an estimation
of feature a over all included classes, the weighted summarization

f(a) =
∑
c∈C
X 2(a, c)p(c) (3.8)

must be calculated and the �nal value f(a) represents the discriminative power of the corre-

sponding feature. The higher f(a) actually is for the feature a the more discriminative is this

feature.

3.2.2 Information Gain

As an important realization of the impurity function the Information Gain, which originated in

information theory [26] and machine learning, is a synonym for the Kullback-Leibler divergence.

It describes the amount of information one random variable X contains about another random

variable Y . In other words, IG(X,Y ) measures the mutual information I(X;Y ), i. e. is the

reduction of the uncertainty of X (or the entropy H(X)) achieved by learning the state of the

random variable Y . Although IG(X,Y ) is rather an information-theoretic function, it can also be
considered as an estimator of the dependency of the two random variables like the X 2 statistics.

The relation between uncertainty reduction and dependency is obvious because if two random

variables X and Y are strongly independent, the uncertainty reduction of X due to additional

knowledge of Y will be poor and therefore the value for IG(X,Y ) is near to zero. Contrarily, a
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signi�cant dependency of X and Y leads to a better uncertainty reduction and corresponds to a

value for IG(X,Y ) closer to min{H(X), H(Y )}. Thus, the value range of IG(X,Y ) is de�ned
as 0 ≤ IG(X,Y ) ≤ min{H(X), H(Y )}.

In terms of arbitrary classi�cation problems the Information Gain can be used to measure

the amount of information of a certain feature a ∈ A has to determine a particular class c ∈ C.
According to the discriminative power of feature a, if the value for IG(c,a) is higher, then the

feature will be more discriminative for class c. Basically, two equivalent formulations of IG(a, c)
exist. The �rst de�nition

IG(a, c) =
∑

i∈{a,ā}

∑
j∈{c,c̄}

p(i, j) log
p(i, j)
p(i)p(j)

(3.9)

describes the Information Gain value explicitly by using probability de�nitions of (3.6). As the

Information Gain is highly correlated to the entropy which projects the uncertainty of a random

variable, IG(c,a) can be alternatively formulated as

IG(a, c) = H(c) +H(a)−H(a, c) (3.10)

based on the de�nitions of equation (3.3) where H(c) and H(a) are the corresponding single

entropies and H(a, c) is the joint entropy.
Finally, a weighted summarization is applied to compute the uncertainty reduction of all

included classes f(a) by a certain feature a.

f(a) =
∑
c∈C

IG(a, c)p(c) (3.11)

This yielded value f(a) actually states the discriminative power of the corresponding feature.

The higher the value for f(a) is, the more discriminative is feature a.

Although the Information Gain is a good measure to decide the relevance of a particular

feature concerning class discriminative power, a notable problem occurs if the examined features

can take a large number of distinctive values. In such cases the computed Information Gain

value can be small and therefore implies poor discriminative power, even though the feature is

actually discriminative. In order to avoid this problem, the Gain Ratio (R see 3.2.3) can be

used instead.

3.2.3 Gain Ratio

The second heuristic discrimination model is the Gain Ratio which is based on the mutual infor-

mation approach and therefore constitutes an impurity function as well. Since the Information

Gain IG(X,Y ) tends to overestimate multi-valued features, the Gain Ratio have been introduced
in [45] as a normalized realization of the Information Gain. The Gain Ratio also measures the

uncertainty reduction of the random variable X achieved by getting knowledge about the state of

the random variable Y . However, the Information Gain does not correctly estimate the relevance



34 CHAPTER 3. DISCRIMINANT ANALYSIS OF RHYTHMIC DESCRIPTORS

of variables which have a large value range. In such cases, the obtained value for IG(X,Y ) will
be always biased to zero and indicates poor dependency between the two variables, even though

a strong dependency actually exists. Thus, the estimation concerning the discriminative power

of the corresponding feature is not always reliable.

In order to guarantee good estimation of the dependencies of the two random variables X

and Y , the obtained value for IG(X,Y ) must be additionally normalized to o�er robustness

regarding to the actual number of distinctive values the variable can be assigned with. The Gain

Ratio GR(X,Y ) provides this robustness by using the entropy H(Y ) as the normalization factor.

In terms of arbitrary classi�cation, the Gain Ratio GR(a, c) of a certain feature a ∈ A and

a class c ∈ C can be computed by using the explicit formulation

GR(a, c) =

∑
i∈{a,ā}

∑
j∈{c,c̄} p(i, j) log p(i,j)

p(i)p(j)

−
∑

i∈{a,ā} p(i) log p(i)
(3.12)

where ā := A \ a is the set of all features but feature a and c̄ := C \ c constitutes the set of all
classes expect of the class c respectively. Alternatively, the Gain Ratio can be reformulated into

GR(a, c) =
IG(a, c)
H(a)

(3.13)

where the Information Gain which is described in the previous subsection is directly applied.

To calculate the �nal value for the discriminative power concerning all included classes, the

weighted summarization

f(a) =
∑
c∈C

GR(a, c)p(c) (3.14)

yields the desired value f(a) which actually estimates how discriminative the feature a is in order

to distinguish between classes. Again, the higher the value for f(a) is, the more discriminative
is feature a.

3.2.4 Balanced Information Gain

Another realization of the impurity function is the Balanced Information Gain which is basically

based on the Information Gain and also originated from information theory. Since the original

Balanced Information model only deals with discrete variables, Wu et al. [58] have introduced

a speci�c variation of the original Balanced Information Gain to also handle continuous vari-

ables which are often de�ned in machine learning applications. This de�nition of the Balanced

Information Gain was also applied in this thesis.

As the Information Gain tends to overestimate multi-valued features, the Balanced Informa-

tion Gain constitutes another heuristic to normalize the original feature contribution computed

by the Information Gain. Another comparable approach which also utilizes a speci�c normaliza-

tion heuristic with the Information Gain is the Gain Ratio discussed in the previous subsection.

In terms of arbitrary classi�cation, the Balanced Information Gain Bg(a, c) of a certain feature



3.2. HEURISTIC DISCRIMINATION MODELS 35

Figure 3.1: A common approach of discretising a numerical variable according to a binary class
problem. The cut points cpi with 1 ≤ i ≤ 4 divide two consecutive feature values which are
contained in instances labeled with di�erent classes.

a ∈ A and a class c ∈ C can be computed by using the explicit formulation

Bg(a, c) =
IG(a, c)
log2 κ

(3.15)

where κ is the discretization cardinality of the feature a. The actual value of κ represents

a straightforward penalty on the bias of information gain due to multi-valued features and,

therefore, it normalizes the feature contribution originated by the Information Gain.

The determination of the discretization cardinality κ of a feature is related to a common

variable discretization approach which is illustrated in �gure 3.1.

To obtain the discretization cardinality, all feature values are �rst sorted in ascending order.

Afterwards, all adjacent values which are contained in data instances labeled to the same class

are grouped together. Actually, this corresponds to the common discretization approach of a

numerical variable by de�ning t − 1 cut points cpi which create t continuous intervals. To turn

a continuous feature into a discrete variable, these intervals are assumed to be individual values

of the given feature. In that sense the discretization cardinality kappa of a feature a represents

the number of individual values obtained by the discretization of the feature a which is 4 in the

example illustrated in �gure 3.1.

To calculate the �nal value for the discriminative power concerning all included classes, the

weighted summarization

f(a) =
∑
c∈C

Bg(a, c)p(c) (3.16)

yields the desired value f(a) which actually estimates how discriminative the feature a is in order

to distinguish between classes. Again, the higher the value for f(a) is, the more discriminative
is feature a.

3.2.5 ReliefF

The ReliefF heuristic also measures the interdependencies between two or more random variables

and was �rst introduced in machine learning for determining su�cient relevance orders of features

in order to build rule-based learners, e. g. decision trees or random forests, properly. Although the

context of measuring and the application domain of ReliefF and Information Gain are similar,

ReliefF does not de�ne the dependency of two random variables by the amount of contained
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mutual information of those variables. In fact, ReliefF estimates the dependency of those random

variables X and Y by how well the realizations of Y actually distinguish the realizations of X. In

this context the realization of a random variable means the possible value which the variable can

take. Obviously, this correlation between relations of X and Y will exist only if the corresponding

distributions are dependent in some way.

Basically, ReliefF is one of several modi�cations of the core Relief algorithm which is pre-

sented in [29]. Both algorithms use another approach based on the nearest-neighbor algorithm

and aim to estimate the quality of features to distinguish corresponding class values according

to a speci�cally de�ned neighborhood within the input space. The main di�erence between the

original Relief and its modi�cation ReliefF is that ReliefF can also handle multi-class problems as

well as incomplete and noisy data instances. To measure the quality of a certain feature a ∈ A,
the key idea of both algorithms can be described as follows:

1. Select an instance x ∈ X of the dataset D randomly

2. Determine two neighboring instances xH, xM ∈ X with (xH, yH), (xM, yM ) ∈ D : yH 6=
yM . The �rst instance xH is the nearest neighbor having the same class assignment as x,

i. e. (x, y), (xH, yH) ∈ D : y = yH , and is called nearest hit. The latter instance is the

nearest neighbor which does not agree with the class related to x, i. e. (x, y), (xM, yM ) ∈
D : y 6= yM . Consequently, this instance is denoted as nearest miss.

3. The actual quality of feature a is determined by how well di�erent values of a result in

di�erent class assignments with respect to the instances x, xH and xM. On the one hand,

if the feature a has di�erent values in x and xH then this feature obviously separates two

instances with the same class. But this behavior of feature a is not desirable concerning

the distinction of class values based on the feature observations and therefore the quality

of feature a must be reduced. One the other hand, if x and xM possess di�erent values

for feature a then this feature is actually more discriminative according to separate the

di�erent classes of x and xM. In that case the quality of feature a has to be increased.

Considering this relation between feature quality and class separation ability, the obtained

quality measure of a certain feature correlates with the discriminative power of that feature.

Thus, Relief and ReliefF can be employed to estimate how discriminative a feature is in order

to distinguish class values. Instead of formulating possible variable discrimination due to in-

terdependencies, the key idea of Relief, and also its extension ReliefF, can be outlined as the

approximation of the following probability di�erence

ReliefF (a) = P (xj) 6= xjM )− P (xj 6= xjH) (3.17)

where j = η(a) denotes the unique index of a. The function η(·) has already been de�ned

in the beginning of section 3.2. Consequently, the notation xη(a) constitutes the value of fea-

ture a contained in the given instance x. Actually (3.17) is a more compact formulation of the

usual de�nition of ReliefF. As the instances x, xH and xM already inherit corresponding class
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assignments, the �rst probability is based on di�erent class assignments and the latter proba-

bility assumes same class assignment. Thus, this compact de�nition is equivalent to the longer

de�nition of the fundamental works [29,48]. The following reformulation

ReliefF (a) =
∑

c∈C\γ(y)

p(c)
1− p(γ(y))

δ(a,x,xM )− δ(a,x,xH) (3.18)

describes an explicit calculation model to estimate the value of ReliefF for a certain feature a by

aggregating the partial estimations based on all classes c ∈ C but the class assigned to instance

x. The function γ(y) returns the corresponding class of the selected instance x as de�ned in the

beginning of section 3.2. The second function, δ(·), describes the value di�erence between the

chosen attribute of two given instances. In order to guarantee a more robust estimation of the

actual discriminative power of a feature a, the following two modi�cations of the equation (3.18)

must be considered. First, instead of only using a single nearest hit xH and nearest miss xM
with respect to the selected x a set of k nearest hits XH and nearest misses XM should be used.

Moreover, the entire computation of ReliefF should not be proceeded a single time but l times.

This means that the entire computation of ReliefF (a) is separately performed l times and the

corresponding partial estimations are aggregated like in equation (3.20). The modi�ed ReliefF

de�nition is given by the following equation

ReliefF (a) =
∑

c∈C\γ(y)

p(c)
1−p(γ(y))

∑k
i=1 δ(a,x,X

i
M )

l · k
−

k∑
i=1

δ(a,x,Xi
H)

l · k
(3.19)

where Xi
H and Xi

M are the ith nearest hit and miss respectively. The equation (3.19) was also

employed in this thesis. The function δ(·) represents a metric to measure the di�erences of the

values of the chosen feature a from two given instances. The actual de�nition of δ(·) depends on
the algorithms of Relief or ReliefF but only the de�nition of the latter algorithm is given here.

Contrary to the original Relief algorithm, ReliefF's δ(·) can also be calculated in the case of one

value or even both values being actually unknown. Thus, ReliefF can actually handle incomplete

data instances as well. The following four de�nitions of function δ(·) is de�ned to handle all

possible situations concerning the availability of the desired attribute values where the unique

attribute index of a is j = η(a:

1. If both values of the feature a are known for both x1 and x2 then:

δ(a,x1,x2) =

0 xj1 = xj2

1 otherwise

2. If the value of the feature a is unknown for x1 then:

δ(a,x1,x2) = 1− p(xj2|γ(y1))
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3. If the value of the feature a is unknown for x2 then:

δ(a,x1,x2) = 1− p(xj1|γ(y2))

4. If the value of the feature a for both x1 and x2 are unknown then1:

δ(a,x1,x2) = 1−
∑
a∈a

p(a|γ(y1)) · p(a|γ(y2))

where a ∈ a is a speci�c value of the attribute a.

As the reference instance x is randomly selected, a robust estimation of the quality of

feature a can not be guaranteed because only a very small area of the entire feature domain is

used for the determination. Consequently, a repeated aggregation of ReliefF introduces a more

reliable estimation. The following formulation

f(a) =
l∑

i=1

ReliefF (a), l > 0 (3.20)

constitutes this repeated aggregation by summarizing the obtained ReliefF values for every it-

eration. Similar to all previous heuristic models, the higher the value for f(a) is, the more

discriminative is feature a.

To summarize, ReliefF has two basic parameters to control robustness of the feature quality

estimation which are the number of repeated iterations l and the number of k nearest hits and

misses according to the reference instance x.

3.3 Experiments

The following empirical study of the �ve heuristic discrimination models and the three descriptors

Rhythm Pattern, Statistical Spectrum Descriptor and Rhythm Histogram, which are described in

section 2.5, is established to conclude possible answers to the main question of this thesis which

is: Can a speci�c rhythmic feature pattern or patterns be signi�cantly related to a particular

musical genre? This question implies some very interesting conclusions concerning a possible

improved rhythmic description of some musical genres or by o�ering a promising method for

feature selection in music genre classi�cation.

The three musical genre collections GTZAN, ISMIR 2004 Genre and Rhythm (R see 2.6)

have been employed to compute the discriminative power of every included feature but the main

part of the analysis focuses on results computed on the base of the GTZAN music collection.

GTZAN has been favored because it includes the largest number of popular musical genres with

equally distributed musical pieces per genre. For each feature set the key observations of the

results based on GTZAN were additionally veri�ed on the ISMIR 2004 Genre collection, since

1In this de�nition of δ(·) the variable a denotes a speci�c value of the feature a.
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this music collection contains quite similar musical genres. Remarks to the results based on

ISMIR 2004 Rhythm are also given for each feature set. Moreover, the evaluation results are also

provided in terms of each of the �ve heuristic discrimination models described in section 3.2. As

already discussed, the calculation models Chi-square, Information Gain, Gain Ratio and Balanced

Information Gain are based on the concept of mutual information between two random variables

and speci�c computation parameters are not needed. Contrarily, some important computational

parameters must be adjusted for using the ReliefF model. Actually, those parameters have been

used which are originally de�ned by the WEKA workbench. In particular all training instances

were used to establish sample probes to estimate the attributes. Additionally, the 10 nearest

neighbors were considered for relevance estimation.

Moreover, the evaluation is based on one-vs.-rest genre situations. For every music collection

all musical pieces are incorporated for computation. To determine those features which actually

distinguish a certain genre, the original genres are relabeled to a corresponding binary genre

situation. The underlying multidimensional feature space and the actual ranges of possible

values of every feature are not altered or reduced and the complete information of every feature

may in�uence the discrimination calculation. The actual discrimination value of every feature is

estimated by a multiple-fold calculation approach. The entire dataset is randomly divided into

10 individual folds containing the same number of instances each. The discrimination values

according to every feature are computed for every fold separately. After the computation of the

discrimination values a feature ranking is determined for every fold based on the discrimination

values of every feature. Thus, 10 independent rank estimates are obtained for every feature.

In order to take only statistically reliable results into account, a rank correlation test based

on Kendall's correlation coe�cient τ is successively applied. If the results of a speci�c fold are

signi�cantly di�erent comparing with the other folds, this fold will be recalculated. Consequently,

the �nal discrimination and ranking estimates of every feature are obtained by averaging the

corresponding results of the 10 folds.

The empirical study is structured into three sub sections referring to the individual feature

sets Rhythm Patterns in 3.3.1, the Statistical Spectrum Descriptor in 3.3.2 and the Rhythm

Histogram descriptor in 3.3.3. Four evaluation steps were performed for each feature set respec-

tively.

First, the existence of discriminative features and possible individual feature patterns ac-

cording to a speci�c genre is discussed on the results of the Gain Ratio model by illustrating

the discriminative power of every feature in a matrix representation. In the second step, the

conclusions regarding the discriminative feature patterns computed by the Gain Ratio will be

compared with the corresponding results based on the Balanced Information Gain as well as the

ReliefF. Third, the numeric distribution of discrimination values related to a speci�c genre and

calculation model are examined by computing important statistical measures and by depicting

the discrimination values against the ranking order where the largest discrimination value is

always denoted with rank 1. Fourth and last, the de�nition of a ranking order with respect to

the discriminative power of every feature should provide further insight into the ability of every
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calculation model to exhibit individual discriminative feature patterns for every genre. Such a

feature ranking is based on a speci�c genre and calculation model and also provides a way of

representing individual feature patterns. Although the intrinsic meaning of every feature con-

cerning critical band and modulation frequency can not be clearly recognized, the signi�cance

of individual feature patterns can be considered for every genre. To obtain such a conclusion

of the signi�cance of individual feature patterns based on a speci�c calculation model, a rank

correlation test has been performed to verify the correlation of the respective feature rankings

to be compared. The rank correlation test is based on Kendall's correlation coe�cient τ and

assumes the hypothesis H0 of non-zero correlation with a signi�cance level α = 0.05. On the

basis of these test results, genres with non-correlated feature ranking and therefore di�erently

assigned discriminative features can be plausibly identi�ed.

As already mentioned, the key goal of the following experiments is to identify certain rhyth-

mic patterns which signi�cantly represent a single or a small group of particular musical genres.

Those rhythmic patterns are always related to a certain rhythmic component and if a signi�cant

assignment to a genre can be actually assumed then this will suggest a potentially improved

rhythmic description of that genre. Evidently, it can not be assumed in the �rst place that

the perception of information due to the applied heuristic discrimination models actually coin-

cides with the meaning of musical information and therefore stronger proof is needed. Thus,

the discriminative feature patterns have to be additionally veri�ed. Chapter 4 focuses on this

veri�cation of using discriminative feature patterns, i. e. speci�c feature subsets, based on the

discrimination ranking in terms of musical genre classi�cation. If the classi�cation accuracy

will be robust or even increased although only a subset of features has been applied then this

empirically con�rms the assumption.

3.3.1 Rhythm Pattern

The features de�ned by the Rhythm Pattern descriptor re�ect loudness �uctuations on critical

frequency bands with respect to modulation frequencies between 0.2 and 10.1 Hz. The features

can be constituted in a matrix representation which also o�ers a convenient way to visualize

and to analyze discriminative features according to the underlying genre. In �gure 3.2, the

discriminative features computed by the Gain Ratio model are illustrated for all 10 genres of

the GTZAN collection. Additionally, the average and the variance of the discrimination values

computed over all genres are visualized.

Considering the discriminative features according to every genre, two groups of genres can

be recognized which are characterized by the number of discriminative features describing the

respective genres. The �rst group contains the genres Classical, Hip hop, Jazz and Pop where

the number of discriminative features is de�nitely larger compared with the other genres. As

�gure 3.2(b) illustrates, features describing classical music exhibit high discrimination values

which are related to critical bands with Bark numbers larger than 15, i. e. frequencies above 2.7
kHz, and Bark numbers less than 4, i. e. frequencies less than 0.2 kHz. Moreover, these features

correspond to various modulation frequencies. Those features which are related to critical bands
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(l) Variance

Figure 3.2: Discriminative features of the Rhythm Pattern descriptor according to the music
collection GTZAN. The Gain Ratio model was used to compute all discrimination values where
less discriminative features are colored with red and black (darker) tones, while more discriminative
features are colored with yellow (brighter) tones. Figures (k) and (l) represent the average and
variance results over all genres.

between 3 and 15 Bark mostly possess far less discrimination. Discriminative features describing

the genres Jazz and Pop are also especially related to very high critical bands, while discriminative

features corresponding to Hip hop are actually distributed along speci�c modulation frequencies

instead. In particular those features have relatively high discrimination values which correspond

to modulation frequencies close to 3.3, 6.6 and 9.9 Hz along various critical bands. In the case

of the genre Pop the modulation frequency close to 3.4 is emphasized. Contrary to Pop and Hip

hop, �gure 3.2(f) implies for jazz music that features located at high critical bands and along

various modulation frequencies are relevant which is a quite similar observation as in the case of
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classical music. As jazz music is played in various rhythmic styles while Pop and Hip hop have

fewer rhythm variations, this observation appears to be plausible. Despite the discriminative

feature patterns describing each of the four genres Classical, Hip hop, Jazz and Pop diverge, the

number of selected features being discriminative is quite large. In order to explain this large

number of discriminative features the intrinsic musical characteristics of those genres must be

considered. For instance classical and pop music involve a high variation of rhythmic styles

and loudness. Furthermore, the instrumentation might be more manifold as in the case of the

genres Blues and Rock. Moreover, as the evaluation is based on one-vs.-rest comparisons, these

strong di�erences to almost all other genres are even more emphasized during the discrimination

computation.

The second group contains the other 6 genres Blues, Country, Disco, Metal, Reggae and

Rock which are represented by a relative small number of discriminative features. In fact, most

of the features have actually a zero or a very low discrimination value. Consequently, those

features can be assumed to be irrelevant in terms of determining the genre and maybe even in

terms of classi�cation of the respective genres. Chapter 4 will further evaluate this assumption

by performing genre classi�cation. It can be observed clearly that for all genres but Blues

the discriminative features are located at a limited but di�erent number of critical bands and

modulation frequencies. An interesting fact regarding the genre Blues is that those features are

particularly relevant which relate to the critical band of 23 Bark and along almost the entire

range of modulation frequencies. The reason why this high bark band is so discriminative may be

the usually very restricted variation of rhythmic styles within Blues. Since one-vs.-rest evaluation

has been performed, this di�erence to other genres is more emphasized. The large variation of

emphasized modulation frequencies concerning rock music is also not surprising because of the

typical broader musical understanding of rock music which implies a higher variation of rhythmic

characteristics.

To summarize the observations according to the discrimination results based on the Gain

Ratio model, every genre was represented by a considerable number of discriminative features

where individual feature patterns were also suggested for every genre. The next step of this

discriminant analysis is to expand the examination to the other four heuristic discrimination

models. The �gures 3.3, 3.4 and 3.5 illustrate the discriminative features according to each

genre and based on the calculation models Gain Ratio, Balanced Information Gain and ReliefF

respectively. To provide a clear visualizations, only 50% of all actually discriminative features,

i. e. having a non-zero discrimination value, were plotted as �lled dots with varying size. A larger

size indicates better discrimination of the corresponding feature. The discrimination results

computed by the calculation models Chi-square and the Information Gain are not explicitly

discussed as those results only marginally di�er compared with the results based on the Gain

Ratio and Balanced Information Gain model. In fact, this similarity is not surprising as all

heuristic discrimination models but the ReliefF implement the impurity function. In particular

the Information Gain, Gain Ratio and the Balanced Information Gain are directly related to

each other as they utilize the entropy measure to estimate the dependency between a speci�c
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Figure 3.3: Inter-genre comparison of discriminative features according to the Rhythm Pattern
descriptor and the Gain Ratio on the GTZAN collection. In order to provide a clear visualization,
only 50% of those features were taken into account which have a non-zero discrimination value.
The size of every dot indicates the degree of discrimination the corresponding feature has where a
large size implies higher discrimination.
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Figure 3.4: Inter-genre comparison of discriminative features according to the Rhythm Pattern
descriptor and the Balanced Information Gain on the GTZAN collection. In order to provide
a clear visualization, only 50% of those features were taken into account which had a non-zero
discrimination value. The size of every dot indicates the degree of discrimination the corresponding
feature has where a large size implies higher discrimination.
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Figure 3.5: Inter-genre comparison of discriminative features according to the Rhythm Pattern-
descriptor and the ReliefF on the GTZAN collection. In order to provide a clear visualization,
only 50% of those features were taken into account which had a non-zero discrimination value.
The size of every dot indicates the degree of discrimination the corresponding feature has where a
large size implies higher discrimination.
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feature and a genre.

Figure 3.3 illustrates the most discriminative features according to the Gain Ratio model.

Speci�c observations and conclusions according to the discrimination results based on the Gain

Ratio have already been discussed in context of �gure 3.2 and can also be followed from the

illustration representing only 50% of the most discriminative features. In �gure 3.4, the cor-

responding discrimination results according to the Balanced Information Gain are depicted. In

fact, the discrimination results are very similar compared with the results based on the Gain

Ratio where almost the same features are selected to be discriminative. Yet, the corresponding

discrimination values of those discriminative features vary. Nevertheless, very similar discrimi-

native feature patterns can actually be recognized for each of the 10 genres. Consequently, the

following observations hold true for both the Gain Ratio and the Balanced Information Gain.

Two genre groups can be determined which di�er in the number of features being discrimina-

tive. In terms of the genres Classical, Jazz and Pop the most discriminative features correspond

to very high critical bands and also along various modulation frequencies. In the case of Jazz and

Pop discriminative features are actually related to almost every modulation frequency between

0.2 and 10.1 Hz and to the critical bands 21 to 23. Considering other feature regions within

the Rhythm Pattern descriptor, those three genres introduce relatively diverging results. Those

features exhibit a non-zero discrimination value for all three genres which are located on criti-

cal bands with less than 5 Bark and modulation frequencies larger than 8 Hz. The number of

discriminative features according to Hip hop is relatively similar compared with the other three

genres. Yet, those features de�nitely correspond to di�erent critical bands as well as modulation

frequencies. In fact, three feature regions of the Rhythm Pattern descriptor are emphasized

where features having a high discrimination value. All discriminative features are distributed

along the modulation frequencies 3.3, 6.6 and 9.9 Hz at various critical bands between 1 and

23 Bark (almost the entire range). Nevertheless, for all genres of this �rst group it can be con-

cluded that features corresponding to the highest critical band having the Bark number 24 as

well as to some low modulation frequencies are not discriminative at all.

For the other 6 genres of GTZAN the discrimination results based on the Gain Ratio as

well as the Balanced Information Gain suggest a de�nitely smaller number of features being

discriminative compared with the genres of the �rst group. Two conclusions can be made.

First, the critical bands and modulation frequencies related to the discriminative features diverge

among these genres. Second, a subset of discriminative features are recognizable corresponding to

consecutive but very limited intervals of critical bands and modulation frequencies for the genres

Blues, Country, Disco, Metal and Reggae. These subsets are illustrated as closed (�blobby�) areas

within the respective matrix representation. Contrarily, the discriminative features describing

Rock are related to varying critical bands as well as modulation frequencies. Moreover, only very

few features exhibit non-zero discrimination values.

According to the ReliefF model the discrimination results considerably diverge comparing

with the corresponding results based on the calculation models implementing the impurity func-

tion. Figure 3.5 visualizes the discrimination values based on the ReliefF. On the one hand, vari-
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ations of the discrimination values exist among both the ReliefF and the Gain Ratio or Balanced

Information Gain. But on the other hand, the ReliefF model estimates non-zero discrimination

for features which are not discriminative in terms of the other two calculation models. Actually,

these di�erences are not completely surprising, since the ReliefF model implements an approach

of estimating feature discrimination which also incorporates the dependencies between the fea-

tures and not only the dependencies between a speci�c feature and a genre. The actual di�erence

between the concepts of calculation models implementing the impurity function and the ReliefF

is discussed in [48]. It can be observed that the number of features being discriminative does

not vary as much between the genres. In fact, the number of discriminative features is relatively

consistent for all genres de�ned by the GTZAN collection. But this also means that some genres

are represented by features related to various modulation frequencies although musical pieces of

those genres usually include a less variation of rhythmic characteristics. For instance musical

pieces of Blues or Metal do not vary considerably in terms of the rhythmic style. It appears

that ReliefF is in�uenced by the underlying evaluation procedure. According to the one-vs.-rest

evaluation, a high discrimination value does not always imply that the corresponding feature

characterizes genre. The inverse meaning is also possible in the way that the corresponding fea-

ture does not characterize the genre. Despite the di�erence in number of discriminative features

according to the discrimination results based on the Gain Ratio and Balanced Information Gain,

an interesting similarity can be observed. Considering the genres Blues, Classical, Jazz and

Pop, those features exhibit large discrimination values which are distributed along a broad range

of modulation frequencies but only at speci�c critical bands. On the other hand, the inverse

observation can be concluded for the genres Disco, Hip hop and Reggae, namely that a large

number of discriminative features is related to speci�c modulation frequencies but at almost the

entire Bark range from 1 to 23. This observation con�rms that less rhythmic variations, e. g.

varying beats per minute, exist in musical pieces of Disco, Hip hop and Reggae. Again features

corresponding to the critical band 24 do not exhibit a large discrimination value in terms of all

genres.

The next step of the discriminant analysis is to examine the distribution of the discrimina-

tion values according to every genre. Particularly, the scale of the discrimination values according

to every genre and the number of features having zero discrimination should be discussed. Fig-

ure 3.6 illustrates the relation of the discrimination values against the ranking order according to

each of the four genres Classical, Disco, Jazz and Rock and the three calculation models, while a

statistical description regarding the underlying distribution of the discrimination values is given

in table 3.1. As the range of discrimination values is very large, all values were normalized into

the interval [0, 1] considering the discrimination values of all 10 genres. These normalized dis-

crimination values were used both in the illustration regarding the relation of the discrimination

values against the ranking order and in the statistical description.

According to �gure 3.6, the features describing the genre Classical exhibit far larger dis-

crimination values comparing with the other genres. Also the number of features having zero

discrimination is smaller compared with the other genres. Contrarily, in terms of Disco, Jazz and
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(c) ReliefF

Figure 3.6: Illustration of the discrimination values against the ranking order according to the
Rhythm Pattern descriptor on the GTZAN collection (normalized into the interval [0, 1] for every
calculation model separately). Each musical genre is illustrated by an individual color and symbol:
g for Classical, × for Disco, + for Jazz and o for Rock.

Rock a larger number of features suggest zero discrimination with rock music having the smallest

number of discriminative features. Also the number of features exhibiting large discrimination

values is far smaller in the case of those three genres compared with classical music. According

to the ReliefF the relation of the discrimination values against the ranking order implies a small

number of features with high discrimination values but the di�erences between the four genres

are not that signi�cant compared with the results of the �rst two calculation models. An inter-

esting fact is that the largest discrimination values are related to pop music and not to classical

music. Figure 3.7 explicitly points out which features are actually irrelevant with respect to the

four selected genres and the three calculation models. Although the ReliefF model estimates

non-zero discrimination values for every feature and every genre, irrelevant features must be still

considered as some features have a discrimination value less than the discrimination value of

a random probe feature. This generic feature was added to the original feature set where the

feature values were distributed by a Gaussian distribution with µ = 0 and σ = 1. All features
with a zero discrimination value or a discrimination value smaller than the one of the random
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Figure 3.7: Irrelevant features of the Rhythm Pattern descriptor according to the GTZAN col-
lection. All black colored features are considered as irrelevant. Gain Ratio: (a) to (d), Balanced
Information Gain: (e) to (h), ReliefF: (i) to (l).

feature are depicted as black in �gure 3.7. An interesting fact is that all features related to the

highest critical band, i. e. frequencies larger than 12 kHz, are actually irrelevant. But this is not

surprising considering the encoding of the samples contained in the GTZAN collection where the

sampling frequency is 22 kHz. Thus, only frequencies up to 11 kHz were actually encoded in the

samples of the GTZAN collection.

Table 3.1 lists a short statistical description of the discrimination results. The statistical

measures mean, standard derivation, min and max value were computed by using the normalized

discrimination value range. The Gain Ratio and the Balanced Information Gain models esti-

mate the highest discrimination value for classical music followed by pop music. Yet, the margin
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Gain Ratio Balanced IG ReliefF

Genre µ̂ σ̂ min max µ̂ σ̂ min max µ̂ σ̂ min max

Blues 0.05 0.06 0.00 0.20 0.05 0.09 0.00 0.31 0.09 0.04 0.02 0.32
Classical 0.49 0.18 0.00 1.00 0.41 0.21 0.00 1.00 0.10 0.03 0.02 0.22
Country 0.01 0.01 0.00 0.09 0.01 0.02 0.00 0.13 0.06 0.02 0.01 0.18
Disco 0.03 0.06 0.00 0.58 0.02 0.03 0.00 0.20 0.10 0.05 0.01 0.40
Hip hop 0.11 0.08 0.00 0.48 0.11 0.07 0.00 0.48 0.18 0.06 0.05 0.42
Jazz 0.07 0.06 0.00 0.24 0.08 0.08 0.00 0.35 0.06 0.02 0.00 0.22
Metal 0.02 0.03 0.00 0.29 0.02 0.03 0.00 0.18 0.06 0.02 0.01 0.15
Pop 0.10 0.10 0.00 0.69 0.11 0.13 0.00 0.90 0.19 0.10 0.03 1.00
Reggae 0.04 0.05 0.00 0.42 0.02 0.03 0.00 0.22 0.10 0.04 0.00 0.29
Rock 0.01 0.01 0.00 0.08 0.01 0.01 0.00 0.07 0.06 0.02 0.01 0.16

Table 3.1: Statistical summarization of the discrimination values according to the Rhythm Pat-
tern descriptor and the GTZAN collection (normalized into the interval [0, 1] for every calculation
model separately). Only those discrimination values were considered which were originally non-
zero.

between the maximum values regarding classical and pop music considerably varies for both

calculation models. This variation of the maximum values is mainly explained by the di�erent

approach of normalizing multi-valued features. More details concerning the di�erent normaliza-

tion of multi-values features are described in section 2.3. Also the highest average discrimination

value listed in table 3.1 is related to classical music. This agrees with the observation concluded

in �gure 3.6 where a large number of features representing classical music have high discrimina-

tion values. The maximum and average values according to ReliefF are highest in case of pop

music instead. Classical music is not that emphasized as in the case of the calculation models

implementing the impurity function.

The next step of the discriminant analysis is to verify the di�erence of the discriminative

feature patterns according to every genre. The possible existence of individual, i. e. statistically

signi�cant, feature patterns is to be examined. To e�ectively conclude individual discriminative

feature patterns, genre-based ranking sequences were used. Those ranking sequences were sorted

in descending order of the discriminative power of every feature, and therefore the �rst rank

corresponds to the most discriminative feature and the least discriminative feature is denoted with

the largest rank position. With the use of this rank-based representation of the discriminative

features a statistical rank correlation test was performed to verify whether two di�erent feature

rankings are individual or not. In terms of the rank correlation test this means that the p-

value indicates a signi�cant non-zero or zero correlation respectively. Unfortunately, this rank

correlation test only works well if all features have an individual rank respectively di�erent

discrimination values. Since a considerable number of features exhibited zero discrimination

according to various genres, the ranks of these features are statistically tied. Thus, those features

have the same rank which refers to their average rank. Consequently, the expressiveness of the

rank correlation test is limited in that way that not all individual discriminative feature patterns
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are actually recognized by the test results. Nevertheless, all discriminative feature patterns which

are suggested to be signi�cantly di�erent according to the corresponding test results are actually

di�erent.

Table 3.4 lists the p-values of all tested genre pairs according to the three heuristic discrim-

ination models. The signi�cance level is de�ned with α = 0.05 and a p-value greater than α

indicates that the corresponding two genres are represented by individual discriminative feature

patterns each. Two conclusions can be made in terms of the obtained number of individual dis-

criminative feature patterns. On the one hand, the test results reveal few signi�cantly di�erent

feature patterns only for the Gain Ratio and the Balanced Information Gain. Yet, this is not

surprising as those calculation models estimate quite many feature having zero discrimination

for various genres. According to the Gain Ratio and the Balanced Information Gain the genre

Pop is represented by the largest number of individual feature pattern compared with the other

genres where the discriminative feature patterns representing Pop are signi�cantly di�erent com-

pared with genres Blues, Disco and Metal. In the case of the Balanced Information Gain the

feature patterns representing the genres Reggae and Rock also diverge signi�cantly with respect

to Pop. However, from the view point of audio perception and musical styles, those genres are

more related to Pop than for instance to Classic or Jazz. The discriminative feature patterns

computed by the ReliefF model are far more often correlated to each other. As all features ex-

hibit non-zero discrimination values in terms of the ReliefF the rank correlation test unfolds its

full expressiveness. Consequently, it can be assumed that many genres are actually represented

by quite similar discriminative feature patterns.

The eventual step of the discrimination analysis is to examine the discrimination results

based on the ISMIR 2004 Genre and Rhythm music collections. Similar and diverging conclusions

concerning the identi�cation of genre-speci�c feature patterns based on these collections will be

shortly discussed and a comparison to the conclusions regarding the GTZAN collection will be

made.

ISMIR 2004 Genre

Although the genres of the ISMIR 2004 Genre collection do not explicitly correspond to the

genres of the GTZAN collection and, moreover, the number of de�ned genres di�ers in both

collections, four genres were selected to be used in the following analysis. These genres are

Classical, Electronic, Jazz & Blues and Rock & Pop and relate to the GTZAN genres Classical,

Disco2, Jazz and Rock respectively. Since at least a partial correlation can be assumed to the

genres Classical, Disco, Jazz and Rock of the GTZAN collection respectively, a comparison

of the respective discrimination results was done although only both classical genres coincide

su�ciently.

Figure 3.8 illustrates the computed discriminative features according to each of the four

selected genres based on the calculation models Gain Ratio, Balanced Information Gain and

2It has been assumed that the genre Electronic is based on a more generic musical genre description which
actually covers the genre Disco of the GTZAN collection.
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(b) Balanced Information Gain
Continued on the next page . . .

ReliefF respectively. Again, the two models Chi-square and the Information Gain are not explic-

itly presented, since the corresponding discrimination results are quite similar compared to the

corresponding results based on the Gain Ratio and the Balanced Information Gain. To provide

clear visualizations, only 50% of all actually discriminative features are plotted as �lled dots
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Figure 3.8: Inter-genre comparison of discriminative features according to the Rhythm Pattern
descriptor on the ISMIR 2004 Genre collection. Three calculation models were used where �gure
(a) represents the Gain Ratio, �gure (b) corresponds to the Balanced Information Gain and �gure
(c) is related to the ReliefF. In order to provide a clear visualization, 50% of those features
were taken into account only which had a non-zero discrimination value. The size of every dot
indicates the degree of discrimination the corresponding feature has where a large size implies
higher discrimination.

with varying size, while the larger size indicates better discrimination of the corresponding fea-

ture. According to the Gain Ratio and the Balanced Information Gain only the discrimination

results of the genre Classical are quite similar compared with the corresponding results regarding

the genre Classical of the GTZAN collection. Again, those features exhibit high discrimination

values which correspond to critical bands with Bark numbers larger than 15 and various modula-

tion frequencies. This observation agrees with the observation based on the GTZAN collection.

Moreover, those features related to the genre Classical possess a high discrimination which cor-

respond to critical bands with less than 3 Bark and almost all modulation frequencies but the

very lowest. An interesting fact is that features related to the highest critical band (24 Bark) are

also estimated being discriminative in the case of ISMIR 2004 Genre collection but not for the

GTZAN collection. In fact, this observation is valid for all four selected genres. The critical band

denoted by the Bark number 24 represents the frequency range of [12, 15.5] kHz. The reason why
those feature are discriminative in the case of the ISMIR 2004 Genre collection is the di�erent

encoding (di�erent sampling frequencies) of the musical pieces contained in the two collections.

The di�erence in the encoding regarding these two collections is described in section 2.6. For

the other three genres a considerable similarity of the discrimination results according to both
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the GTZAN and the ISMIR 2004 Genre collections can not be assumed because the respective

discriminative feature patterns strongly di�er.

As in the case of the GTZAN collection, the ReliefF calculation model yields a large number

of discriminative features which is quite equal among the four selected genres. Those features

related to the very low critical bands possess a high discrimination value in the case of all genres

but Jazz & Blues. On the other hand, many discriminative features are related to the critical

bands having a Bark number of at least 20. Some partial similarities can be concluded in the

results based on ReliefF compared to the corresponding results based on the GTZAN collection.

In the case of the genres Rock and Rock & Pop, which are contained in the collections GTZAN

and ISMIR 2004 Genre respectively, features are discriminative according to both collections

which correspond to higher critical bands and lower modulation frequencies. Also a partial

similarity of the discrimination results can be recognized for the genres Disco and Electronic.

On the other hand, the discrimination results of both classical genres considerably di�er although

these two genres are assumed to correlate more than the other genres. Thus, a consistent

performance over correlated music collections can not be concluded although the di�erence in

the discrimination values between the two collections appears to be more limited in the case of

2 of the 4 genre comparisons. According to the Gain Ratio and the Balanced Information Gain

the discrimination results based on the two collections actually coincide more compared to the

results computed by the ReliefF. In particular the discrimination results of both classical genres

imply a considerable similarity. Also for the genres Jazz and Jazz & Blues the di�erence in the

discriminative feature patterns is quite limited, as for both genres features related to critical

bands 15 Bark and above are particularly discriminative. The results of genres Pop and Rock

& Pop also show quite many features which are discriminative for both genres. Thus, a more

consistent performance of the Gain Ratio and the Balanced Information Gain is a�rmed.

Table 3.5 lists the p-values of the rank correlation tests according to the ISMIR 2004 Genre

collection. Two key agreements are notable comparing with the respective test results based on

the two music collections. First, the performances of the three calculation models can be divided

into two groups again. On the one hand, the models Gain Ratio and Balanced Information

Gain o�er few genre-speci�c feature patterns only. As already mentioned in terms of the rank

correlation test based on the GTZAN collection, these two calculation models estimates zero

discrimination for quite many features which reduce the e�ectiveness of the entire correlation

test. On the other hand, a large number of genres are represented by individual feature patterns

according to the ReliefF. An interesting fact is that the corresponding genres do not coincide with

the results on the GTZAN collection at all because very few individual discriminative feature

patterns are concluded in the case of the GTZAN collection.

ISMIR 2004 Rhythm

Eventually, key conclusions which have been made on both the GTZAN and the ISMIR 2004

Genre collections should be veri�ed on the ISMIR 2004 Rhythm collection. This collection

contains Latin and Ballroom dance music only and a correlation to genres of the other two music
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collection can not be assumed. Thus, a genre-to-genre comparison of the respective discriminative

feature patterns computed by the three heuristic discrimination models Gain Ratio, Balanced

Information Gain and ReliefF is not meaningful. Nevertheless, some basic characteristics of the

three calculation models were observed.

The discrimination results according to the ISMIR 2004 Rhythm collection are obviously

di�cult to compare as completely di�erent genres are included comparing with the other two

collections. Nevertheless, it can also be concluded that respective discrimination results based on

the Gain Ratio and the Balanced Information Gain only marginally diverge. From this follows

that di�erent approaches of normalizing multi-valued features do actually only slightly in�uence

the computation of discriminative features. As this conclusion is also valid in the case of the

other two collections it can be assumed that the conclusion is generally valid. For many genres

like for instance ChaChaCha, Jive or Samba few features are estimated to be discriminative.

Another interesting fact is that according to many genres the discriminative features correspond

to speci�c modulation frequencies as well as critical bands. Thus, the discriminative feature

patterns often appear as �blobby� areas where all contained features exhibit high discrimination

values. The genres ChaChaCha, Jive and Samba are examples for this observation. The ISMIR

2004 Rhythm collection only contains Latin and Ballroom dance music and musical pieces of each

dance genre are speci�cally related to a small variation of rhythm styles. As the discrimination

results actually emphasize few discriminative modulation frequencies with a small range of critical

bands, this assumption appears to be a�rmed.

The ReliefF model also estimates a limited number of discriminative features which is con-

siderably smaller compared to the other two collections. Nevertheless, more features are actually

discriminative as in the case of the Gain Ratio and the Balanced Information Gain. This ob-

servation is also valid for both the other two music collections. An interesting fact is that for

some genres, e. g. ChaChaCha and Jive, the discrimination results of all three calculation models

are strongly similar. This is a contradictory observation according to both the GTZAN and the

ISMIR 2004 Genre collection. An explanation may be the stronger correlation of the genres to

speci�c rhythm styles as the dance music is particularly represented by a speci�c rhythm or a

small variation of rhythm. Thus, some features corresponding to speci�c critical bands and mod-

ulation frequencies are particularly correlated to a single genre and have no or a small correlation

with other genres. It appears that this strong correlation between speci�c features and a genre is

responsible for the higher agreement of the discrimination results based on the three calculation

models.

3.3.2 Statistical Spectrum Descriptor

The features of the Statistical Spectrum Descriptor are constituted by the computation of seven

statistical measures for each of the 24 available critical bands. Basically, the Statistical Spectrum
Descriptor describes the distributions of modulations frequencies per critical band and includes

the following statistical measures: mean, median, variance, skewness, kurtosis and min- and max-

value which are abbreviated with the numbers 1 to 7. The feature set can also be represented by a
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Figure 3.9: Discriminative features of the Statistical Spectrum Descriptor according to the music
collection GTZAN. The Gain Ratio model was used to compute all discrimination values where less
discriminative features are colored with red and black (darker) tones, while more discriminative
features are colored with yellow (brighter) tones. Figures (k) and (l) represent the average and
variance results over all genres.
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matrix representation which provides a convenient way to visualize the discriminative distribution

according to all features.

As in the case of the Rhythm Pattern descriptor the discriminant analysis of the Statistical

Spectrum Descriptor begins with an introductory discussion of the discrimination results based on

the Gain Ratio. Figure 3.9 visualizes the discrimination results based on the Gain Ratio according

to all 10 genres of the GTZAN collection. Moreover, two illustrations presenting the average and

the variance of the discrimination values computed over all genres are depicted in this �gure.

Similar to the Rhythm Pattern descriptor all genres are constituted by quite di�erent feature

patterns. In particular, two genres are represented by a large number of discriminative features

which are the genre Classical and Jazz, while in the case of the Rhythm Pattern descriptor

Hip hop and Pop are represented by a large number discriminative features. According to both

Classical and Jazz the statistical measures mean, median and max value are emphasized, while

features related to the measures variance and skewness exhibit very low discrimination values

or even zero discrimination. Also all critical bands with a Bark number between 15 and 23 are

emphasized. The critical band 15 is de�ned by the frequency interval [2.32, 2.7] kHz, while the
critical band 23 corresponds to the interval [9.5, 12] kHz. In fact, in the case of Classical and

Jazz music these critical bands are also emphasized according to the Rhythm Pattern descriptor.

Additionally, in terms of the genre Classical features possess high discrimination values which are

related to critical bands below the Bark band 3, i. e. frequencies less than 0.2 kHz, and measures

mean, median, kurtosis and max value. Thus, a key di�erence in discriminative feature patterns

of classical and jazz music appears to be that features corresponding to lower critical frequency

bands have high discrimination values according to classical music only.

Another group can be observed containing genres which are represented by discriminative

features corresponding to few or even single statistical measures. The genres Metal, Reggae

and Rock are such genres where the min value appears to be particularly important. Many

features being highly discriminative correspond to this very measure over various critical bands,

while features related to the other measures are considerably less discriminative. In fact, only

speci�c features related to the measures mean, median and kurtosis also exhibit relatively high

discrimination values. The other 4 genres Blues, Country, Disco and Hip hop are constituted by a
considerably smaller number of discriminative features. Nevertheless, an interesting observation

is that according to all these 4 genres almost only features are actually discriminative which are

distributed along either high critical bands with more than 20 Bark or low critical bands with

less than 6 Bark. This suggests that a quite large number of critical bands does not include any

discriminative information about the respective underlying genre.

According to �gure 3.9, two very promising observations can be concluded for a wider range

of genres. First, for a considerably large number of genres the statistical measures variance and

skewness are highly irrelevant in terms of suggesting discriminative features. Only in the case of

the genres Country and Disco features related to these two measures exhibit high discrimination

values. This observation also agrees with the illustration of the average discrimination values

in �gure (k) where features can be assumed as relatively irrelevant which correspond to these
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Figure 3.10: Inter-genre comparison of discriminative features according to the Statistical Spec-
trum Descriptor and the Gain Ratio on the GTZAN collection. In order to provide a clear visual-
ization, only 50% of those features were taken into account which had a non-zero discrimination
value. The size of every dot indicates the degree of discrimination the corresponding feature has
where a large size implies higher discrimination.
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Figure 3.11: Inter-genre comparison of discriminative features according to the Statistical Spec-
trum Descriptor and the Balanced Information Gain based on the GTZAN collection. In order
to provide a clear visualization, only 50% of those features were taken into account which had
a non-zero discrimination value. The size of every dot indicates the degree of discrimination the
corresponding feature has where a large size implies higher discrimination.
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Figure 3.12: Inter-genre comparison of discriminative features according to the Statistical Spec-
trum Descriptor and the ReliefF on the GTZAN collection. In order to provide a clear visualization,
only 50% of those features were taken into account which had a non-zero discrimination value.
The size of every dot indicates the degree of discrimination the corresponding feature has where a
large size implies higher discrimination.
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two measures and all but very high critical bands. Moreover, the variances according to the

measures variance and skewness, which are depicting in �gure (l), are very low or even zero

for those features. This mean that it can be consistently assumed that these features are quite

irrelevant over all genres. Like in the case of the Rhythm Pattern descriptor in 3.3.1, the critical

band 24 representing the frequency interval [12, 15.5] kHz is completely irrelevant for all examined
genres.

The next step of the discriminant analysis is to expand the examination to other heuristic

discrimination models. In order to compare the discrimination results of each of the three

calculation model, the �gures 3.10, 3.11 and 3.12 illustrate the discriminative results according

to each genre based on the Gain Ratio, Balanced Information Gain and the ReliefF respectively.

The discrimination results of the calculation models Chi-square and the Information Gain are

not explicitly presented because of the high degree of similarity regarding those discrimination

results comparing with the results of both he Gain Ratio and the Balanced Information Gain.

To provide a clear visualizations, again 50% of all actually discriminative features are taken

into account only. Every discriminative feature is depicted by a dot of varying size. The size

depends on the actual discrimination value of that feature where larger a size denotes a higher

discrimination value.

The �gures 3.10 and 3.11 con�rm clearly that the discriminative feature patterns computed

by both the Gain Ratio and the Balanced Information Gain are quite similar. As the discrimina-

tion results according to the Gain Ratio calculation model have already been discussed before and

the discrimination results based on the Balanced Information Gain only marginally di�er, the

discrimination results based on the ReliefF calculation model will be examined in the following.

In �gure 3.12, the discriminative features of every genre are visualized according to the ReliefF.

Contrary to the results based on the other two calculation models, all genres are represented

by an almost similar number of discriminative features. The genre Blues is the only exception

as it is represented by a slightly smaller number of discriminative features. This is a di�erent

conclusion comparing with the Gain Ratio and the Balanced Information Gain where di�erences

in the number of discriminative features could be recognized. In fact, this di�erent performance

of the ReliefF has also been concluded in terms of the Rhythm Pattern descriptor. Thus, it

appears that the ReliefF consistently estimates a large number of features to be discriminative

according to all genres. An important fact also holds true for the ReliefF which actually coincides

with the Gain Ratio and the Balanced Information Gain. The statistical measures variance and

skewness are quite irrelevant for the majority of genres, since features corresponding to those

two measures exhibit low discrimination values or even zero discrimination. In fact, these two

measures even appear to be more irrelevant compared with the Gain Ratio and the Balanced

Information Gain. As already seen before and in context of the Rhythm Pattern descriptor, all

features related to the critical band 24 Bark possess no discrimination at all.

The comparison of the results according to the three calculation models reveals a surprising

fact which could not be concluded in terms of the Rhythm Pattern descriptor. It appears

that the di�erence in the discriminative feature patterns is limited and a considerable degree of
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similarity can be recognized for many genres. For instance the discriminative feature patterns

describing the genres Classical, Metal or Pop imply such a considerable degree of similarity

because all three calculation models estimated quite a large number of the same features to be

discriminative, while the corresponding discrimination values vary. As this degree of similarity

regarding the discrimination results of the three calculation models could not be seen for both

the Rhythm Pattern descriptor and the Rhythm Histogram descriptor, speci�c characteristics of

the Statistical Spectrum Descriptor must be the reason of this interesting observation. In the

case of the ISMIR 2004 Rhythm collection and the Rhythm Pattern descriptor such a similarity

of the discrimination results based on the three calculation models has also been concluded for

many genres where the strong feature-genre dependency has been assumed to be the reason. This

might also be a plausible explanation for the same observation regarding the Statistical Spectrum

Descriptor. Lidy et al. showed in [38] that the Statistical Spectrum Descriptor outperforms

both the Rhythm Pattern descriptor and the Rhythm Histogram descriptor according to the

GTZAN collection in terms of genre classi�cation. Thus, it can be assumed that the features

of the Statistical Spectrum Descriptor possess more information regarding genre discrimination.

This higher correlation of the feature to a respective genre may be the reason for the similar

performances.

The next step of the discriminant analysis is to examine the distribution of the discrim-

ination values according to every genre. Particularly, the scale of the discrimination values

according to every genre and the number of features having zero discrimination should be dis-

cussed. Figure 3.13 illustrates the relation of the discrimination values against the ranking order

according to each of the four genres Classical, Disco, Jazz and Rock and the three calculation

models, while a statistical description regarding the underlying distribution of the discrimination

values is given in table 3.2. As the range of discrimination values is very large, all values were

normalized into the interval [0, 1] considering the discrimination values of all 10 genres. These

normalized discrimination values were used both in the illustration regarding the relation of the

discrimination values against the ranking order and in the statistical description.

Considering the �gure 3.13, considerably larger discrimination values were estimated accord-

ing to classical music and all three calculation models comparing with the other genres. In terms

of the Gain Ratio and Balanced Information Gain the following conclusion can be made. The

number of features representing classical music having zero discrimination is smaller comparing

with the other genres. In fact, quite a large number of features suggest zero discrimination in

terms of Disco, Jazz and Rock with rock music having the smallest number of discriminative

features. The number of features exhibiting large discrimination values is far smaller in the case

of those three genres comparing with classical music. According to the ReliefF, features hav-

ing a zero discrimination value do not exist for any of the four selected genres. An interesting

fact is that the same order based on the highest discrimination value per genre is given for all

calculation models.

Figure 3.14 illustrates those features which are irrelevant with respect to the four selected

genres of �gure 3.13 and the three calculation models Gain Ratio, Balanced Information Gain
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(c) ReliefF

Figure 3.13: Illustration of the discrimination values against the ranking order according to the
Statistical Spectrum Descriptor on the GTZAN collection (normalized into the interval [0, 1] for
every calculation model separately). Each musical genre is illustrated by an individual color and
symbol: g for Classical, × for Disco, + for Jazz and o for Rock.

and ReliefF. As in the case of the Rhythm Pattern descriptor, features are also assumed to

be irrelevant which have a discrimination value less than the discrimination value of a generic

feature. This random feature is equally de�ned as in the case of the Rhythm Pattern descriptor.

In fact, this generic feature only plays a role for the ReliefF model, as this model basically

estimates non-zero discrimination values for every feature. As some features exhibit a smaller

discrimination value than the value of the random feature in terms of the ReliefF model, it can

be followed that some features related to the genres Disco, Jazz and Rock are actually irrelevant.

Table 3.2 presents a short statistical description of the discrimination results. The estima-

tions of the statistical measures mean, standard derivation, min and max value were computed

by using the normalized discrimination value range. Similar to the Rhythm Pattern descriptor

the genre Classical is related the highest maximum and average discrimination values according

to the Gain Ratio and the Balanced Information Gain, while the genre Pop is related the highest

maximum and average discrimination values in terms of the ReliefF. Also an interesting fact is

that the standard derivation of the discrimination values based on all three calculation models
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Figure 3.14: Irrelevant features of the Statistical Spectrum Descriptor according to the GTZAN
collection. All black colored features are considered as irrelevant. Gain Ratio: (a) to (d), Balanced
Information Gain: (e) to (h), ReliefF: (i) to (l).

is quite similar. Consequently, all three calculation models are quite robust in order to estimate

the discriminative power of speci�c features to distinguish genres.

Like in the case of the Rhythm Pattern descriptor the next step of the discriminant analysis

is to verify the di�erence of the discriminative feature patterns according to every genre. The

possible existence of individual, i. e. signi�cantly di�erent, feature patterns was evaluated by

using Kendall's statistical rank correlation test where p-value indicates a signi�cant non-zero or

zero correlation respectively. It must be reminded that the occurrence of tied ranks within the

ranking sequence limits the expressiveness of the rank correlation test. This problem has already

been discussed in 3.3.1.
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Gain Ratio Balanced IG ReliefF

Genre µ̂ σ̂ min max µ̂ σ̂ min max µ̂ σ̂ min max

Blues 0.04 0.05 0.00 0.22 0.04 0.06 0.00 0.27 0.16 0.06 0.00 0.32
Classical 0.42 0.25 0.00 1.00 0.31 0.24 0.00 1.00 0.22 0.13 0.02 0.56
Country 0.02 0.04 0.00 0.13 0.03 0.05 0.00 0.20 0.12 0.05 0.02 0.27
Disco 0.02 0.04 0.00 0.18 0.03 0.04 0.00 0.18 0.13 0.06 0.02 0.25
Hip hop 0.06 0.09 0.00 0.40 0.06 0.07 0.00 0.38 0.17 0.08 0.02 0.45
Jazz 0.09 0.08 0.00 0.30 0.10 0.09 0.00 0.36 0.16 0.08 0.01 0.35
Metal 0.14 0.17 0.00 0.66 0.14 0.16 0.00 0.59 0.18 0.12 0.01 0.58
Pop 0.17 0.20 0.00 0.96 0.18 0.19 0.00 0.92 0.23 0.17 0.01 1.00
Reggae 0.06 0.05 0.00 0.21 0.06 0.06 0.00 0.23 0.14 0.06 0.01 0.30
Rock 0.03 0.04 0.00 0.14 0.02 0.03 0.00 0.16 0.12 0.05 0.02 0.26

Table 3.2: Statistical summarization of the discrimination values according to the Statistical
Spectrum Descriptor and the GTZAN collection (normalized into the interval [0, 1] for every calcu-
lation model separately). Only those discrimination values were considered which were originally
non-zero.

In table 3.4, the p-values of the rank correlation tests based on every tested genre pair are

listed. As the signi�cance level of all rank correlation tests was de�ned by α = 0.05 every p-

value grater than α indicates a zero correlation of the underlying discriminative feature patterns.

In the case of zero correlation individual feature patterns were concluded. According to the

Gain Ratio and the Balanced Information Gain the number of actual individual feature patterns

is almost similar. Moreover, for both calculation models holds true that considerably more

individual feature patterns are recognized than in terms of the Rhythm Pattern descriptor. As

these two calculation models estimate a large number of features having zero discrimination, the

test results unfortunately do not represent all possible individual feature ranks. Nevertheless,

in terms of the genres Classical, Jazz and Pop the feature patterns signi�cantly di�er to most

of the other genres. The test results according to the discriminative patterns estimated by the

ReliefF suggest considerably more individual feature patterns. This means that many genres are

actually represented by individual feature patterns which signi�cantly di�er to those of other

genres. Even feature patterns of genres like Blues and Jazz as well as Pop and Rock signi�cantly

di�er although often similar rhythm styles are related to each of these two genre pairs.

Since all previous conclusions only refer to the GTZAN collection, the question raise whether

and how the performances of the three heuristic discrimination models vary in the case of the

ISMIR 2004 Genre and Rhythm collections. Thus, similar and diverging conclusions concerning

the identi�cation of genre-speci�c feature patterns based on these collections will be shortly

discussed comparing with those conclusions based on the GTZAN collection.

ISMIR 2004 Genre

In order to compare the discriminative feature patterns according to both the GTZAN and

the ISMIR 2004 Genre collections, four speci�c genres were selected which are more or less
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Continued on the next page . . .

represented in both collections. According to the ISMIR 2004 Genre collection these genres are

Classical, Electronic, Jazz & Blues and Rock & Pop. Since at least a partial correlation can be

assumed to the genres Classical, Disco Jazz and Rock of the GTZAN collection respectively, a

basic comparison of the respective discriminative feature pattern was performed although only



3.3. EXPERIMENTS 67

Classical

mean median var skewness kurtosis min max

5

10

15

20

24

cr
iti

ca
l b

an
d 

[B
ar

k]

statistical moments

Electronic

mean median var skewness kurtosis min max

5

10

15

20

24

cr
iti

ca
l b

an
d 

[B
ar

k]

statistical moments

mean median var skewness kurtosis min max

5

10

15

20

24

cr
iti

ca
l b

an
d 

[B
ar

k]

statistical moments

Jazz & Blues

mean median var skewness kurtosis min max

5

10

15

20

24

cr
iti

ca
l b

an
d 

[B
ar

k]

statistical moments

Rock & Pop

(c) ReliefF

Figure 3.15: Inter-genre comparison of discriminative features according to the Statistical Spec-
trum Descriptor on the ISMIR 2004 Genre collection. Three calculation models were used where
�gure (a) represents the Gain Ratio, �gure (b) corresponds to the Balanced Information Gain and
�gure (c) is related to the ReliefF. In order to provide a clear visualization, 50% of those features
were taken into account only which had a non-zero discrimination value. The size of every dot
indicates the degree of discrimination the corresponding feature has where a large size implies
higher discrimination.

in the case of the genre Classical a su�cient correlation genre can be assumed.

Figure 3.15 illustrates the discrimination values according to the four selected genres of the

ISMIR 2004 Genre collection based on the three heuristic discrimination models Gain Ratio,

Balanced Information Gain and ReliefF. As already done in similar illustration, only 50% of all

actually discriminative features were plotted as �lled dots with varying size, while a larger size

indicates better discrimination of the corresponding feature. According to the Gain Ratio and

the Balanced Information Gain, the discrimination results diverge between almost all related

genres of the GTZAN and the ISMIR 2004 Genre collection. Only for the genre Classical a

high degree of similarity can be observed. In particular the features related to the measures

mean, median and max value were estimated to be discriminative according to both collections.

As already seen before, features related to the critical band 24 Bark were also estimated to be

discriminative in the case of ISMIR 2004 Genre collection but not in the case of the GTZAN

collection.

According to the ReliefF model, similar discrimination results regarding the both classical

genres can also be concluded where the degree of similarity is even higher as in the case of

the other two calculation models. Contrarily, a considerably degree of similarity can also be
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concluded according to the other three genres as well. In fact, each comparison reveals a large

number of features being discriminative in the feature patterns according to each of the correlated

genres. Considering the comparison Jazz & Blues versus Jazz for instance, a relatively high

consistency exists for those discriminative features which are related to the statistical measures

kurtosis, min and max value. Thus, it can be followed that the discrimination results computed

by the ReliefF are actually more consistent on partially correlated music collections. A reason

explaining the consistency of the ReliefF model on partially correlated music collections may be

the point of view how ReliefF estimates the feature-genre dependency. In [48], calculation models

implementing the impurity function are referred as the global point of view to estimate feature-

genre dependency, while for the ReliefF model a local point of view was concluded as it also takes

the context of other features into account. It appears that the global point of view disregarding

local feature dependencies depends on the characteristics of the underlying music collection. In

particular partially correlated genres like for instance Disco and Electronic could be a source

of di�erent discriminative feature patterns, as musical pieces also a�ect the computation of the

genre discrimination which are not consistently assigned to both genres. Also possible outliers

according to the two correlated genres are crucial. For example the genres Disco and Electronic

of the GTZAN and the ISMIR 2004 Genre collections respectively are only partial correlated and

the corresponding discriminative feature patterns di�er more in the case of the Gain Ratio and

the Balanced Information Gain comparing with the ReliefF. The ReliefF estimates the feature-

genre dependency over a smaller part of the input space as it implements a nearest-neighbor

algorithm. The dependencies between the features also play a role in the computation of the

genre discrimination. Consequently, the ReliefF appears to be more consistent on partially

correlated music collections because the data instances might be more correlated within local

areas of the corresponding input spaces as well as less outliers might also be included. It can

be followed that the ReliefF calculation model guarantees more consistent discrimination results

according to di�erent music collections.

Another important fact can be concluded on the discrimination results regarding the ISMIR

2004 Genre collection which is also valid for the GTZAN collection. It can be followed that

the discriminative feature patterns computed by the three heuristic calculation models Gain

Ratio, Balanced Information Gain and ReliefF imply a notable degree of similarity. On the on

hand, the Gain Ratio and the Balanced Information Gain estimate almost the same features

to be discriminative and also the discrimination values of those features only marginally vary.

As the similar performance of these two calculation models has already been concluded in the

case of the Rhythm Pattern descriptor, the di�erent approaches of normalizing multi-valued

features implemented in those two calculation models do not decisively a�ect the computation.

Section 3.2 reviews the problem of multi-valued features in terms of the Information Gain and the

two normalization heuristics representing the Gain Ratio and the Balanced Information Gain.

On the other hand, the ReliefF model estimates more di�ering discriminative feature patterns

but nonetheless a certain degree of similarity to the feature patterns computed by the other

two calculation models can be recognized. The corresponding discrimination results according
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to the GTZAN collection also imply this conclusion. Thus, the discriminative feature patterns

computed by each of the three calculation models appear to be more consistent and the di�erent

approaches of estimating the feature-genre dependency do not a�ect the computation that strong

comparing with both the Rhythm Pattern descriptor and the Rhythm Histogram descriptor. A

possible explanation has already been given in terms of the discussion regarding the results based

on the GTZAN collection.

Table 3.5 lists the p-values of the rank correlation test due to pair wise genre tests according

to the ISMIR 2004 Genre collection. It can be followed that more individual discriminative

feature patterns exist regarding the Statistical Spectrum Descriptor than in the cases of the

Rhythm Pattern descriptor. The number of individual discriminative feature patterns is quite

balanced but not similar according to the Gain Ratio and the Balanced Information Gain as

well as the ReliefF. In particular the feature pattern estimated by each of the three calculation

models and representing the genres Classical and World appears to be individual comparing with

most of the other genres.

ISMIR 2004 Rhythm

As in the discriminant analysis of the Rhythm Pattern descriptor the performances of the three

heuristic discrimination models should be shortly discussed on the ISMIR 2004 Rhythm collec-

tion. Since this music collection contains Latin and Ballroom dance music only, genre-to-genre

comparisons regarding the respective feature discriminative patterns of the other music collec-

tions are not possible. Nevertheless, some conclusions can also be veri�ed on this collection.

The discriminative feature patterns computed by the Gain Ratio and the Balanced Informa-

tion Gain are also very similar with respect to the ISMIR 2004 Rhythm collection. In particular

almost the same features were de�ned to be discriminative, while the discrimination values of

those features di�er because of the di�erent approaches of normalizing multi-valued features

utilized in the Gain Ratio and the Balanced Information Gain. As the di�erences in the discrim-

ination values are considerably limited according to all three music collections, it can de�nitely

be assumed that both the Gain Ratio and the Balanced Information Gain compute su�ciently

similar discriminative feature patterns. Actually, this conclusion is also valid for the Chi-square

and the Information Gain which both also implement the impurity function.

Contrarily, the ReliefF calculation model computes discriminative feature patterns diverging

from those computed by the Gain Ratio and the Balanced Information Gain. Di�erent discrim-

inative features as well as varying discrimination values could be recognized. This conclusion is

only partially valid in terms of the other two collections where a certain degree of similarity could

be concluded for some genres like Classical and Electronic. It also disagrees with the observation

according to both the Rhythm Pattern descriptor and the Rhythm Histogram descriptor where

at least for some genres a notable similarity could be concluded among to the discrimination re-

sults of the three calculation models. Another interesting fact is that the features corresponding

to the statistical measures variance and skewness mostly exhibit very low discrimination values.

This conclusion could also be made in terms of the other two music collections. Consequently,
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a general irrelevance of the measures variance and skewness can be assumed as almost all fea-

tures related to these two measure exhibit low or zero discrimination according to almost all

one-vs.-rest genre situations on all three music collection.

3.3.3 Rhythm Histogram

Although the extraction of the Rhythm Histogram descriptor utilizes the same psycho-acoustic

transformation as both the Rhythm Pattern descriptor and the Statistical Spectrum Descriptor,

the features are not directly related to the 24 critical bands but represent 60 modulation frequency
bins instead. Further details concerning the extraction of the Rhythm Histogram descriptor can

be reviewed in section 2.5. Usual bar plots will be used to visualize the discrimination values

of every feature. Beginning with the Gain Ratio calculation model, �gure 3.16 illustrates the

discrimination results according to all 10 genres of the GTZAN collection. Additionally, the

average and the variance of the discrimination values computed over all genres are illustrated in

this �gure.

As already observed in context of both the Rhythm Pattern descriptor and the Statistical

Spectrum Descriptor, two groups of genres can be identi�ed which di�er in the number of features

being discriminative. The genres Classical, Hip hop, Jazz and Pop are represented by a large

number of discriminative features. It can be followed that a broad range of of modulation

frequencies characterizes the underlying genres. Those four genres are also related to a large

number of discriminative features according to the Rhythm Pattern descriptor and the Statistical

Spectrum Descriptor. The second group contains the genres Blues, Country, Disco, Metal,

Reggae and Rock. Each genre of this group is related to a signi�cantly smaller number of

discriminative features. Moreover, a considerably large number of features are actually irrelevant

as they exhibit a zero discrimination value. A possible explanation of this interesting observation

is that genres like Classical or Pop usually cover a wider range of di�erent rhythmic styles and

tempo variations comparing with very speci�c genres like Blues, Disco and Metal for instance.

In fact, musical pieces related to these more speci�c genres are particularly characterized by a

limited variation of rhythmic styles. Another key di�erence to the genres of the �rst group is

that some very speci�c features exhibit very high discrimination values comparing with the other

features having also a non-zero discrimination values. This di�erence in the discrimination values

between the most discriminative features and less discriminative feature is large for according to

all genres of the second group.

In fact, the partitioning of genres based on the number of discriminative features can also

be observed in terms of the Rhythm Pattern descriptor and the Statistical Spectrum Descriptor.

Since the three descriptors are strongly related to each other as they utilize both the same com-

putation of the frequency spectrum and the same psycho-acoustic transformation, this analog

observation is not surprising. Moreover, the considerable numerical di�erence in the discrim-

ination values of the features among the genres of the second group is also revealed in the

corresponding discrimination results of the other two descriptors.

An interesting fact concerning the group containing genres with a large number of discrim-
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Figure 3.16: Discriminative features of the Rhythm Histogram descriptor according to the music
collection GTZAN. The Gain Ratio model was used to compute all discrimination values where a
more discriminative feature is denoted by a higher bar. Figures (k) and (l) represent the average
and variance results over all genres.

inative features is that the scale of discrimination values is quite balanced between the features.

This means that a considerable number of features and, respectively, modulation frequencies

exhibiting similar discrimination values actually exist. As tempo characteristics and in par-

ticular rhythmic styles vary among musical pieces according to these genres it appears that a

clear decision which particular modulation frequencies characterizing a speci�c genre can not be

made. According to the genres Classical, Hip hop and Pop this number of features possessing

similar discrimination values is quite large, while for the genre Jazz this number of features is

smaller. Contrarily, in the case of the second group of genres very few features can be identi�ed

to uniquely characterize the corresponding genre. According to Blues and Disco a single but dif-
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Continued on the next page . . .

ferent modulation frequency close to 8 Hz achieves such a remarkable genre characterization. In

the case of the genres Country and Metal the lowest modulation frequencies appear to be partic-

ularly discriminative, while single modulation frequencies close to 5 Hz and 4 Hz are particularly

discriminative for the genres Reggae and Rock, respectively.

To summarize the observations according to the discrimination results based on the Gain

Ratio calculation model, the number of discriminative features considerably varies between the

genres, while individual features could be identi�ed for some genres which particularly char-
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Figure 3.17: Inter-genre comparison of discriminative features according to the Rhythm His-
togram based on the GTZAN collection. Three calculation models were used where �gure (a)
represents the Gain Ratio, �gure (b) corresponds to the Balanced Information Gain and �gure (c)
is related to the ReliefF. In order to provide a clear visualization, only 50% of those features
were taken into account which had a non-zero discrimination value. The size of every dot indi-
cates the degree of discrimination the corresponding feature has where a large size implies higher
discrimination.

acterize the corresponding genres. The next step of the discriminant analysis is to verify the

conclusions according to the Gain Ratio on the corresponding discrimination results based on

the Balanced Information Gain and the ReliefF. Since the discrimination results according to the

two heuristic discrimination models Chi-Square and Information Gain only marginally di�ers to

the results based on the Gain Ratio or the Balanced Information Gain, these two calculation

models will not be considered any further. Figure 3.17 illustrates the discriminative features

computed by the Gain Ratio, the Balanced Information Gain and the ReliefF for each genre

respectively. In order to provide better visualization, only 50% of all actually discriminative fea-

tures were plotted as �lled dots with varying size. A larger size indicates better discrimination

of corresponding feature.

The discrimination results based on the Gain Ratio, which are illustrated in (a), are al-

ready discussed in terms of the �gure 3.16 and therefore the same conclusions are valid. The

discrimination results according to the Balanced Information Gain are depicted in �gure (b).

Similar to the Gain Ratio the Balanced Information Gain also implements the impurity function

which means basically that both calculation models utilize the entropy measure to estimate the

dependency between a speci�c feature and a genre. Therefore it is not surprising that the corre-

sponding discrimination results are very similar where almost the same discriminative features

are recognized. In fact, only the corresponding discrimination values of same feature vary. The
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genre Blues represents a good example in which the same features were actually selected to be

discriminative but the discrimination values of these features di�er considerably. The reason

of such di�erences in the discrimination values is due to the applied normalization regarding

multi-valued features which di�ers among the Gain Ratio and the Balanced Information Gain.

As both calculation models basically utilize the Information Gain which tends to overestimate

multi-valued features, this normalization is necessary although di�erent approaches actually ex-

ist. The normalization of multi-valued features implemented in each of these two calculation

models is described in section 3.2. Nevertheless, the partitioning of genres into two groups de-

pending on the number of discriminative features is also clearly observable in the discrimination

results based on the Balanced Information Gain.

According to the ReliefF calculation model illustrated in �gure (c) diverging discrimination

results were computed comparing with the results based on the Gain Ratio and the Balanced

Information Gain. This di�erence is not only constituted in terms of numerical variations regard-

ing the estimated discrimination values. Considering the discriminative features of each genre

according to the three calculation models, it can be followed that even di�erent features are

selected to be discriminative. Only in the case of the genres Pop and Metal the selected features

coincide by a notable degree. It clearly holds true that the number of discriminative features

does not vary as much between the genres as in the case of the results based on the calculation

models implementing the impurity function. In fact, 8 of 10 genres are related to a large number

of discriminative features which is even quite similar among these genres. Only in the case of

the genres Disco and Hip hop a smaller number of discriminative features were estimated al-

though the number is only slightly smaller. Nevertheless, the number of discriminative features

related to Disco is still considerably larger than in the case of the other two calculation models.

This means that some genres are also represented by a large number of discriminative features

although musical pieces of those genres usually include a slight variation of rhythmic styles and

beats. Another interesting fact is that for 6 of 10 genres the most discriminative features refer

to modulation frequencies from 0.2 to 3 Hz. On the other hand, the modulation frequency range

from 3 to 6 Hz appears to be relevant for 4 genres only. The di�erent discrimination results of the
ReliefF are not completely surprising, since this model follows a diverging concept of measuring

the dependency between a feature and a genre.

It could already be concluded that the scale of the discrimination values varies according

to every genre and also that the degree of di�erence in the discriminative values depends on

the underlying genre. To emphasize the di�erence in the scale of the discrimination values

among the genres, both an illustration regarding the relation of the discrimination values against

the ranking order for the genres Classical, Disco, Hip hop and Rock as well as a statistical

description of the discrimination values are given in the following. Figure 3.18 visualizes the

relation of the discrimination values against the ranking order according to each of the four

genres Classical, Disco, Jazz and Rock based on the three heuristic discrimination models Gain

Ratio, Balanced Information Gain and ReliefF respectively. Table 3.3 lists the estimations of four

key statistical descriptors in order to give a better insight into the relation of the discrimination
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(c) ReliefF

Figure 3.18: Illustration of the discrimination values against the ranking order according to the
Rhythm Histogram Descriptor on the GTZAN collection (normalized into the interval [0, 1] for
every calculation model separately). Each musical genre is illustrated by an individual color and
symbol: g for Classical, × for Disco, + for Jazz and o for Rock.

values to corresponding genres. As the range of discrimination values is very large, all values

were normalized into the interval [0, 1] considering the non-zero discrimination values of all 10
genres. These normalized discrimination values were used to establish both the �gure 3.18 and

the table 3.3.

As already observed in terms of the visualization of the discriminative features, all features

and, respectively the entire range of modulation frequencies are discriminative according to the

genre Classical. Moreover, a larger number of features exhibit similar discrimination values

according to the Gain Ratio and Balanced Information Gain, while the distribution according

to the ReliefF decreases less rapidly. Another interesting observation is the number of features

possessing a zero discrimination values which actually coincides with the corresponding results

based on the Rhythm Pattern descriptor and the Statistical Spectrum Descriptor. In the case

of the Gain Ratio as well as the Balanced Information Gain quite a large number of features

have a zero discrimination value according to the genres Disco, Jazz and Rock. It was assumed

that zero discrimination refers to a irrelevance of distinguishing genres. Additionally, �gure 3.19
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Figure 3.19: Irrelevant features of the Rhythm Histogram descriptor according to the GTZAN
collection. Gain Ratio (a), Balanced Information Gain: (b), ReliefF: (c).

illustrates these irrelevant features for each genre and calculation model. According to Disco and

Rock the irrelevant features are quite the same but only in terms of the calculation models Gain

Ratio and the Balanced Information Gain. Also the irrelevant features according to the ReliefF

calculation model are illustrated in �gure 3.19. Although every feature has actually a non-

zero discrimination value, some features are considered to be irrelevant because they exhibit a

discrimination value less than the discrimination value of a random probe feature. The random

probe feature was equally generated as in the case of the other two descriptors. Since some

features were less discriminative than the random probe feature in terms of the ReliefF model,

it was followed that those features related to the genres Disco, Jazz and Rock were irrelevant

respectively.

In the next step of the discrimination analysis, the discriminative feature patterns according

to every genre were evaluated whether the di�erence in the feature patterns is signi�cant. The

veri�cation was done for each of the three calculation models individually. Like in the case of the

Rhythm Pattern descriptor the possible existence of individual, i. e. signi�cantly di�erent, feature

patterns was evaluated by using Kendall's statistical rank correlation test where p-value indicates
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Gain Ratio Balanced IG ReliefF

Genre µ̂ σ̂ min max µ̂ σ̂ min max µ̂ σ̂ min max

Blues 0.04 0.06 0.00 0.22 0.02 0.04 0.00 0.13 0.16 0.09 0.02 0.40
Classical 0.73 0.16 0.07 1.00 0.77 0.16 0.07 1.00 0.47 0.14 0.20 0.99
Country 0.02 0.03 0.00 0.12 0.04 0.06 0.00 0.22 0.15 0.08 0.00 0.49
Disco 0.06 0.13 0.00 0.59 0.04 0.06 0.00 0.25 0.29 0.20 0.04 1.00
Hiphop 0.23 0.10 0.00 0.43 0.31 0.12 0.00 0.50 0.59 0.17 0.31 0.95
Jazz 0.08 0.07 0.00 0.21 0.14 0.11 0.00 0.35 0.17 0.08 0.05 0.37
Metal 0.02 0.04 0.00 0.15 0.04 0.06 0.00 0.26 0.15 0.08 0.02 0.38
Pop 0.19 0.06 0.07 0.35 0.33 0.07 0.17 0.56 0.55 0.17 0.26 0.91
Reggae 0.11 0.19 0.00 0.59 0.07 0.09 0.00 0.26 0.27 0.16 0.08 0.88
Rock 0.01 0.04 0.00 0.13 0.02 0.05 0.00 0.25 0.15 0.06 0.01 0.26

Table 3.3: Statistical summarization of the discrimination values according to the Rhythm His-
togram descriptor and the GTZAN collection (normalized into the interval [0, 1] for every calcu-
lation model separately). Only those discrimination values were considered which originally were
non-zero.

a signi�cant non-zero or zero correlation respectively. It must be reminded that the occurrence

of tied ranks within the ranking sequence limits the expressiveness of the rank correlation test.

This problem has already been discussed in 3.3.1.

Table 3.4 lists the p-values of all tested genre pairs according to the three heuristic discrim-

ination models Gain Ratio, Balanced Information Gain and ReliefF on the GTZAN collection.

The signi�cance level is de�ned with α = 0.05 and a p-value greater than α indicates that the

corresponding two genres are represented by individual discriminative feature patterns each. It

is not surprising that the genres Classical and Pop which are related to the largest number of

discriminative features are also represented by the largest number of individual feature patterns.

For these two genres the number of potential individual feature patterns is similar to those based

on the Statistical Spectrum Descriptor. The test results based on the Gain Ratio and the Bal-

anced Information Gain are very similar. Almost all recognized individual feature patterns are

being individual for these two calculation models. According to the ReliefF the test results o�er

far more individual feature patterns. As all features exhibit a non-zero discrimination value in

terms of the ReliefF, which can be concluded in the �gure 3.18, the rank correlation test unfolds

its full expressiveness. Thus, far more individual discriminative feature patterns can be concluded

for various genres. In particular some very interesting genre pairs are actually represented by

signi�cantly di�erent feature patterns. For instance Blues vs. Jazz, Metal vs. Rock, Country vs.

Rock or Disco vs. Hip hop are actually among those genre pairs, although each of those pairs

contains genres which are somehow related to each other in terms rhythmic styles and number

of beats. The discriminative feature patterns according to the genres Hip hop and Reggae are

also individual with respect to all other genres.
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ISMIR 2004 Genre

Since the genres of the ISMIR 2004 Genre and the GTZAN collection only partially correlate, four

speci�c genres were selected which are more or less represented in both collections. According to

the ISMIR 2004 Genre collection these genres are Classical, Electronic, Jazz & Blues and Rock

& Pop. As at least a partial correlation can be assumed to the genres Classical, Disco Jazz and

Rock of the GTZAN collection respectively, a comparison of the respective discrimination results

was done although only both classical genres coincide su�ciently.

According to the ISMIR 2004 Genre collection the discrimination results based on the Gain

Ratio and the Balanced Information Gain on the one hand, and the ReliefF on the other hand

also diverge. This means that the di�erent concepts of estimating the dependency between a

speci�c feature and a genre, namely the impurity function versus an approach based on the

nearest-neighbor algorithm, actually in�uence the computation of the discrimination values. It

can be followed that this di�erence in the discriminative patterns according to a speci�c genre

will be observed in further music collections either. As the di�erence in the discrimination results

based on the Gain Ratio and the Balanced Information Gain are also limited in the case of the

ISMIR 2004 Genre collection, these two calculation models appear to be consistent with a high

degree regarding the estimation of discriminative feature patterns. Since this conclusion is also

valid for the ISMIR 2004 Rhythm collection, this equal performance can be concluded generally.

Figure 3.20 illustrates the discrimination results of the selected genres based on the three

heuristic discrimination models Gain Ratio, Balanced Information Gain and ReliefF. Only 50% of

all actually discriminative features were plotted as �lled dots with varying size. Again, a larger

size indicates better discrimination of the corresponding feature. At �rst, the results con�rm

the high similarity of the discriminative feature patterns computed by the Gain Ratio and the

Balanced Information Gain. It can be observed that the estimated discriminative features of

both calculation models mostly coincide although the actual discrimination values of a large

number of features vary. In the case of the genre Classical a quite large number of features was

selected to be discriminative which actually a�rmed the corresponding observation according to

the GTZAN collection. Also the number of discriminative features according to the other three

genres is almost as large as for classical music. Comparing the results of the related genres of

the GTZAN collection, this is a contradictory observation but might be related to the compared

genres. In fact, the genres Electronic, Jazz & Blues and Rock & Pop are more general and

contain more variation of rhythmic styles as the more speci�c genres Disco, Jazz and Rock of

the GTZAN collection. Thus, the diverging observation regarding the actual number of selected

features is not surprising.

An interesting fact is that although the discrimination results based on the Gain Ratio and

the Balanced Information Gain diverge with respect to the corresponding results according to

the GTZAN collection, in the case of the ReliefF this di�erence in the discrimination values

between the two collections appears to be more limited. In fact, many features are selected to be

discriminative according to both collections, although the corresponding discrimination values
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Figure 3.20: Inter-genre comparison of discriminative features according to the Rhythm His-
togram descriptor on the ISMIR 2004 Genre collection. In order to provide a clear visualization,
50% of those features were taken into account only which had a non-zero discrimination value.
The size of every dot indicates the degree of discrimination the corresponding feature has where a
large size implies higher discrimination.
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do vary. In particular for the genre Classical or Rock & Pop a partial similarity of selected

discriminative features can be concluded with respect to the genres Classical and Rock of the

GTZAN collection. Considering the corresponding results based on the Gain Ratio and the Bal-

anced Information Gain, such a degree of similarity can be hardly seen at all and even orthogonal

discriminative feature patterns exist like those for the two classical genres for instance. A reason

explaining the consistency of the ReliefF model may be the point of view how ReliefF estimates

the feature-genre dependency. As already mentioned before, a calculation model implementing

the impurity function follows the global point of view to estimate feature-genre dependency. In

particular, this means that they use the entire input space for the computation. Contrarily, the

ReliefF model implements a nearest-neighbor algorithm and therefore the estimation of feature-

genre dependencies are more focused on local areas of the input space. Additionally, it also takes

the context of other features into account. As already discussed for the Statistical Spectrum

Descriptor, these di�erent concepts of dependency estimation highly depend on the characteris-

tic of the underlying music collection where a global point of view is much more in�uenced by

diverging characteristics of music collections. Thus, the ReliefF calculation model guarantees

more consistent discrimination results on partially correlated music collections.

Table 3.5 lists the p-values of the rank correlation test due to pair wise genre tests according

to the ISMIR 2004 Genre collection. It can be followed that more individual discriminative fea-

ture patterns exist regarding the Rhythm Histogram descriptor than in the case of the Rhythm

Pattern descriptor. According to the Statistical Spectrum Descriptor this number of individual

feature patterns is quite balanced. Again, the number of individual discriminative feature pat-

terns is considerably smaller according to the Gain Ratio and the Balanced Information Gain.

As already mentioned in terms of the rank correlation test based on the GTZAN collection,

these two calculation models estimates zero discrimination for quite many features which reduce

the e�ectiveness of the entire correlation test. Nevertheless, the genres Jazz & Blues as well as

Rock & Pop are represented by individual feature patterns with respect to almost all genres.

According to the ReliefF, most of the genres are related to individual feature patterns and this

is a similar conclusion as in the case of the GTZAN collection.

ISMIR 2004 Rhythm

The discrimination results according to the ISMIR 2004 Rhythm collection are obviously di�-

cult to compare as completely di�erent genres are included than with the other two collections.

Nevertheless, it can also be concluded that respective discrimination results based on the Gain

Ratio and the Balanced Information Gain only marginally diverge. This conclusion is also ac-

tually valid in terms of the Rhythm Pattern descriptor and the Statistical Spectrum Descriptor.

In particular both calculation models estimated almost the same features to be discriminative.

Since this conclusion is also valid according to the other two descriptors and all three examined

music collection, a consistent similarity regarding the estimation of discriminative features can

be expected for all the models implementing the impurity function. Possible di�erent approaches

of normalizing multi-valued features, which are implemented in the Gain Ratio and the Balanced
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Information Gain, do not su�ciently a�ect the estimation of feature-genre discrimination. Only

variations of the actual discrimination values were observed. But this is not surprising consid-

ering the fact that the original feature contribution based on the Information Gain is di�erently

normalized. More details on the speci�c approaches of normalizing multi-valued features and

the actual implementations within the calculation models used in this thesis can be reviewed in

section 2.3. Another interesting fact is that both the Gain Ratio and the Balanced Information

Gain estimated quite a large number of features exhibiting zero genre discrimination, while all

features possess non-zero discrimination values according to the ReliefF calculation model.

The discrimination results computed by the ReliefF model implied a surprising similarity

to the results based on the other two calculation models. In fact, a considerable similarity was

recognizable for 5 of the 8 genres. All three calculation models delivered quite similar estimates

for the most discriminative features. In particular the most discriminative feature was always

identical according to all calculation models. On the other hand, the discrimination results

according to the genres Rumba and Slow Waltz diverged considerably. This partial correlation

of the discrimination results based on the three calculation models has already been observed in

the case of the Rhythm Pattern descriptor. Contrarily, the discrimination results based on the

Gain Ratio and Balanced Information Gain on the one hand, and the ReliefF on the other hand

diverged according to the Statistical Spectrum Descriptor.
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3.4 Conclusion

This chapter presented a discriminant analysis of audio-based rhythmic descriptors in order to

distinguish musical genres. The analysis was based on �ve di�erent heuristic discrimination mod-

els where each model estimates the dependency of a feature's discrimination value to a speci�c

genre. This feature-genre dependency was basically considered as the genre discrimination of

that feature. The three di�erent descriptors Rhythm Pattern, Statistical Spectrum Descriptor

and Rhythm Histogram were evaluated on each of the music collections GTZAN, ISMIR 2004

Genre and Rhythm. The key goal of this chapter was to examine how the di�erent calculation

models perform on di�erent music collections and whether a consistency of the discrimination

values according to correlated genres can be concluded among the heuristic discrimination mod-

els. Another important goal of this analysis was whether speci�c features referring to each of

the three descriptors express consistent genre discrimination or not. All computations according

to the discrimination analysis were performed on one-vs.-rest genre situations, i. e. binary class

situations, only.

Basically, the discrimination results revealed speci�c discriminative feature patterns for al-

most all examined musical genres. Considerably diverging feature patterns could be observed and

an individual relation of feature patterns to speci�c genres could also be concluded in many cases.

Consequently, a feature ranking based on genre discrimination might be e�ective for feature se-

lection and will be discussed in chapter 4. The discrimination analysis showed clearly according

to all three music collections that the heuristic discrimination models implementing the impurity

function estimated very consistent feature patterns. In particular, this means that the same fea-

tures were recognized to be discriminative, while the actual discrimination values slightly varied

among the calculation models. It has been pointed out in section 3.2 that entropy-based calcula-

tion models tend to overestimate multi-valued features. Di�erent approaches of normalizing the

estimates exist in order to reduce the distortion of such multi-valued features. Thus, it is not

surprising that the discrimination values varied. Nevertheless, it could be concluded that the

di�erent approaches of normalizing have a limited in�uence in the calculation of discriminative

features according to all three discussed music collections.

Considering the performances of the Gain Ratio, the Balanced Information Gain and the

ReliefF, the computed discriminative feature patterns according to the Statistical Spectrum

Descriptor were considerable more similar among the three calculation models as in the case

of the other two descriptors. This conclusion was valid for both the GTZAN and the ISMIR

2004 Genre collection but not for the ISMIR 2004 Rhythm collection. Regarding the genre-

to-genre comparisons according to the partially related music collections GTZAN and ISMIR

2004 Genre, it could also be concluded in the case of the Statistical Spectrum Descriptor that

the three calculation models estimated quite similar discriminative feature patterns for each of

the four examined genre comparisons. In that sense the ReliefF calculation model performed

better compared with the Gain Ratio and the Balanced Information Gain. According to the

Rhythm Pattern descriptor and the Rhythm Histogram descriptor the discrimination results
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based on the three calculation models diverged more for both the GTZAN and the ISMIR

2004 Genre collection. Only for few genres the corresponding discriminative feature patterns

revealed a notable degree of similarity. For instance the discrimination results were considerably

similar regarding the Classical genre of both the GTZAN and the ISMIR 2004 Genre collection.

According to the ISMIR Rhythm 2004 collection the three calculation models only performed

consistently with respect to speci�c genres. But this partially consistent performance of the three

heuristic discrimination models could only be concluded for the two descriptors Rhythm Pattern

and Rhythm Histogram. In the case of the Statistical Spectrum Descriptor the discriminative

feature patterns according to the three calculation models diverge. Also the genre-to-genre

comparisons of these two partially related collections revealed diverging discriminative feature

patterns. Also in the case of both classical genres, which do correlate most, a certain degree of

similarity could not be concluded for both descriptors as only in the case of the Rhythm Pattern

descriptor a considerable similarity was shown. Thus, a similarity regarding the performances

of three heuristic discrimination models could not be concluded for all three descriptors. The

highest degree of similarity was observed in the case of the Statistical Spectrum Descriptor but

only for two of three music collections.

Another very important fact was concluded in terms of the Statistical Spectrum Descriptor.

The majority of features related to the statistical measures variance and skewness appeared to

be irrelevant over all three music collections. In fact, for all three music collections it was shown

that only few features were estimated to be discriminative and even only for a small number of

genres. A large number of features corresponding to these two measures consistently exhibited

zero or very low genre discrimination.
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In the previous chapter the features of the three rhythmic descriptors Rhythm Pattern, Statis-

tical Spectrum Descriptor and Rhythm Histogram were investigated in terms of genre discrimi-

nation. Additionally, a feature ranking based on the discriminative power of every feature was

introduced. This chapter examines the question of whether this feature ranking can be actually

used to reduce the original feature set. In terms of music genre classi�cation feature selection

is particularly crucial, since most descriptors include a large number of features to represent a

certain musical content. One key advantage of a feature selection approach is that it is a self-

contained selection process which is entirely independent from the main classi�cation process.

As a consequence, available but usually very limited training sets need not to be further split into

separate sets to evaluate and select certain features. This chapter empirically examines the po-

tential of this feature selection approach by performing extensive genre classi�cation evaluations

based on di�erent music collections, calculation models, e. g. the �ve heuristic discrimination

models introduced in the previous chapter, and three di�erent learning algorithms.

87
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Section 4.1 summarizes key assumptions of feature selection and why machine learning

theory strictly recommends its application. The feature selection approach which has been

employed in the evaluation is described in section 4.2. The experiment environment and all

obtained evaluation results are discussed in section 4.3 for each of the three rhythmic descriptors

separately. At last, section 4.4 �nalizes this chapter by summarizing the observed performances

of the feature selection and by concluding whether this approach is actually suitable in terms

of music genre classi�cation with the described setting. Drawbacks of this selection method are

also reconsidered in this section.

4.1 Overview

It has been shown for usual classi�cation systems that feature selection is crucial to further

increase the classi�cation accuracy. Therefore feature selection is actually independent from

the application context. Contrary to the intuitive assumption that the classi�cation accuracy

increases the larger the set of features is, too many features can de�nitely deteriorate the results

in practical systems. This phenomenon is known as curse of dimensionality and is extensively

described in [6]. Although more features may actually incorporate more information about the

underlying class structures, classi�cation systems usually do not bene�t from larger feature sets

unless the according number of training samples is not enlarged as well. In fact, the size of the

training set must exponentially grow with the size of the feature set in order to avoid in�uences

due to curse of dimensionality.

In MIR, often a large number of features is required to represent certain musical facet or

content on song-level. This assumption applies to audio-based descriptors in particular, but as

symbolic-based descriptors may include many features. Although a comprehensive and distinc-

tive description of musical content, e. g. rhythm, chords, instrumentation, appears to require large

sets of features, it is possible that a speci�c machine learning algorithm achieves low classi�cation

performance unless the applied feature set will not be reduced before. Thus, a problem-based

feature selection approach is desirable for a proper implementation of musical classi�cation sys-

tems. Various di�erent approaches have been examined for e�ective feature selection in MIR

including wrapper techniques as well as �lter-bases techniques. Fiebrink et al. [20] introduced

a wrapper approach based on the computation of feature weights with a genetic algorithm. In

machine learning, many generic feature selection techniques are known and an evaluation of such

techniques concerning music classi�cation is presented in [23]. A very interesting work has been

published by Fiebrink and Fujinaga [19] in which general pitfalls of feature selection in music

classi�cation are pointed out.

This thesis focuses on the three rhythmic descriptors Rhythm Pattern, Statistical Spectrum

Descriptor and Rhythm Histogram only. While the Rhythm Pattern descriptor de�nes 1440
features to describe the rhythmic content of a piece of music, the Statistical Spectrum Descriptor

consists of 168 features and the Rhythm Histogram descriptor contains the smallest set of 60
features. As the three music collections GZTAN, ISMIR 2004 Genre and Rhythm (R see
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section 2.6) o�er a limited number of musical pieces for separate training and evaluation of

genre classi�cation systems, the classi�cation based on those three descriptors may su�er from

the problem of curse of dimensionality. In this chapter, a feature selection approach based on

the genre discrimination of every feature is examined regarding genre classi�cation. The two

key goals of this evaluation are the e�ectiveness of the feature selection approach as well as the

in�uence of the curse of dimensionality problem according to each of the three descriptors.

4.2 Feature Selection Approach

The previous chapter already pointed out the possibility to rank features according to their

suitability for genre discrimination. An obvious assumption is to use that feature ranking for

feature selection. Since chapter 3 showed that the �ve heuristic discrimination models yield

substantially di�erent feature ranking results, a separate feature selection evaluation is done for

every calculation model. Alternatively, the genre discrimination values can also be used to weight

the features instead, but this approach is not discussed within this thesis.

The feature selection approach based on the corresponding discrimination values is actually

quite simple and can be described as follows:

1. Based on the computed discrimination values of every feature, a decreasing rank order is

established where the �rst rank is related to the most discriminative feature.

2. All features are discarded which have been assigned with a zero discrimination value, since

no discrimination of any genre can be measured for those features. Depending on the

employed heuristic discrimination model, the removal of such �irrelevant� feature already

yields a substantial feature reduction.

3. In order to determine the best feature subset, a successive evaluation is applied with a

certain learning algorithm. The evaluation is repeated n times where in every evaluation

step i, with 1 ≤ i ≤ n, the learning algorithm is trained with the feature subset candidate

Ci. A feature subset candidate Ci includes all those features having a corresponding rank

of 1, 2, . . . di · de where d = |A|
n denotes the di�erence in the number of features according

to two successive feature selection candidates Ci−1 and Ci. Consequently, every feature

subset candidate Ci is related to Ci−1 by Ci−1 ⊂ Ci and therefore a linearly growing

number of feature subsets must be evaluated only, while the number of feature subsets

grows exponentially in the case of the �usual� feature subset evaluation [31] which also

considers the combination of features. Common feature selection approaches introduced

in [29,31] incorporate considerably more feature subsets. The feature subset candidate Ci
is considered as �optimal� regarding to the maximum accuracy according to the underlying

learning algorithm.

While many feature selection approaches often require separate training sets to evaluate the

original feature set, a feature ranking based on genre discrimination can be directly computed on
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the very same training set which is also used for the successive training of the learning algorithm.

Because of the statistical independence of the feature evaluation algorithm and the successive

learning algorithm, a partitioning of the original training set is not required which certainly

intensi�es the problem of generally small training sets otherwise. Another advantage of using

discrimination values for feature selection is that the computation time is signi�cantly lower on

average than usual wrapper-based selection techniques. The reason of the lower calculation time

is the limited number of feature subsets, since for all subset candidates Ci holds true that Ci−1

by Ci−1 ⊂ Ci which is not the case in usual subset selection.

4.3 Experiments

This section provides benchmark tests to determine how e�ective feature selection based on

genre discrimination ranking really is in terms of musical genre classi�cation. The tests have

been applied in such manner that separate results are provided for each of two music collections

GTZAN and ISMIR 2004 Genre on the one hand, and for each of the �ve heuristic discrimi-

nation models Chi-square, Information Gain, Gain Ratio, Balanced Information Gain as well

as ReliefF on the other hand. In order to compare the e�ectiveness and the generalization of

this feature selection approach, all feature selection candidates were evaluated by three learning

algorithms separately. These learning algorithms are a probabilistic Naive Bayes learner, a rule-

based Decision tree learner and the frequently used Support Vector Machine which estimates a

discrimination function for classi�cation. The choice of these three learning algorithm is deliber-

ate because they represent thee quite di�erent concepts of learning and they are frequently used

in various machine learning applications.

Descriptor |A| n d

Rhythm Patterns 1440 30 48
Statistical Spectrum 168 30 ≈ 5
Rhythm Histogram 60 30 2

Table 4.1: Evaluation settings depending on the respective rhythmic descriptor. The original
feature dimension is indicated with |A|, n is the number of employed feature selection candidates

Ci with 1 ≤ i ≤ n and d = |A|
n represents the di�erence in the number of features for the successive

feature selection candidates Ci and Ci+1.

The evaluation was done by applying each of the three learning algorithms with 10-fold
cross validation. For every feature selection candidate, the eventual classi�cation accuracy was

obtained by averaging the partial accuracy of all 10 independent folds. To limit the number of

feature selection candidates and therefore to reduce the overall calculation time, the accuracy of

30 candidates were computed to verify the feature selection performance. The size of a speci�c

feature selection candidate Ci with 1 ≤ i ≤ n is de�ned by |Ci| = di · de with d = |A|
n . Thus,

Ci includes all features with a discrimination rank 1, 2, . . . di · de. It is important to note that

the assembly of the feature selection candidates, i. e. the computation of the feature ranking
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according to the estimated discrimination values of every feature, was done independently from

the actual feature selection evaluation. The underlying method to compute the discrimination

values of every feature is described in chapter 3. Table 4.1 gives an overview of all parameters

regarding the feature selection evaluation.

The entire evaluation was performed with the Java-based machine learning workbench

WEKA as it already provides a complete implementation for each of the three learning algo-

rithms as well as the cross validation procedure. Additionally, the Experimenter tool of WEKA

was used. The Experimenter tool provides convenient access to all required learning models

and allows de�ning large scale experiments including cross validation to be run automatically.

The WEKA class NaiveBayes was used for the Naive Bayes learner. To represent the Decision

tree learner and the Support Vector Machine, the WEKA classes J48 and SMO were chosen, re-

spectively. The Naive Bayes and Decision tree learning algorithms were applied with standard

options de�ned by WEKA. In particular this means that pruning was set with con�dence thresh-

old 0.25 for the Decision tree. Two di�erent settings were used for the Support Vector Machine.

Regarding the Rhythm Pattern descriptor a kernel function with the exponent E = 1.0, i. e.
linear kernel function, was selected. For the Statistical Spectrum Descriptor and the Rhythm

Histogram descriptor a polynomial kernel function with the exponent E = 2.0, i. e. quadratic
kernel function, was employed as these descriptors contain a considerably smaller number of

features.

4.3.1 Rhythm Pattern

The �gures 4.1, 4.2 and 4.3 illustrate the achieved classi�cation accuracy for every selection

candidate according to the Rhythm Pattern descriptor and the three di�erent learning algorithms

on the GTZAN music collection. Each �gure represents the accuracy results based on di�erent

heuristic discrimination models where the Chi-square and the Information Gain were used to

compute the results of �gure 4.1, the Gain Ratio and the Balanced Information Gain were

employed to compute the results of �gure 4.2 and the ReliefF was applied to compute the results

of �gure 4.3. Every feature selection evaluation was performed on a speci�c one-vs.-rest genre

situation by computing the accuracy of 30 speci�cally selected feature selection candidates. The

actual approach of selecting the 30 feature selection candidates is described in the beginning of

this section and in the table 4.1 in particular.

The results of the feature selection evaluation based on the heuristic discrimination mod-

els Chi-square, Information Gain, Gain Ratio and Balanced Information Gain are very similar

for each of the three learning models, while the results based on the ReliefF actually diverge.

This observation is not surprising as the discriminant analysis of chapter 3 concludes that the

calculation models Chi-square, Information Gain, Gain Ratio and Balanced Information Gain

yield similar feature rankings. In fact, only marginal di�erences of the classi�cation accuracy

according to all selection candidates related to the same genre are recognizable. Therefore the

further discussion of the feature selection evaluation will be limited to the Balanced Information

Gain and the ReliefF.
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(a) Naive Bayes and Chi-square
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(b) Naive Bayes and Information Gain
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(c) J48 and Chi-square
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(d) J48 and Information Gain
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(e) SMO and Chi-square
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(f) SMO and Information Gain

Figure 4.1: Classi�cation accuracy results according to the Rhythm Pattern descriptor on the
GTZAN collection. 30 feature selection candidates have been evaluated where every selection can-
didate Ci with 1 ≤ i ≤ 30 contains the i · 48 most discriminative features respectively. Three
di�erent learning algorithms were employed with the calculation models Chi-square and Infor-
mation Gain each. The following symbols constitute every individual genre: a for Blues, g for
Classical, p for Country, × for Disco, / for Hip hop, + for Jazz, R for Metal, T for Pop, n for
Reggae and o for Rock. A red (bright) symbol indicates the best classi�cation accuracy achieved
for the respective genre.
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(a) Naive Bayes and Gain Ratio
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(b) Naive Bayes and Balanced IG
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(c) J48 and Gain Ratio

48 240 432 624 816 1008 1200 1392
82

84

86

88

90

92

94

96

selected features

re
l. 

ac
cu

ra
cy

 in
 %

 

 

(d) J48 and Balanced IG
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(e) SMO and Gain Ratio
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(f) SMO and Balanced IG

Figure 4.2: Classi�cation accuracy results according to the Rhythm Pattern descriptor on the
GTZAN collection. 30 feature selection candidates have been evaluated where every selection
candidate Ci with 1 ≤ i ≤ 30 contains the i · 48 most discriminative features respectively. Three
di�erent learning algorithms were employed with the calculation models Gain Ratio and Balanced
Information Gain each. The following symbols constitute every individual genre: a for Blues, g
for Classical, p for Country, × for Disco, / for Hip hop, + for Jazz, R for Metal, T for Pop, n for
Reggae and o for Rock. A red (bright) symbol indicates the best classi�cation accuracy achieved
for the respective genre.
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(a) Naive Bayes and ReliefF
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(b) J48 and ReliefF
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(c) SMO and ReliefF

Figure 4.3: Classi�cation accuracy results according to the Rhythm Pattern descriptor on the
GTZAN collection. 30 feature selection candidates have been evaluated where every selection
candidate Ci with 1 ≤ i ≤ 30 contains the i · 48 most discriminative features respectively. Three
di�erent learning models were employed with the calculation model ReliefF. The following symbols
constitute every individual genre: a for Blues, g for Classical, p for Country, × for Disco, / for
Hip hop, + for Jazz, R for Metal, T for Pop, n for Reggae and o for Rock. A red (bright) symbol
indicates the best classi�cation accuracy achieved for the respective genre.
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(a) Naive Bayes and Balanced IG
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(b) Naive Bayes and ReliefF
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(c) J48 and Balanced IG
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(d) J48 and ReliefF
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(e) SMO and Balanced IG
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(f) SMO and ReliefF

Figure 4.4: Classi�cation accuracy results according to the Rhythm Pattern descriptor on the
ISMIR 2004 Genre collection. 30 feature selection candidates have been evaluated where every
selection candidate Ci with 1 ≤ i ≤ 30 contains the i · 48 most discriminative features respec-
tively. Three di�erent learning algorithms were employed with the calculation models Balanced
Information Gain and ReliefF each. The following symbols constitute every individual genre: g for
Classical, × for Electronic, + for Jazz & Blues, R for Metal & Punk, o for Rock & Pop and T for
World. A red (bright) symbol indicates the best classi�cation accuracy achieved for the respective
genre.
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Considering the results of the Naive Bayes learning algorithm and the Balanced Information

Gain in �gure (b), the classi�cation accuracy of the feature selection candidates related to the

same genre is quite consistent for most of the 10 one-vs.-rest genre situations. In fact, for 6
of maximum 10 genres the accuracy of the corresponding feature selection candidates varies

with less than 5%. Only the genres Blues, Hip hop, Metal and Pop imply stronger variations

where the accuracy according to both Hip hop and Pop signi�cantly decreases with the use of

more discriminative features, while the classi�cation accuracy of Blues as well as Metal improves

when more discriminative features were used. Another interesting observation is that the best

classi�cation accuracy of 5 genres is signi�cantly worse in comparison to the other genres. This

suggests that these genres can not be su�ciently represented by the selected features if the

contributions of those features will be used independently during the classi�cation as the Naive

Bayes does.

In the case of the J48 learning algorithm and the Balanced Information Gain illustrated in

�gure (d) the classi�cation accuracy varies considerably more among the feature selection candi-

dates related to the same genre. Particularly, a highly �uctuating progression of the classi�cation

accuracy can be observed for successive selection candidates. This accuracy �uctuation among

the feature selection candidates is a typical observation regarding the J48 learning algorithm,

as the contributions of the feature dependencies also in�uence the classi�cation performance.

Nevertheless, for the majority of genres the variations concerning the classi�cation accuracy are

always within an approximate margin of 2%. This implies a promising performance of the feature
selection. It also suggests that the variation might not even be signi�cant at all which represents

a strong a�rmation for the feature selection approach. Again, the worst accuracy results can be

observed for the genres Country and Rock, while the best accuracy of 95% is related to classical

music.

Also in the case of the feature selection based on the Balanced Information Gain and the

SMO learning algorithm illustrated in �gure (f), the classi�cation accuracy variation is limited

by 2% according to the feature selection candidates of 7 of 10 genres. This con�rms the usefulness
of the selection approach, as the classi�cation accuracy is quite consistent although a consider-

able reduction of the original feature set is performed. Another interesting observation concerns

the genres Country and Rock. The accuracy for those feature selection candidates containing a

smaller number of discriminative features is considerable better in comparison to selection candi-

dates possessing many discriminative features. In fact, the accuracy signi�cantly deteriorates for

feature selection candidates having more than 480 and 240 most discriminative features accord-

ing to the genres Country and Rock, respectively. However, since the SMO learning algorithm

refers to a Support Vector Machine, it should not be in�uenced by additional, even irrelevant,

features because a Support Vector Machine utilizes an intrinsic feature selection process based

on the feature space transformation. Thus, this accuracy decline is a very unusual phenomenon.

As a con�rmation, the classi�cation accuracy according to the other 8 genres actually increases

when more discriminative feature were selected although of this accuracy improvement might

not be statistically signi�cant.
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Chi-square

Naive Bayes J48 SMO

Genre Accuracy #Features Accuracy #Features Accuracy #Features

Blues 64.10± 3.63 1440 (100%) 90.10± 3.75 144 (10%) 92.90± 1.97 96 (07%)
Classical 91.00± 3.23 288 (20%) 94.40± 2.07 96 (07%) 97.90± 1.29 1104 (77%)
Country 64.70± 7.29 624 (43%) 88.90± 2.18 288 (20%) 90.60± 1.26 240 (17%)
Disco 87.40± 3.06 576 (40%) 88.90± 1.10 48 (03%) 92.90± 0.88 288 (20%)
Hip hop 86.70± 3.62 48 (03%) 90.30± 3.30 144 (10%) 94.70± 1.64 1392 (97%)
Jazz 73.80± 3.68 624 (43%) 90.40± 2.67 912 (63%) 92.50± 2.37 1200 (83%)
Metal 72.10± 4.20 96 (07%) 90.30± 1.77 48 (03%) 93.10± 1.66 432 (30%)
Pop 87.40± 3.78 48 (03%) 92.50± 2.01 1440 (100%) 94.40± 1.90 288 (20%)
Reggae 84.90± 4.63 1440 (100%) 88.90± 2.85 288 (20%) 93.00± 1.83 432 (30%)
Rock 58.90± 3.70 432 (30%) 86.30± 1.89 96 (07%) 90.00± 0.00 48 (03%)

Information Gain

Blues 64.10± 3.63 1440 (100%) 89.80± 2.74 240 (17%) 93.40± 2.41 96 (07%)
Classical 91.20± 1.40 912 (63%) 95.50± 2.07 48 (03%) 97.90± 1.10 1248 (87%)
Country 64.70± 7.29 624 (43%) 88.70± 2.41 336 (23%) 90.60± 1.71 288 (20%)
Disco 87.60± 3.44 240 (17%) 90.00± 1.63 48 (03%) 93.10± 0.74 240 (17%)
Hip hop 86.70± 3.80 48 (03%) 90.20± 3.05 528 (37%) 95.10± 1.73 1200 (83%)
Jazz 74.00± 3.77 624 (43%) 89.90± 2.69 912 (63%) 92.50± 2.37 1200 (83%)
Metal 72.40± 4.30 144 (10%) 90.50± 2.12 240 (17%) 93.10± 1.66 432 (30%)
Pop 87.20± 4.18 48 (03%) 92.30± 2.16 1440 (100%) 94.60± 1.35 240 (17%)
Reggae 84.90± 4.63 1440 (100%) 89.20± 2.78 288 (20%) 93.00± 1.83 432 (30%)
Rock 58.90± 3.70 432 (30%) 85.80± 3.39 48 (03%) 90.00± 0.00 48 (03%)

Gain Ratio

Blues 64.10± 3.63 1440 (100%) 89.90± 2.33 144 (10%) 93.20± 2.78 192 (13%)
Classical 91.40± 2.67 336 (23%) 95.60± 1.78 144 (10%) 97.90± 1.10 1248 (87%)
Country 64.70± 7.29 624 (43%) 88.50± 2.92 48 (03%) 90.70± 1.64 288 (20%)
Disco 87.40± 3.47 336 (23%) 89.10± 2.60 240 (17%) 93.10± 0.88 336 (23%)
Hip hop 87.20± 3.46 48 (03%) 91.00± 1.63 816 (57%) 94.70± 1.64 1392 (97%)
Jazz 73.90± 3.67 624 (43%) 90.50± 1.96 672 (47%) 92.50± 2.37 1200 (83%)
Metal 71.60± 4.58 144 (10%) 90.50± 1.96 48 (03%) 93.10± 1.66 432 (30%)
Pop 87.30± 4.24 48 (03%) 92.30± 2.11 1440 (100%) 94.50± 2.01 96 (07%)
Reggae 84.90± 4.63 1440 (100%) 89.10± 3.41 240 (17%) 93.00± 1.83 432 (30%)
Rock 58.90± 3.70 432 (30%) 86.70± 3.40 48 (03%) 90.00± 0.00 48 (03%)

Continued on the next page . . .

In �gure 4.3, the results of the feature selection evaluation according to the ReliefF cal-

culation model are depicted which introduce slight divergences to the results according to the

Balanced Information Gain or the other three calculation models based on the impurity func-

tion. Basically, similar conclusions concerning the strong limitation of the classi�cation accuracy

among the feature selection candidates related to the same genre can be made. In fact, a strong

limitation of the variations regarding the accuracy of the corresponding feature selection candi-



98 CHAPTER 4. EVALUATION OF FEATURE SELECTION

Balanced Information Gain

Naive Bayes J48 SMO

Genre Accuracy #Features Accuracy #Features Accuracy #Features

Blues 64.10± 3.63 1440 (100%) 90.20± 2.78 144 (10%) 93.40± 2.12 96 (07%)
Classical 91.20± 1.55 528 (37%) 94.90± 1.97 96 (07%) 97.90± 1.10 1248 (87%)
Country 64.70± 7.29 624 (43%) 88.30± 2.45 288 (20%) 90.50± 1.78 288 (20%)
Disco 87.60± 3.92 288 (20%) 89.60± 1.43 48 (03%) 92.90± 1.10 288 (20%)
Hip hop 87.30± 4.32 48 (03%) 90.20± 2.53 96 (07%) 95.00± 1.76 1200 (83%)
Jazz 74.00± 3.77 624 (43%) 90.30± 2.45 864 (60%) 92.50± 2.37 1200 (83%)
Metal 72.20± 4.42 144 (10%) 90.10± 2.85 288 (20%) 93.10± 1.66 432 (30%)
Pop 87.30± 4.00 48 (03%) 92.40± 2.12 1440 (100%) 94.60± 1.35 240 (17%)
Reggae 84.90± 4.63 1440 (100%) 89.10± 2.60 240 (17%) 93.00± 1.83 432 (30%)
Rock 58.90± 3.70 432 (30%) 86.40± 2.59 48 (03%) 90.00± 0.00 48 (03%)

ReliefF

Blues 89.50± 3.89 144 (10%) 90.00± 1.49 144 (10%) 92.60± 2.41 1056 (73%)
Classical 90.30± 1.95 1344 (93%) 94.00± 1.56 240 (17%) 97.90± 1.29 1296 (90%)
Country 72.40± 2.80 144 (10%) 87.80± 2.62 1200 (83%) 90.20± 1.93 240 (17%)
Disco 84.60± 3.72 912 (63%) 88.90± 3.14 288 (20%) 92.60± 2.07 432 (30%)
Hip hop 86.00± 4.42 48 (03%) 90.40± 1.78 96 (07%) 94.80± 1.32 1296 (90%)
Jazz 72.70± 3.92 1440 (100%) 90.80± 1.99 432 (30%) 92.50± 2.27 480 (33%)
Metal 78.30± 2.98 48 (03%) 89.50± 3.06 480 (33%) 91.80± 2.35 1152 (80%)
Pop 87.10± 5.28 48 (03%) 92.40± 2.46 1344 (93%) 94.80± 1.55 144 (10%)
Reggae 84.60± 4.09 1392 (97%) 88.30± 1.25 1008 (70%) 93.30± 1.95 1056 (73%)
Rock 59.50± 5.74 48 (03%) 86.90± 4.48 48 (03%) 90.00± 0.00 48 (03%)

Table 4.2: Evaluation of the feature selection based on the genre discrimination of every feature
according to the Rhythm Pattern descriptor on the GTZAN collection. The best classi�cation
accuracy with the corresponding standard deviation and the related number of selected features
(relative amount of selected features) are listed for every one-vs.-rest genre situation and each of
the three calculation models.

dates is recognizable for the majority of the 10 genres. An important fact is that independent

from the actual learning algorithm the genres Country and Rock are always under the top three

genres which have the strongest variations in terms of the feature selection performance. Even

the decline of the classi�cation accuracy according to the SMO can be seen clearly in the case

of selection more discriminative features.

Generally, the classi�cation accuracy results of each heuristic calculation model con�rm

that the feature ranking based on genre discrimination constitutes an e�ective feature selection

approach. Although the employed learning algorithms represent very di�erent learning concepts,

a considerable feature set reduction could be achieved in combination with a slight or even

insigni�cant decline of the classi�cation accuracy. Another very interesting general observation

is that even a high feature set reduction of more than 50% had a very limited e�ect on the

classi�cation performance. In the case of the Naive Bayes this limitation is approximately 5%,
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Chi-square

Naive Bayes J48 SMO

Genre Accuracy #Features Accuracy #Features Accuracy #Features

Classical 88.00± 1.62 432 (30%) 86.97± 2.32 48 (03%) 91.56± 1.78 1152 (80%)
Electronic 87.65± 2.15 48 (03%) 88.20± 2.13 432 (30%) 92.11± 1.43 336 (23%)
Jazz & Blues 85.81± 3.61 48 (03%) 95.40± 1.13 192 (13%) 97.33± 1.27 432 (30%)
Metal & Punk 85.46± 4.24 48 (03%) 92.94± 1.82 1344 (93%) 94.31± 1.80 1104 (77%)
Rock & Pop 81.83± 3.27 48 (03%) 85.67± 2.48 144 (10%) 86.83± 2.50 528 (37%)
World 43.97± 3.48 1344 (93%) 81.41± 2.50 48 (03%) 84.57± 1.21 768 (53%)

Balanced Information Gain

Classical 88.13± 2.18 144 (10%) 87.38± 3.19 48 (03%) 91.43± 2.00 1152 (80%)
Electronic 86.08± 2.65 96 (07%) 87.79± 1.79 720 (50%) 92.04± 1.88 288 (20%)
Jazz & Blues 77.23± 6.06 336 (23%) 95.89± 1.55 48 (03%) 97.40± 1.32 480 (33%)
Metal & Punk 84.78± 3.09 1392 (97%) 92.80± 2.14 1344 (93%) 94.38± 1.57 1248 (87%)
Rock & Pop 81.00± 3.66 144 (10%) 85.73± 1.87 192 (13%) 86.69± 1.90 288 (20%)
World 43.97± 3.48 1344 (93%) 80.86± 2.59 144 (10%) 84.23± 2.42 1056 (73%)

ReliefF

Classical 88.20± 2.37 432 (30%) 88.14± 2.47 144 (10%) 91.63± 1.61 960 (67%)
Electronic 83.81± 2.97 1056 (73%) 88.20± 3.28 288 (20%) 91.43± 1.56 1392 (97%)
Jazz & Blues 84.22± 2.15 624 (43%) 96.57± 0.73 48 (03%) 97.26± 1.07 384 (27%)
Metal & Punk 84.30± 3.40 1392 (97%) 92.25± 1.11 384 (27%) 94.03± 1.77 1296 (90%)
Rock & Pop 81.07± 3.00 48 (03%) 86.08± 2.23 48 (03%) 87.93± 3.09 480 (33%)
World 59.53± 4.23 48 (03%) 81.00± 3.36 192 (13%) 85.12± 1.86 528 (37%)

Table 4.3: Evaluation of the feature selection based on the genre discrimination of every feature
according to the Rhythm Pattern descriptor on the ISMIR 2004 Genre collection. The best clas-
si�cation accuracy with the corresponding standard deviation and the related number of selected
features (relative amount of selected features) are listed for every one-vs.-rest genre situation and
each of the three calculation models.

for the learning algorithms J48 and SMO this limitation is even smaller with approximately 2%.

Table 4.2 lists the best classi�cation accuracy with the corresponding standard derivation

and the related number of selected features for every one-vs.-rest genre situation. As already

concluded, the feature selection performance is very similar in the case of the four calculation

models implementing the impurity function. Both the best accuracy and the related number

of selected features is very similar among these calculation models. An interesting fact is that

independent from the actual learning model and calculation model the genres Classical and Pop

are always under the top three genres having the highest accuracy of all genres. As the discrim-

inant analysis of chapter 3 already showed, the highest discrimination values were estimated for

these two genres. Thus, these two genres appear to be well distinguishable from the other genres.

Figure 4.3 already illustrates a slight divergence of the feature selection performance based on

the ReliefF in comparison to the other four calculation models. The corresponding results of

table 4.2 also suggest slightly di�erent results. In particular in terms of the Bayes better accuracy

results were achieved in combination with a similar amount of feature set reduction. As pointed
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out in [48], the ReliefF model also incorporates the contribution of feature dependencies into the

estimation of the discriminative power of a speci�c feature. Since the Naive Bayes assumes all

features to be independent, the feature selection based on the ReliefF model appears to com-

pensate the negative e�ect of this strict assumption the Naive Bayes based on. For the Naive

Bayes a high feature set reduction was achieved where only in the case of the genres Blues and

Reggae the use of the entire feature set yielded the best accuracy. Naturally, the SMO learning

algorithm achieved better accuracy results when more discriminative feature had been employed.

The average relative amount of selected features1 according to the Balanced Information Gain

is 38.9% for the Naive Bayes, 24.7% for the J48 and remarkable 38% for the SMO learning

algorithm. According to the calculation model ReliefF, the relative amount of selected features

is 38.5% for the Naive Bayes, 36.6% for the J48 and 49.9% for the SMO learning algorithm.

Thus, a potential feature set reduction can be concluded according to each of the three learning

models. The feature selection maintains an acceptable classi�cation performance with respect to

using the entire feature set and o�ers a clear saving of calculation time.

ISMIR 2004 Genre

Also the feature selection evaluation on the ISMIR 2004 Genre collection does basically a�rm

the conclusions regarding the evaluation on the GTZAN collection. Table 4.3 shows the results

of the feature selection evaluation based on this music collection. Again, both the classi�cation

accuracy and related the number of selected features are quite similar for the calculation models

Chi-square, Information Gain, Gain Ratio and Balanced Information Gain. The average relative

amount of selected features according to the Balanced Information Gain is 40% for the Naive

Bayes, 28.7% for the J48 and 52.2% for the SMO learning algorithm. According to the ReliefF

calculation model, the relative amount of selected features is 41.5% for the Naive Bayes, re-

markable 12.7% for the J48 and 58.5% for the SMO learning algorithm. Like in the case of the

GTZAN collection a potential feature set reduction can also be concluded for all three learning

models.

Figure 4.4 depicts the classi�cation accuracy of the feature selection candidates related

to the same genre according to the ISMIR 2004 Genre collection. Since the feature selection

results based on the calculation models Chi-square, Information Gain, Gain Ratio and Balanced

Information Gain are quite similar, only the two calculation models Balanced Information Gain

and ReliefF were used. Basically, the usefulness of the feature selection is also approved by these

evaluation results, as the classi�cation accuracy of the feature selection candidates related to the

same genre does only vary within a narrow margin for the majority of the 6 genres. This margin

can be approximately de�ned with 5% for the Naive Bayes and J48 and with 2% for the SMO.
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(a) Naive Bayes and Balanced IG
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(b) Naive Bayes and ReliefF
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(c) J48 and Balanced IG
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(d) J48 and ReliefF
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(e) SMO and Balanced IG
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(f) SMO and ReliefF

Figure 4.5: Classi�cation accuracy results according to the Statistical Spectrum Descriptor on
the GTZAN collection. 30 feature selection candidates have been evaluated where every selection
candidate Ci with 1 ≤ i ≤ 30 contains the di · 16830 e most discriminative features respectively. Three
di�erent learning algorithms were employed with the calculation models Balanced Information
Gain and ReliefF each. The following symbols constitute every individual genre: a for Blues, g
for Classical, p for Country, × for Disco, / for Hip hop, + for Jazz, R for Metal, T for Pop, n for
Reggae and o for Rock. A red (bright) symbol indicates the best classi�cation accuracy achieved
for the respective genre.
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(a) Naive Bayes and Balanced IG
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(b) Naive Bayes and ReliefF
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(c) J48 and Balanced IG
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(d) J48 and ReliefF
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(e) SMO and Balanced IG
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(f) SMO and ReliefF

Figure 4.6: Classi�cation accuracy results according to the Statistical Spectrum Descriptor on
the ISMIR 2004 Genre collection. 30 feature selection candidates have been evaluated where every
selection candidate Ci with 1 ≤ i ≤ 30 contains the di · 168

30 e most discriminative features respec-
tively. Three di�erent learning algorithms were employed with the calculation models Balanced
Information Gain and ReliefF each. The following symbols constitute every individual genre: g for
Classical, × for Electronic, + for Jazz & Blues, R for Metal & Punk, o for Rock & Pop and T for
World. A red (bright) symbol indicates the best classi�cation accuracy achieved for the respective
genre. A red (bright) symbol indicates the best classi�cation accuracy achieved for the respective
genre.
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4.3.2 Statistical Spectrum Descriptor

Focusing �rst on the GTZAN collection, the classi�cation accuracy of all feature selection candi-

dates related to the same genre is illustrated for every one-vs.-rest genre situation in the �gure 4.5.

As the results of the Rhythm Pattern descriptor already showed in the previous subsection, the

feature selection performances based on either of the four heuristic discrimination models Chi-

square, Information Gain, Gain Ratio and Balanced Information Gain are very similar, while the

feature selection based on the ReliefF model introduces slight di�erences in the feature selection

performance. Thus, only the Balanced Information Gain model representing the four models

implementing the impurity function and the ReliefF model were used to compute the accuracy

results depicted in this �gure.

Beginning with the results of the Naive Bayes and the Balanced Information Gain presented

in �gure (a), the classi�cation accuracy of all feature selection candidates related to the same

genre varies by a margin of classi�cation for the majority of the 10 genres. This variation of the

classi�cation accuracy is higher than the variation according to the accuracy results based on the

Rhythm Pattern descriptor. Only the accuracy variations according to the genres Classical, Jazz,

Metal and Pop are limited by a margin of 5% at most. An interesting observation is that when

at least 96 of the maximum 168 features were taken into account during the classi�cation the

accuracy variations of 9 of 10 genres was limited by a margin of 5% at most. As the selection of

96 features represents a feature set reduction of approximately 40% according to the original size

of the feature set, this is actually a very promising observation. Another interesting fact is that

5 of 10 genres are related to a decline of the classi�cation accuracy when more discriminative

features were selected for the classi�cation, while for the other genres an improvement of the

classi�cation accuracy was achieved in the case of selecting many discriminative features.

In the case of the J48 learning algorithm and the Balanced Information Gain in �gure (c) the

variation of the classi�cation accuracy is surprisingly limited by a margin of 2% for all genres but

Rock. In fact, the accuracy of the feature selection candidates related to rock music considerably

decreases when more discriminative features were taken into account. This implies that if very

few discriminative features are used to classify rock music the classi�cation performance will

actually improve. This assumption is also con�rmed in the case of the Naive Bayes learning

algorithm but also in terms of all three learning algorithm and the previously examined Rhythm

Pattern descriptor. Similar to the results of the Naive Bayes the classi�cation accuracy is always

within a margin of 2% for all genres if only feature selection candidates containing at least 96
of the maximum 168 features will be considered. Thus, a feature set reduction of approximately

40% does guarantee a quite acceptable classi�cation performance for every genre.

The feature selection performance based on the SMO learning algorithm and the Balanced

Information Gain is visualized in �gure (e). Contrary to the corresponding results based on

the Rhythm Pattern descriptor, an improvement of the classi�cation accuracy can be clearly

observed for all genres but rock music when more discriminative features were used during the

1The average relative number of selected features is aggregated over all musical genres de�ned by the GTZAN
or by ISMIR 2004 Genre collection.
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classi�cation. Considering the variation of the accuracy among all feature selection candidates

of the same genre, a stronger variation with at most 6% is recognizable. Again, this observation

is valid for all genres but rock music. Nevertheless, in the case of selecting more than 96 of the

maximum 168 features the accuracy is remarkable consistent with a variation of 1% at most

according to all genres. Thus, the feature selection approach also achieves a promising feature

set reduction regarding the SMO. It is important to note that the classi�cation accuracy among

the feature selection candidates of rock music does not deteriorate that much in comparison to

accuracy results based on the Rhythm Pattern descriptor. In fact, the accuracy of feature selec-

tion candidates possessing many features is slightly lower but the variation among all candidates

is limited by approximately 1% which might not even be signi�cant.

Each of the �gures (b), (d) and (f) illustrates the feature selection performances based on

the ReliefF model and the three learning algorithms respectively. Basically, the results of each

learning algorithm do not vary that much comparing with the corresponding results based on the

Balanced Information Gain. In fact, the feature selection performances according to the J48 and

SMO learning algorithms are very similar and therefore the same conclusions can be made. In

particular the consistent classi�cation accuracy of feature selection candidates containing more

than 96 of 168 most discriminative features can be recognized clearly for all genres. Only the

accuracy results according to the Naive Bayes diverge as more genres are related to decreasing

classi�cation accuracy when more features were selected.

From a general point of view, both heuristic discrimination models promise a proper feature

ranking for feature selection where at least 40% of the original feature set can be reduced without

having a considerable decline in the classi�cation accuracy. Actually, a decline of at most 2%
must be expected which might not even be signi�cant in some situations. Another interesting fact

is that almost all evaluation results con�rm that the Statistical Spectrum Descriptor outperforms

the Rhythm Pattern descriptor on the GTZAN collection in terms of classi�cation accuracy. In

particular the achieved accuracy results based on the SMO learning model are equal or better in

comparison to the corresponding results based on the Rhythm Pattern descriptor.

In order to compare the contributions of the two calculation models in terms of the feature

selection for every calculation and learning algorithms, table 4.4 lists the classi�cation accuracy

and the corresponding standard derivation as well as the related number of selected features

for every one-vs.-rest genre situation. Basically, according to all genres the assumption holds

true that in order to achieve the best classi�cation accuracy the number of selected features is

equal or lower in terms of the Naive Bayes and J48 learning algorithms than in the case of the

Rhythm Pattern descriptor. This is also re�ected by the average relative number of selected

features which have already been computed for the Rhythm Pattern descriptor. According

to the Balanced Information Gain this relative amount of selected features is 26.9% for the

Naive Bayes, 24.9% for the J48 and 70.5% for the SMO learning algorithm. According to the

calculation model ReliefF, the relative amount of selected features is 22.2% for the Naive Bayes,

37% for the J48 and 77.1% for the SMO learning algorithm. It can be followed that the feature

set reduction is considerably high according to the Naive Bayes and quite similar in the case of
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Balanced Information Gain

Naive Bayes J48 SMO

Genre Accuracy #Features Accuracy #Features Accuracy #Features

Blues 68.90± 4.53 168 (100%) 92.00± 2.49 51 (30%) 95.80± 1.81 118 (70%)
Classical 89.60± 2.17 6 (04%) 96.00± 2.26 68 (40%) 97.80± 1.32 140 (83%)
Country 80.70± 4.92 6 (04%) 90.50± 2.55 79 (47%) 94.70± 2.00 152 (90%)
Disco 66.10± 5.95 96 (57%) 90.00± 0.82 6 (04%) 94.80± 1.23 107 (64%)
Hip hop 85.60± 2.76 6 (04%) 92.70± 3.74 56 (33%) 94.70± 2.50 152 (90%)
Jazz 70.20± 3.65 12 (07%) 91.40± 2.37 51 (30%) 95.60± 2.22 163 (97%)
Metal 90.20± 3.08 6 (04%) 94.40± 3.50 45 (27%) 97.40± 1.43 96 (57%)
Pop 90.20± 3.01 6 (04%) 94.20± 1.40 23 (14%) 96.60± 1.71 90 (54%)
Reggae 71.60± 4.86 129 (77%) 92.00± 1.33 34 (20%) 94.50± 1.35 73 (43%)
Rock 80.90± 3.70 6 (04%) 89.90± 0.57 6 (04%) 90.80± 1.23 96 (57%)

ReliefF

Blues 89.30± 4.40 12 (07%) 92.40± 1.51 79 (47%) 95.80± 1.55 163 (97%)
Classical 88.00± 2.16 6 (04%) 96.90± 1.91 51 (30%) 98.00± 1.15 124 (74%)
Country 83.30± 3.86 6 (04%) 90.90± 1.52 79 (47%) 94.40± 2.46 146 (87%)
Disco 78.80± 4.52 6 (04%) 90.00± 0.00 6 (04%) 94.00± 2.21 135 (80%)
Hip hop 85.70± 3.20 6 (04%) 92.40± 2.59 51 (30%) 94.60± 2.95 157 (93%)
Jazz 77.60± 2.80 6 (04%) 91.90± 2.77 146 (87%) 95.60± 2.01 157 (93%)
Metal 89.70± 2.16 152 (90%) 94.40± 2.27 96 (57%) 97.50± 1.72 124 (74%)
Pop 89.30± 2.67 6 (04%) 94.20± 1.40 40 (24%) 96.50± 1.27 34 (20%)
Reggae 72.10± 3.51 163 (97%) 91.70± 1.64 68 (40%) 93.50± 1.58 157 (93%)
Rock 82.00± 2.62 6 (04%) 89.60± 0.97 6 (04%) 91.00± 2.98 101 (60%)

Table 4.4: Evaluation of the feature selection based on the genre discrimination of every feature
according to the Statistical Spectrum Descriptor on the GTZAN collection. The best classi�cation
accuracy with the corresponding standard deviation and the related number of selected features
(relative amount of selected features) are listed for every one-vs.-rest genre situation and each of
the two calculation models.

the J48 learning algorithm, while signi�cantly more features were taken into account in the case

of the SMO. However, a potential feature set reduction can be concluded according to all three

learning models. A closer look at the respective genre evaluation results of table 4.4 reveals an

aspect which have been also observed for the Rhythm Pattern descriptor. The genres Classical

and Pop are always under the top three genres in terms of the achieved classi�cation accuracy

independent from the actual learning algorithm and calculation model. Only in the case of

the Naive Bayes and the ReliefF the genre Classical is in fourth place. Consequently, these

two genres appear to be better represented by the discriminative features of both the Rhythm

Pattern descriptor and the Statistical Spectrum Descriptor.
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Balanced Information Gain

Naive Bayes J48 SMO

Genre Accuracy #Features Accuracy #Features Accuracy #Features

Classical 89.57± 2.36 23 (14%) 92.04± 2.45 107 (64%) 94.99± 2.45 152 (90%)
Electronic 82.16± 4.75 6 (04%) 88.89± 1.46 135 (80%) 92.45± 2.17 129 (77%)
Jazz & Blues 87.72± 4.35 12 (07%) 96.78± 1.33 107 (64%) 98.29± 1.17 96 (57%)
Metal & Punk 92.73± 1.37 6 (04%) 94.58± 1.10 101 (60%) 96.91± 1.56 96 (57%)
Rock & Pop 83.26± 2.92 40 (24%) 88.68± 2.92 23 (14%) 92.04± 2.11 90 (54%)
World 67.15± 5.37 6 (04%) 85.74± 2.34 45 (27%) 90.19± 2.81 129 (77%)

ReliefF

Classical 91.01± 2.60 12 (07%) 92.11± 1.95 157 (93%) 94.86± 2.90 152 (90%)
Electronic 81.55± 2.82 79 (47%) 88.96± 1.98 45 (27%) 93.07± 2.38 124 (74%)
Jazz & Blues 92.94± 2.72 12 (07%) 96.91± 1.23 62 (37%) 98.42± 1.37 118 (70%)
Metal & Punk 92.73± 1.58 6 (04%) 94.99± 1.22 112 (67%) 97.46± 0.86 96 (57%)
Rock & Pop 82.71± 3.67 40 (24%) 88.48± 2.77 17 (10%) 91.49± 1.19 118 (70%)
World 62.28± 6.34 6 (04%) 85.94± 1.77 40 (24%) 90.19± 2.23 157 (93%)

Table 4.5: Evaluation of the feature selection based on the genre discrimination of every feature
according to the Statistical Spectrum Descriptor on the ISMIR 2004 Genre collection. The best
classi�cation accuracy with the corresponding standard deviation and the related number of se-
lected features (relative amount of selected features) are listed for every one-vs.-rest genre situation
and each of the two calculation models.

ISMIR 2004 Genre

To compare the feature selection performance regarding the ISMIR 2004 Genre collection, �g-

ure 4.6 illustrates the classi�cation accuracy of every feature selection candidate according to

every genre. Again, only the calculation models Balanced Information Gain and the ReliefF were

employed to generate the accuracy results of this �gure. It can be observed clearly that the clas-

si�cation performances based on those two calculation models only di�ers slightly. In particular

the variation of the classi�cation accuracy is quite similar for each genre and also each learning

algorithm. Contrary to the corresponding accuracy results based on the GTZAN collection, the

observed variation of the classi�cation accuracy is more limited for the Naive Bayes and the J48

learning algorithms. This means that the classi�cation accuracy according to a selection of at

least 51 of 168 most discriminative features varies by a margin of 2% at most for the J48 and

the SMO learning algorithms. In terms of the Naive Bayes the classi�cation accuracy is always

within a margin of 5%. This important observation holds true for all one-vs.-rest genre situations
but the genre World where a higher variation of the classi�cation accuracy can be seen.

Table 4.5 lists the classi�cation accuracy and the corresponding standard derivation as well

as the related number of selected features for every one-vs.-rest genre situations. Similar to the

GTZAN collection the average relative numbers of selected features according to each of the

two calculation models and the three learning algorithms reveal an interesting conclusion. The

average relative amount of selected features according to the Balanced Information Gain is 9.5%
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for the Naive Bayes, 51.5% for the J48 and 68.7% for the SMO learning algorithm. According

to the calculation model ReliefF, the relative amount of selected features is 15.5% for the Naive

Bayes, 43% for the J48 and 75.7% for the SMO learning algorithm. This numbers approve the

conclusion that in terms of the Statistical Spectrum Descriptor the expected reduction of the

original feature set is considerable higher for the Naive Bayes, while the potential feature set

reduction according to the J48 and the SMO learning algorithms is lower.

4.3.3 Rhythm Histogram

Like in discussion of the descriptors Rhythm Pattern and Statistical Spectrum Descriptor, at

�rst the feature selection performances according to the GTZAN collection will be discussed.

Figure 4.7 depicts the classi�cation accuracy of all feature selection candidates according to

every of the 10 one-vs.-rest genre situations. Again, the three learning algorithms Naive Bayes,

J48 and SMO were used because they represent three quite di�erent concepts of learning. The

two heuristic discrimination models Balanced Information Gain and ReliefF were separately

employed to generate the required feature ranking. This focus on only two of the �ve possible

calculation models is su�cient, since the four calculation models Chi-square, Information Gain,

Gain Ratio and Balanced Information Gain achieve very similar feature rankings and therefore

only marginal divergences could be observed in the performances of the corresponding feature

selection evaluations.

The classi�cation accuracy of the feature selection candidates based on the Balanced In-

formation Gain are illustrated in the �gures (a), (c) and (e) for the three learning algorithms

Naive Bayes, J48 and SMO, respectively. The classi�cation accuracy of the selection candidates

evaluated with the Naive Bayes introduces an interesting di�erence to the corresponding accu-

racy results based on the other two examined descriptors. Those feature selection candidates

which possess the highest classi�cation accuracy contain very few features. This observation is

valid for all 10 genres and means that a signi�cant feature set reduction is directly related to

a higher classi�cation accuracy. Actually, this fact is a strong con�rmation for the e�ectiveness

of using the feature ranking based on the Balanced Information Gain to reduce the original

feature set de�ned by the Rhythm Histogram descriptor. Contrary to the application of the

Naive Bayes with the other two descriptors, the accuracy rate is close to 90% for all genres in

the case of the Rhythm Histogram descriptor. Another very promising fact is that the variation

of the classi�cation accuracy is also limited among the feature selection candidates of the same

genre. Considering those feature selection candidates containing at least 18 of the maximum

60 features, the limitation of the accuracy variation is given by a margin of 1% according to 8
of 10 possible genres. In fact, this is a promising limitation as it might not even be signi�cant

at all. A stronger variation of the classi�cation accuracy can only be observed with respect to

the genres Blues and Disco. From this observation follows that the classi�cation accuracy will

only be e�ected by an error of 1% at most if the size of the original feature set is reduced by

remarkable 70%.
At �rst the accuracy results according to the Balanced Information Gain and the J48 learning
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(a) Naive Bayes and Balanced IG

2 10 18 26 34 42 50 58
50

55

60

65

70

75

80

85

90

95

selected features

re
l. 

ac
cu

ra
cy

 in
 %

 

 

(b) Naive Bayes and ReliefF
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(c) J48 and Balanced IG
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(d) J48 and ReliefF
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(e) SMO and Balanced IG
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(f) SMO and ReliefF

Figure 4.7: Classi�cation accuracy results according to the Rhythm Histogram descriptor on
the GTZAN collection. 30 feature selection candidates have been evaluated where every selection
candidate Ci with 1 ≤ i ≤ 30 contains the 2 · i most discriminative features respectively. Three
di�erent learning algorithms were employed with the calculation models Balanced Information
Gain and ReliefF each. The following symbols constitute every individual genre: a for Blues, g
for Classical, p for Country, × for Disco, / for Hip hop, + for Jazz, R for Metal, T for Pop, n for
Reggae and o for Rock. A red (bright) symbol indicates the best classi�cation accuracy achieved
for the respective genre.
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(a) Naive Bayes and Balanced IG

2 10 18 26 34 42 50 58
30

40

50

60

70

80

90

100

selected features

re
l. 

ac
cu

ra
cy

 in
 %

 

 

(b) Naive Bayes and ReliefF
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(c) J48 and Balanced IG
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(d) J48 and ReliefF
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(e) SMO and Balanced IG
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(f) SMO and ReliefF

Figure 4.8: Classi�cation accuracy results according to the Rhythm Histogram descriptor on the
ISMIR 2004 Genre collection. 30 feature selection candidates have been evaluated where every
selection candidate Ci with 1 ≤ i ≤ 30 contains the 2 · i most discriminative features respectively.
Three di�erent learning algorithms were employed with the calculation models Balanced Infor-
mation Gain and ReliefF each. The following symbols constitute every individual genre: g for
Classical, × for Electronic, + for Jazz & Blues, R for Metal & Punk, o for Rock & Pop and T for
World.
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(d) ReliefF and ISMIR 2004 Genre

Figure 4.9: Illustration of the two most discriminative features of the Rhythm Histogram De-
scriptor according to every genre. The results of the �gures(a) and (c) are based on the GTZAN
collection, while the �gures (b) and (d) illustrate results calculated on the ISMIR Genre 2004
collection.

algorithm illustrated in �gure (e) appear to vary more comparing with corresponding results

based on the Naive Bayes or the SMO learning algorithms. In fact, the classi�cation accuracy

does clearly oscillate between successive feature selection candidates of the same genre. Because

of this oscillation various �peaks� exist along the progression of the classi�cation accuracy. Such

�peaks� actually occur seldom in the results based on both the Naive Bayes and the SMO learning

algorithms. Regarding a Decision tree learning algorithm like the J48 this characteristic is more

usual in terms of feature selection, since not only the contribution of the single features but

also the contributions exhibited by the feature dependencies in�uence the performance of a

Decision tree learner. Nevertheless, a considerable limitation regarding the variation of the

classi�cation accuracy can be recognized. Actually, the classi�cation accuracies of the feature

selection candidates having at least 26 of the maximum 60 most discriminative features are

consistently within a 1 � 2% margin for all 10 genres. The strongest variation of 3% occurs

for the selection candidates of the genre Country where the classi�cation accuracy considerably

deteriorate when more discriminative features were taken into account.

Considering the classi�cation accuracy of the selection candidates according to the SMO

learning algorithm depicted in �gure (e), the classi�cation accuracy is quite consistent among

the selection candidates of the same genre as the achieved accuracy only varies within margin

of 1% to 2% for all genres but Hip hop. In the case of Hip hop a variation of 3.5% can be

observed. This limitation is even stronger if only the selection candidates containing at least 18
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Balanced Information Gain

Naive Bayes J48 SMO

Genre Accuracy #Features Accuracy #Features Accuracy #Features

Blues 89.40± 1.26 2 (03%) 90.00± 0.00 2 (03%) 90.00± 0.00 2 (03%)
Classical 90.50± 3.14 2 (03%) 93.00± 1.76 8 (13%) 91.20± 1.69 60 (100%)
Country 90.00± 0.00 2 (03%) 90.00± 0.00 2 (03%) 90.00± 0.00 2 (03%)
Disco 88.00± 2.58 2 (03%) 90.90± 0.88 2 (03%) 91.00± 0.94 34 (57%)
Hip hop 89.30± 3.95 2 (03%) 90.40± 2.55 12 (20%) 93.30± 2.83 60 (100%)
Jazz 87.20± 3.01 2 (03%) 90.00± 0.00 2 (03%) 90.10± 0.32 60 (100%)
Metal 90.00± 0.00 2 (03%) 90.00± 0.00 2 (03%) 90.00± 0.00 2 (03%)
Pop 88.40± 2.07 2 (03%) 90.60± 2.99 18 (30%) 91.80± 2.35 36 (60%)
Reggae 87.60± 2.37 2 (03%) 89.80± 1.75 14 (23%) 91.00± 1.33 42 (70%)
Rock 90.00± 0.00 2 (03%) 90.00± 0.00 2 (03%) 90.00± 0.00 2 (03%)

ReliefF

Blues 89.20± 0.92 2 (03%) 90.00± 0.00 2 (03%) 90.00± 0.00 2 (03%)
Classical 90.80± 4.13 2 (03%) 92.60± 1.35 2 (03%) 91.40± 1.71 60 (100%)
Country 90.00± 0.00 2 (03%) 90.20± 1.69 16 (27%) 90.00± 0.00 2 (03%)
Disco 88.20± 2.44 2 (03%) 90.90± 1.10 2 (03%) 91.00± 0.94 32 (53%)
Hip hop 89.70± 3.27 2 (03%) 91.40± 2.22 10 (17%) 93.40± 2.76 54 (90%)
Jazz 90.00± 0.00 2 (03%) 90.70± 0.82 6 (10%) 90.10± 0.32 60 (100%)
Metal 90.00± 0.00 2 (03%) 90.00± 0.00 2 (03%) 90.00± 0.00 2 (03%)
Pop 88.70± 1.64 2 (03%) 90.20± 3.05 36 (60%) 91.80± 2.49 48 (80%)
Reggae 87.60± 2.37 2 (03%) 90.00± 1.15 10 (17%) 91.00± 1.70 58 (97%)
Rock 90.00± 0.00 2 (03%) 90.00± 0.00 2 (03%) 90.00± 0.00 2 (03%)

Table 4.6: Evaluation of the feature selection based on the genre discrimination of every feature
according to the Rhythm Histogram descriptor on the GTZAN collection. The best classi�cation
accuracy with the corresponding standard deviation and the related number of selected features
(relative amount of selected features) are listed for every one-vs.-rest genre situation and each of
the two calculation models.

of the maximum 60 most discriminative features will be considered. In this case the variation

is limited by a margin of 1% for all genres but Hip hop. Another very important fact is that

the variation of the classi�cation accuracy is close to zero for 5 of the 10 genres de�ned by

the GTZAN collection. Among these genres are also Country and Rock whereupon the feature

selection results based on either the other two learning algorithms or the SMO together with

the other two descriptors Rhythm Pattern and Statistical Spectrum Descriptor show a declining

tendency when more discriminative features were used in the classi�cation.

The �gures (b), (d) and (f) illustrate the feature selection performances based on the ReliefF

model and the three learning algorithms, respectively. Similar to the other two descriptors, the

accuracy results based on the ReliefF do not vary much comparing with the corresponding results

based on the Balanced Information Gain. Actually, the feature selection results according to

the J48 and SMO learning algorithms exhibit such a high degree of similarity that the same
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Balanced Information Gain

Naive Bayes J48 SMO

Genre Accuracy #Features Accuracy #Features Accuracy #Features

Classical 83.27± 2.25 42 (70%) 82.24± 4.92 56 (93%) 84.02± 3.76 56 (93%)
Electronic 86.90± 1.75 6 (10%) 88.75± 1.86 14 (23%) 90.46± 1.74 54 (90%)
Jazz & Blues 96.43± 0.29 2 (03%) 96.43± 0.29 2 (03%) 96.43± 0.29 2 (03%)
Metal & Punk 93.83± 0.02 2 (03%) 93.83± 0.02 2 (03%) 93.96± 0.29 34 (57%)
Rock & Pop 83.88± 2.73 2 (03%) 86.08± 0.32 2 (03%) 86.42± 1.69 60 (100%)
World 83.26± 0.34 2 (03%) 83.26± 0.34 2 (03%) 83.26± 0.34 2 (03%)

ReliefF

Classical 82.65± 2.51 60 (100%) 83.54± 2.86 4 (07%) 84.23± 3.18 36 (60%)
Electronic 86.56± 2.78 8 (13%) 88.82± 1.86 40 (67%) 90.40± 1.56 56 (93%)
Jazz & Blues 96.23± 0.67 2 (03%) 96.43± 0.29 2 (03%) 96.43± 0.29 2 (03%)
Metal & Punk 91.15± 1.62 2 (03%) 93.83± 0.02 2 (03%) 93.96± 0.43 48 (80%)
Rock & Pop 85.12± 2.57 2 (03%) 87.17± 2.96 4 (07%) 86.56± 2.06 44 (73%)
World 82.72± 0.47 2 (03%) 83.26± 0.34 2 (03%) 83.26± 0.34 2 (03%)

Table 4.7: Evaluation of the feature selection based on the genre discrimination of every feature
according to the Rhythm Histogram descriptor on the ISMIR 2004 Genre collection. The best clas-
si�cation accuracy with the corresponding standard deviation and the related number of selected
features (relative amount of selected features) are listed for every one-vs.-rest genre situation and
each of the two calculation models.

conclusions can be made.

Only the accuracy results according to the Naive Bayes di�er as the variation of the accuracy

is higher among the feature selection candidates of the same genre for 6 of the 10 genres in

comparison to the corresponding results based on the Balanced Information Gain. This means

that a similar variation limit of 1% is only valid among feature selection candidates having at

least 42 features. This refers to a feature set reduction of approximately 30%. The genres Disco
and Reggae are related to a slightly higher variation of the classi�cation accuracy.

Basically, both the Balanced Information Gain and the ReliefF are proper models to compute

a feature ranking for feature selection. Actually, at least 30% of the original feature set can be

reduced without having a considerable decline in the classi�cation accuracy. In the case of

the Balanced Information Gain a feature set reduction of approximately 55% is even possible

according to all three learning algorithms. A decline of at most 2%must be expected which might

not even be signi�cant in some cases. In order to compare the best classi�cation accuracy and the

corresponding standard derivation as well as the related number of selected most discriminative

features for every one-vs.-rest genre situation, table 4.6 presents an overview based on both

calculation models and the three used learning algorithms. The results based on the Naive Bayes

are quite surprising because the best classi�cation accuracy according to every one-vs.-rest genre

situation was achieved by taking only the two most discriminative features into account. These

two features only represent a relative amount of 3% according to the original feature set. More

surprisingly, this observation is valid for both calculation models. Figure 4.9 visualizes these two
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most discriminative features for both calculation models, respectively, in order to emphasize the

modulation frequencies constituted by those features which appear to be such decisive regarding

the performed one-vs.-rest genre classi�cation. The illustration shows that for the most genres

the modulation frequencies according to the two most discriminative features do notably diverge

in the case of the Balanced Information Gain. Contrarily, the modulation frequencies of the two

most discriminative features based on the ReliefF are quite similar for 7 of 10 genres. Another

interesting observation is that the classi�cation accuracy is equal or better according to all

one-vs.-rest genre situations than the corresponding accuracy results based on the Naive Bayes

with the Rhythm Pattern descriptor or the Statistical Spectrum Descriptor. Also the di�erence

between the best achieved classi�cation accuracy is considerable smaller for every genre.

In order to compare the potential reduction of the feature set in a more convenient way,

again the average relative number of selected features has been calculated for each calculation

model and learning algorithm. According to the Balanced Information Gain the average relative

amount of selected features is 3% for the Naive Bayes, 10.4% for the J48 and 49.9% for the

SMO learning algorithm. Regarding the classi�cation accuracy, the SMO basically performed

best, but for the genres Jazz & Blues and World all three learning algorithms achieved the same

accuracy. The Naive Bayes and the J48 performed quite similar. In terms of the calculation

model ReliefF, the relative amount of selected features is 3% for the Naive Bayes, 14.6% for the

J48 and 53.2% for the SMO learning algorithm. Considering the achieved classi�cation accuracy

results, the SMO learning algorithm performed best for all 6 one-vs.-rest genre situations, while

the Naive Bayes achieved a slightly worse performance than the J48. Especially the average

numbers of selected features according to the Naive Bayes and the J48 are very remarkable,

since these results suggest that a feature ranking based on the Rhythm Histogram descriptor

implies the highest reduction of the original feature set in comparison to the other two discussed

descriptors. Also the average feature set reduction according to the SMO learning model is better

than the reduction achieved in terms of the Statistical Spectrum Descriptor. From this follows

that a potential feature set reduction can be concluded for all three learning models.

ISMIR 2004 Genre

Comparing to the GTZAN collection, the feature selection performance based on the ISMIR 2004

Genre collection is presented in �gure 4.8 where the two heuristic calculation models Balanced

Information Gain and ReliefF were used again.

The classi�cation accuracy of the feature selection candidates according to the two calcu-

lation models only di�ers slightly for the Naive Bayes and the J48 learning algorithms. In fact,

the accuracy results based on these two learning algorithms also suggest that both the Balanced

Information Gain and the ReliefF are e�ective heuristics to build a feature ranking for feature

selection because the respective variation of the classi�cation accuracy of the corresponding se-

lection candidates is quite limited for almost all of the 6 genres de�ned by the ISMIR 2004

Genre collection. Actually, the results based on the Naive Bayes reveal a variation margin of

approximately 5%, while the variation margin related to the results according to the J48 is given



114 CHAPTER 4. EVALUATION OF FEATURE SELECTION

with 3%. In both cases the accuracy results representing the genre World have to a stronger

variation. Contrarily, the results of the two calculation models considerably diverge in the case

of the SMO learning algorithm as the variation of the accuracy related to 4 of the 6 genres are

tightly limited by a margin of less than 1%. The Balanced Information Gain appears to be more
useful as that strong limitation of the classi�cation accuracy holds even true for 5 genres when

feature selection candidates having a number of at least 18 of the maximum 60 features were

considered only. According to the ReliefF the same scale of limitation can only be observed when

feature selection candidates having a number of at least 34 features were taken into account.

Table 4.7 lists the classi�cation accuracy and the corresponding standard derivation as well

as the related number of selected features for every one-vs.-rest genre situation. Similar the

results based on the GTZAN collection, only the two most discriminative features were taken

into account to achieve the best classi�cation accuracy for 4 of maximum 6 genres. Although the

data instances of the ISMIR 2004 Genre collection are not equally distributed among the 6 genres,
this similar feature selection performance is promising comparing with the GTZAN collection.

Again, the average relative numbers of selected features according to each of the two calculation

models have been calculated to better compare the feature selection performance among the

three discussed descriptors. The average relative amount of selected features according to the

Balanced Information Gain is 15.3% for the Naive Bayes, 21.3% for the J48 and 57.7% for

the SMO learning algorithm. According to the calculation model ReliefF, the relative amount

of selected features is 20.8% for the Naive Bayes, 15% for the J48 and 52% for the SMO

learning algorithm. Comparing to the corresponding results of the Rhythm Pattern descriptor

and the Statistical Spectrum Descriptor, the average numbers of selected features imply that the

expected reduction of the original feature set is considerable higher for the J48 and the SMO

learning models and even the potential feature set reduction according to the Naive Bayes is only

marginal lower. In the case of ISMIR 2004 Genre collection the ReliefF model outperforms the

Balanced Information Gain, while for the GTZAN collection the Balanced Information Gain is

the better heuristic discrimination model.

4.4 Conclusion

This chapter presented an evaluation of a feature selection approach based on a feature ranking

according to the contribution of every feature for genre discrimination. The key advantage of

this feature selection approach is that the feature evaluation can be performed without the need

of splitting the original training and test set into speci�c sets which are individually used for the

feature evaluation and the actual learning. Contrary to the Wrapper feature selection approach

discussed in [31], this means that both the feature selection algorithm and the successive learning

algorithm can use the full training and test set.

The feature selection evaluation compared the contributions of the �ve heuristic discrimina-

tion models Chi-square, Information Gain, Gain Ratio, Balanced Information Gain and ReliefF

to estimate an e�ective feature ranking for feature selection. The three descriptors Rhythm Pat-
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tern, Statistical Spectrum Descriptor and Rhythm Histogram represented the original feature

sets used in the feature selection evaluation where all three descriptors were available for both

the GTZAN and the ISMIR 2004 Genre collection. Also the three learning algorithms Naive

Bayes, J48 and SMO were separately employed during the evaluation because they represent

three quite di�erent concepts of learning. Moreover, the feature selection evaluation was done

based on one-vs.-rest genre situations only. Two key questions were examined during the feature

selection analysis. The �rst question concerned the degree of consistency regarding the classi�-

cation accuracy which was observed among the feature selection candidates of the same genre.

In particular the actual limitation regarding the variation of the classi�cation accuracy was ex-

amined as it represents a decisive aspect of the quality of the feature selection approach. The

second question was related to the potential scale of feature set reduction which can be expected

for all genres according to the respective learning algorithm and descriptor.

The evaluation clearly showed that the feature selection performances according to the four

calculation models Chi-square, Information Gain, Gain Ratio and Balanced Information Gain

marginally vary. Since the accuracy results based on the Gain Ratio and the Balanced Informa-

tion Gain suggested a slightly higher consistency according to the classi�cation candidates and

also slightly better classi�cation accuracy for many genres, these two calculation models should

be preferred against the Chi-square. The feature selection performance based on the ReliefF

diverged more where in particular the limitation of the classi�cation accuracy was di�erent.

The results of the feature selection evaluation suggested that the classi�cation accuracy

of the selection candidates related to the same genre was actually strongly limited although

the actual scale of limitation particularly depended on the learning algorithm used and the

descriptor. In many cases the accuracy was limited by a margin of approximately 5% where

some stronger variation were observed for some speci�c one-vs.-rest situations. Yet, already this

limitation is remarkable as it basically held true for all three descriptors, the two examined music

collections and the three learning algorithms. More speci�cally, in terms of the J48 and the SMO

in particular, the limitation of the variation given a by margin of 1 � 2% was stronger for almost

all genres. Only the results based on the genres Country and Rock of the GTZAN collection

varied stronger, by at most 4%. In the case of the Rhythm Histogram descriptor, the variation of

the classi�cation accuracy was always within a margin of 1% for all learning models and at least

8 of 10 genres according to the GTZAN collection and 4 of 6 genres according to the ISMIR 2004

Genre collection. An important conclusion is that the limitation of the accuracy variation was

always within a margin of 1 � 2% for all music collections, learning algorithms and descriptors

if the feature selection candidates containing at least 50% of the most discriminative features

were considered only. From this observation can be followed that the original feature set size can

actually be reduced by 50% without having a considerable, in some situation even a potentially

insigni�cant, decline of the classi�cation accuracy. Thus, the e�ectiveness of the feature selection

approach based on genre discrimination can de�nitely be concluded.

The results according to the average relative number of selected features over all genres

implied a strong dependence on the music collection used. The average relative number of se-
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lected features was calculated by only considering those selection candidates over all one-vs.-rest

genre situations for which the best classi�cation accuracy was achieved. Nevertheless, important

conclusions could be made holding true for all three music collection. Considering the GTZAN

collection, the potential average feature set reduction according to the Rhythm Histogram de-

scriptor was remarkably good for the two learning algorithms Naive Bayes and the J48. More

speci�cally, for the Naive Bayes the achieved feature set reduction was 97% according to the

Balanced Information Gain and the ReliefF. In the case of the J48 the achieved feature set re-

duction was 89.6% and 85.4% according to the Balanced Information Gain and the ReliefF,

respectively. The largest feature set reduction according to the SMO learning algorithm was

observed in terms of the descriptors Rhythm Pattern and Rhythm Histogram. In the case of the

Rhythm Pattern descriptor an average reduction of 62% and 50.1% was achieved according to

the Balanced Information Gain and the ReliefF, respectively, while an average reduction of 50.1%
and 46.8% was observed with the Rhythm Histogram descriptor. The feature set reduction re-

garding the Statistical Spectrum Descriptor is 30% according to the SMO and approximately

70% for the other two learning algorithms. According to the GTZAN collection, it could de�-

nitely be followed that the feature ranking based on the Balanced Information Gain achieved a

larger the feature set reduction. The classi�cation accuracy was considerably better in the case

of the SMO learning algorithm compared with the Naive Bayes and the J48. Very interesting

is that the performance of the SMO is only slightly better according to the Rhythm Histogram

descriptor, while the margin between the accuracy achieved by the SMO and the other learning

algorithms is considerably larger in the case of the other two descriptors.

In the case of the ISMIR 2004 Genre collection, the dependency on the applied learning

algorithm was more important in order to conclude which calculation model achieves a larger

feature set reduction together with a limited decline of the classi�cation accuracy. According

to the Naive Bayes the Balanced Information Gain performed better, while the ReliefF model

should be preferred for the Decision tree J48. According to the SMO learning algorithm, the

Rhythm Histogram descriptor with the ReliefF outperformed the Balanced Information Gain

with a feature set reductions of 48% and 42.3%, respectively, while the Balanced Information

Gain was the better model for feature ranking in terms of the other two descriptors. Nevertheless,

the average feature set reduction among the best classi�cation accuracy of every genre was also

remarkable in terms of the ISMIR 2004 Genre collection. For both the Naive Bayes and the

J48 an average feature set reduction of approximately 50% was achieved according to all three

descriptors where the average reduction was enormously high with 75% or even more in the case

of the Rhythm Histogram descriptor. For the SMO learning algorithm a feature set reduction

of at least 40% was achieved in with the descriptors Rhythm Pattern and Rhythm Histogram,

while a reduction of at least 25% was observed with the Statistical Spectrum Descriptor. It could

be concluded that the Balanced Information Gain performed better with the Naive Bayes and

the SMO learning algorithms, while the ReliefF appeared to be preferable with the J48 learning

algorithm. Regarding the achieved classi�cation accuracy quite the same conclusions were valid

as in the case of the GTZAN collection.
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This chapter focuses on two speci�c applications which have been designed and implemented to

obtain signi�cant empirical data to examine all questions de�ned in this thesis. The �rst appli-

cation represents the discriminant analysis tool DiscriminationAnalyzer which has been partly

developed in the popular scienti�c programming environment MATLAB. Section 5.1 describes

the intended purpose as well as all main components of the DiscriminationAnalyzer tool. More-

over, this section also gives a compact overview of all included user interface windows and its

most relevant user controls and actions.

The second application which is described in section 5.2 is not actually meant to be a

standalone system with an own user interface but rather extends the popular machine learning

workbench WEKA. The purpose of this extension is to provide new learning algorithms which

on the one hand can simultaneously handle multiple di�erent feature sets regarding a unique

classi�cation problem, and on the other hand use a hierarchical taxonomy for classifying.

5.1 DiscriminationAnalyzer

Although the abstract idea of using a potential discriminative power analysis of variables concern-

ing the determination of underlying classes has been originally established for problems basically

based on all types of information, results of this approach also imply meaningful conclusions

117
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to Music Information Retrieval. In comparison to some other feature evaluation techniques the

key advantage of using a discriminant analysis to measure the �quality� of features is that the

actual evaluation can be performed on the very same training set which is also used to train the

classi�cation system. Thus, a further partitioning of the available training set is not required

and both the evaluation as well as learning will certainly bene�t by yielding more robust esti-

mation results. Another advantage of this approach to for qualify musical descriptors is that the

easy application, since discriminant analysis provides a generic solution for analyzing musical

descriptors.

The key aim of the DiscriminationAnalyzer is to provide speci�c tools to perform an inter-

active discriminant analysis based on arbitrary heuristic discrimination models and feature sets

in a convenient manner. This means that although the rhythmic descriptors Rhythm Patterns,

the Statistical Spectrum Descriptor and the Rhythm Histogram are used within the thesis only,

the DiscriminationAnalyzer tool works an arbitrary feature sets. Additionally, new heuristic dis-

crimination models can also be added. Basically, the DiscriminationAnalyzer tool consists of two

separate parts. The �rst part realizes the graphical and control components of the user interface

and the second part includes the underlying computational components. As the original intention

had been to design an analyzing tool which runs in MATLAB, user interface and all main control

components were developed in the MATLAB environment. Thus, an active session of MATLAB

is necessary to use the DiscriminationAnalyzer tool. However, most components concerning

the calculation of the discrimination values, the evaluation of feature selections or other data

processing are implemented with the WEKA workbench. WEKA is a Java-based open-source

framework containing various supervised and unsupervised learning methods and has been �rst

introduced in [57]. It should be noted that in addition of using original classes of the WEKA

workbench also speci�c class extension and self-designed classes have been implemented. All

classes are integrated into the WEKA class hierarchy to guarantee full compatibly.

The use of the DiscriminationAnalyzer tool enriches the deployment of discriminant analysis

concerning arbitrary feature sets by providing the following core functionalities:

� Arbitrary datasets which are de�ned either in the popular ARFF format of WEKA or in the

speci�c SOMLib dataset format are allowed for input. Detailed description of ARFF and

SOMLib can be reviewed in [57] and, respectively, in [49]. Both dataset formats can also

be chosen to save already processed datasets and selected feature subsets. Additionally,

the discrimination values computed so far can be explicitly stored by using a self-created

data format in order to allow convenient reuse.

� Basically, seven heuristic discrimination models can be chosen to calculate the discrimina-

tion values of features according to the currently loaded feature sets. Five of these seven

calculation models are discussed in section 3.2. Moreover, the DiscriminationAnalyzer tool

o�ers an interface to import arbitrary heuristic discrimination models implemented in Java

into the currently running application1.

1To guarantee successful inclusion of a new calculation model, it must be designed as a single Java class and
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� Arbitrary feature sets are processable within the DiscriminationAnalyzer. Since quite many

feature sets like rhythmic descriptors can also be represented in matrix form, a dynamic ma-

trix visualization model has been implemented: Both matrix dimensions can be manually

rede�ned to adapt the actual feature set representation at any time.

� Both an independent analysis of single feature sets and a simultaneous analysis of multiple

feature sets are provided by the DiscriminationAnalyzer tool, whereas those feature sets

can even refer to di�erent music collections. As a consequence, the DiscriminationAnalyzer

tool can be run either in a single feature set mode or in a multiple feature set mode and

both modes can be manually set by the user.

� Visualization of the relation of the discrimination values against the ranking order based

on a speci�c genre and the selected calculation model.

� Intuitive selection of k most discriminative features based on the visualization of the rela-

tion of the discrimination values against the ranking order.

� Examination of all computed discrimination values can be done either in graphical or

numerical manner.

� Evaluation of feature subset selections by choosing arbitrary WEKA-based learning algo-

rithms in connection with cross validation or simple validation by splitting into separate

training and test sets. Additionally, an interface to integrate miscellaneous Java-based

learning algorithms is also provided2.

The main functionalities are grouped into six core components in order to increase the

development e�ciency and usability of the DiscriminationAnalyzer tool as a whole. Moreover,

a speci�c analyzing pipeline de�nes the underlying concept of the DiscriminationAnalyzer tool

and each component actually represents a speci�c step of this pipeline. The analyzing pipeline

aggregates all main steps to establish meaningful discriminant analysis and successive feature

subset selection. The main steps of the analyzing pipeline are: dataset input/output, data

normalization, computation of the discrimination values, visualization, feature subset evaluation

as well as evaluation set up. Table 5.1 gives an overview of the analyzing pipeline and its

components.

The following contributions are responsible for the realization of the DiscriminationAnalyzer

tool and its included components. My own contributions are the design as well as the complete

implementation of all control components, the basic program architecture and the user interface.

Furthermore, the heuristic discrimination model Balanced Information Gain which is introduced

in [58] has been adjusted and implemented by myself. Also, an implementation of the attribute-

discrimination model [11, 18] has been carried out by myself. All other heuristic discrimination

must also implement the abstract class weka.attributeSelection.AttributeEvaluator contained in the WEKA frame-
work.

2All learning algorithms which are intended to be added into the DiscriminationAnalyzer tool must be designed
in a single Java class and must also extend the abstract class weka.classi�ers.Classi�er of the WEKA framework.
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Dataset input/output ARFF data format (de�ned in WEKA), VEC data format
(de�ned in SOMLib), MAT data format (self-de�ned)

Data normalization Zero-Mean standardization, Max-Min length normaliza-
tion, Squared-Sum length normalization or without nor-
malization

Computation of discrim-
ination values

Chi-square, Balanced Information Gain [58], Attribute
Discrimination [11,18], Information Gain, Gain Ratio, Re-
liefF [33, 48], Symmetrical Uncertainty [58] and an inter-
face for adding additional calculation models

Visualization distribution of the discrimination values, color matrix rep-
resentation, feature set correlation, feature set value fre-
quency and various visualizations to examine already cal-
culated discrimination values

Selection evaluation Decision tree J48, Nearest Neighbor (lBk), Naive Bayes,
OneR, SMO (i. e. SVM), Random forest, ZeroR and an
interface for adding additional learners

Evaluation set ups Cross validation or train/test set split

Table 5.1: Core components of the DiscriminationAnalyzer

models which are ad hoc provided in the DiscriminationAnalyzer tool are already included in

the standard WEKA workbench and, therefore, have been integrated without any modi�cation.

5.1.1 Controlling the analyzing pipeline

The main window of DiscriminationAnalyzer tool which is shown in �gure 5.1 includes all control

elements and options to modify the analyzing pipeline accordingly. This compact interface design

has been chosen in order to provide simple and e�cient usage. Basically, the interface is divided

into three separate control layers which represent the data/feature set input selection, adjustable

options concerning the computation of the discrimination values and the actual visualization of

the respective computation.

The data/feature set input control is realized in the upper section of the main window.

Because of including two separate list boxes within the data input selection the feature subset

selection which will be actually incorporated into successive discriminant analysis is absolutely

independent from the collection of currently loaded feature sets. This separation of loaded and

selected feature set sets guarantees a convenient way to manage large sets simultaneously. Thus,

only those feature sets which are actually listed in the right list box will be considered for

successive computations of discrimination values. Additionally, on the right hand side of this

upper section general information about the selected feature set set as well as the related music

collection is displayed.

The middle section of the main window provides both adjustable options concerning the

analyzing pipeline and controls to actually initiate computations. The �rst row of this section
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Figure 5.1: Main window of the DiscriminationAnalyzer

includes options to choose a particular calculation model which estimates the discriminative

power of all features according to a given feature set. Furthermore, options to de�ne the label-

ing situation which should be used during the computation and, eventually, to set the current

calculation fold. The labeling situation refers to the underlying class (e. g. genre) range which

will be used in all successive calculations. In case of using the multiple calculation fold mode,

the current fold selection decides which results will be �nally visualized by provided result plots.

The successive row contains such controls to initiate calculations, to display obtained results

and to show the current program status. Finally, various options concerning the computation of

discrimination values as well as the visualization of the results are placed within the third row

of the middle section. Following options can be set by the user � from left to right considering

the order within the main window:

� Normalization/standardization of the feature set prior to the computation of the discrimi-

nation values.

� Two di�erent computational modes to estimate the discrimination values. The �rst com-

putational mode combines an independent calculation of multiple folds with an eventual

rank correlation test to obtain �nal estimations for every single feature of the feature set.

The rank correlation test is based on Kendall's rank correlation coe�cient described in [1]
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and estimates a statistically robust ranking of all included features according to a spe-

ci�c feature set. Eventually, this ranking represents the discriminative ranking among all

features.

Contrary to the �rst, the second computational mode only applies a single calculation

fold to estimate the discriminative ranking. Comparing to the multiple calculation fold

approach, the single calculation fold mode often causes a distorted and, therefore, unreliable

ranking. On the other hand the computation time signi�cantly decreases.

� Either the rank value or the actual discriminative measurement value is used for successive

steps of the analysis, e. g. the visualization of the computed results.

� Display of the relation of the discrimination values against the ranking order with respect

to absolute or relative measurement values. The application of relative measurement values

imposes a normalization of the relation which can be desirable when the actual range of

measurement values is too large.

� Visualization of user-de�ned feature selection either by using an overlay plot based on the

original color matrix representation or by generating a binary matrix representation in

which white matrix cells emphasize selected features.

The bottom section of the main window displays the two main visualizations, namely a

speci�c relation of the discrimination values against the ranking order (left) and the color matrix

representation which conveniently illustrates the assignment of discrimination values to the cor-

responding features (right). In the case of the multiple feature set mode a combined output of

all computational results would yield an unclear visual representation. Thus, only the respective

visualization of a single feature set3 is included in the main window and a combined visualization

of all results will be shown in a separate window as �gure 5.2 illustrates.

The menu bar at the top of the main window additionally enriches the possibilities of

interaction. Various menus are included to provide fast access to data loading and saving, data

selection and removal, to generate several di�erent plots and to start the numerical examination

as well as the feature subset evaluation. All plot types which are described in the visualization

component of table 5.1 can be chosen via the corresponding menu. The numerical examination

of the calculation of the discrimination values and the feature selection evaluation are explicitly

reviewed in subsections 5.1.2 and 5.1.3. Eventually, a tool bar is also available directly below

the menu bar for convenient access of some frequently used actions.

5.1.2 Evaluation of discrimination results

All previously computed discrimination values according to selected feature sets can be examined

either in a graphical or in a numerical manner. Among others the graphical representation is

mainly established by two related plots which on the one hand visualize the relation of the

3This feature set can be chosen by selecting the corresponding feature set in the selection list box.
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(a) Relation of the discrimination values against
the ranking order

(b) Matrix representation

Figure 5.2: Simultaneous visualization of a Rhythm Patterns and Statistical Spectrum Descriptor
related to the music collection ISMIR 2004 Rhythm.

(a) Overlay matrix plot (b) Binary matrix plot

Figure 5.3: Feature subset selection of the 40 most discriminative features concerning Rhythm
Patterns and Statistical Spectrum Descriptor which have been extracted from the music collection
ISMIR 2004 Rhythm. Sub�gure (a) illustrates the feature selection by an overlay plot. In (b), a
binary representation is shown.

discrimination values against the ranking order, and on the other hand generate a color matrix

to display the discriminative power of every feature conveniently. In the previous subsection

both plots have been already declared as the main visualization of the computational results. If

the single feature set mode is currently activated, both plots will be shown at the bottom section

of the main DiscriminationAnalyzer window. This case is illustrated in �gure 5.1. Otherwise, if

the multiple feature set mode is activated, both the relation of the discrimination values against

the ranking order and the color matrix representations of the corresponding feature sets will be

displayed in separate windows. Figure 5.2 shows two separately generated plot windows.

In addition to the result visualization, the feature selection based on the discrimination

values is a further core examination tool and can be directly combined with the original color

matrix representation. The underlying selection mechanism aggregates the best k features, i. e.

the k most discriminative features, whereas the upper bound k can be set by the user. If multiple

feature sets are used simultaneously, the k most discriminative features of each set will be chosen
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Figure 5.4: Numeric examination window of the DiscriminationAnalyzer

to build feature subsets, respectively. Yet, a particular reference feature set must be set by the

user in order to de�ne a common k. Regarding the selection illustration within the color matrix

representation, either an overlay plot or a binary plot can be employed. The overlay plot depicts

selected features with white dots on the corresponding matrix cells. In terms of the binary plot

white matrix cells indicate selected features. An exemplary selection visualization with the upper

bound k = 40 of both the overlay plot and the binary plot is shown in �gure 5.3.

Besides the graphical representation of computational results a tabular summarization of

currently available calculation results is provided in the DiscriminationAnalyzer tool. This tabu-

lar representation also supports arbitrary comparisons of those results based on di�erent heuristic

discrimination models or calculation modes as well. In �gure 5.4, the separate numerical exam-

ination window is introduced which can be opened via the menu bar or tool bar of the main

window. In the upper section of this window particular calculation result settings can be de-

�ned by choosing the feature set, the heuristic discrimination model, the labeling situation and

a calculation fold4. The middle section contains controls to select prede�ned result settings for

displaying and, eventually, the bottom selection actually shows the chosen result sets in tabular

form.

4Results of the single calculation mode can also be chosen.
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Figure 5.5: Evaluation window of the DiscriminationAnalyzer.

5.1.3 Feature selection evaluation

After the desired discrimination values have been calculated and the k most discriminative fea-

tures have been successively selected, the next step of the analyzing pipeline is the speci�c

evaluation of those selected features with respect to the classi�cation performance. A separate

evaluation window o�ers a basic evaluation environment by using WEKA-based learning algo-

rithms and two di�erent evaluation modes. Figure 5.5 visualizes this evaluation window which

can be directly opened via the menu bar or the tool bar of the main DiscriminationAnalyzer

window.

Similar to the numerical evaluation window introduced in the previous subsection, the upper

section of the evaluation window contains controls to choose a particular feature set, the corre-

sponding labeling situation, the calculation model for estimating the discriminative ranking and,

eventually, a particular calculation fold. The middle section of the evaluation window provides
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all available options for the evaluation environment consisting of both the selection of a speci�c

learning algorithm and an evaluation mode. Several popular learning algorithms are integrated

in the DiscriminationAnalyzer tool and can be chosen by the user. For instance Support vector

machines, Decision trees and probabilistic learners are available. But arbitrary learning algo-

rithms can also be imported if such models ful�ll two requirements. First, the learning algorithm

must be implemented within a single Java class. Second, the respective Java class must extend

the abstract class weka.classi�ers.Classi�er which is included in the original WEKA workbench.

Additionally, the user has the possibility to perform the evaluation either by a cross validation

or by an usually faster train/test set split. Fundamental options to adequately adjust those

basic evaluation procedures are also available. Eventually, the evaluation output and some basic

output control are placed in the bottom section of this selection evaluation window.

5.1.4 Data input and output

The DiscriminationAnalyzer tool supports both the popular ARFF dataset format and the more

speci�c SOMLib dataset format for both input and output. Only datasets which are described

in either of these two formats can be successfully loaded. These two dataset formats can also be

chosen to save given feature selections after corresponding calculations. Both loading and saving

of data sets as well as feature selections can be initiated either by using the menu bar or the tool

bar of the main window.

The ARFF dataset format was created to provide a compact de�nition of entire dataset

including all features with their names, the value type and value range of every feature attribute

and the actual data instances. The entire dataset description and all data instances are stored in

a single ASCII-coded �le which �le name must append the extension .arff. A detailed overview

of the ARFF dataset format can be reviewed in [57] and on the website of the WEKA machine

learning workbench [55].

The SOMLib dataset format has been introduced in the SOMLib Digital Library Project [49]

and is also used to extract the descriptors Rhythm Pattern, Statistical Spectrum Descriptor and

Rhythm Histograms described in [38] or in related applications such as PlaySom [44]. It de�nes

a vector �le which contains the dataset description and all included data instances as well.

The vector �le is also coded in ASCII and the underlying �le name must have the extension

.vec. Contrary to ARFF, the SOMLib format does not explicitly include class assignments

inside the vector �le. Thus, a second �le which is called the ground truth �le (is de�ned as a

tab-separated ASCII �le) must be delivered as well. This ground truth �le actually de�nes a

particular class assignment for every included data instance. In order to successfully load or save

datasets described by SOMLib, both the main vector �le and the related ground truth �le must

be declared.

Additionally, to avoid the loss of calculation results by closing the current session, the

DiscriminationAnalyzer tool supports an self-de�ned dataset format based on the usual MATLAB

�le format having the extension .mat. All currently computed discrimination results will be fully

described by this dataset format. Contrary to the other supported dataset formats, only a
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physical link, i. e. the absolute path to the dataset, will be stored instead of saving all data

instances. When the link becomes invalid or the corresponding �le has been created on another

computer, the correct link referring to the dataset can be manually set via the menu bar of the

main window.

5.2 Extension of the WEKA workbench

Basically, the Java-based open source machine learning workbench WEKA [55, 57] is used to

evaluate feature subset selections based on the discriminative feature ranking pointed out in

chapter 4. Since some more complex learning algorithms and evaluation procedures were em-

ployed during the evaluation phase of this thesis, the original WEKA framework had to be

enhanced accordingly by designing new classes or extending already existing classes. In particu-

lar, original WEKA does not contain a hierarchical learning algorithm or can not simultaneously

process several feature sets within a single learning algorithm. Although these WEKA exten-

sions do not constitute an explicit stand-alone system in relation with a graphical user interface,

I have aggregated all those WEKA extensions in a second application. Because all self-designed

interfaces and classes are directly embedded into the original WEKA workbench, this application

has been called Extended WEKA.

A detailed UML class diagram of relevant interfaces and classes which are part of Extended

WEKA is illustrated in �gure 5.6. It is worth noting that in parallel to the original WEKA

classi�er structure, which always de�nes weka.classifiers.Classifier as the top class, an

additional classi�er structure has been created to handle the simultaneous use of multiple fea-

ture sets within a single learning algorithm. Every learning algorithm which includes this new

class structure must also implement the primary class structures in order to guarantee full com-

patibility with WEKA-based applications. The following list gives a compact description of the

most relevant members of Extended WEKA:

MultipleSetClassi�er introduces the design ofmultiple set learning algorithms into theWEKA

framework which do actually accept multiple independent feature sets extracted from the

same underlying data source. Basically, the idea of combing classi�cation results based on

di�erent feature sets was already pointed out in [30], but in particular Flexer et al. [21]

emphasize the use of this approach in context of music classi�cation. As standard WEKA

framework does only support multiple classi�er combination on a single feature set5, the

design of a new class structure which has this interface as the top is ineluctable. How-

ever, the interface MultipleSetClassifier should always be implemented parallel to the

standard WEKA classi�er structure6 in order to guarantee full compatibility within the

WEKA framework.

5Class weka.classifiers.meta.Vote provides classi�er combination on a single feature set by di�erent com-
bination rules (e. g. average, max, min) which can be surveyed in [30].

6A respective classi�er class should implement both the standard class weka.classifiers.Classifier and
the interface MultipleSetClassifier.
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SelectionClassi�er provides additional control to restrict the number of features to the �rst k

features which will be used during the successive learning and classi�cation of the under-

lying learning algorithm. This selection is always performed on a single feature set.

MultipleSetSelectionClassi�er establishes �rst k feature selection on multiple feature sets

and therefore is directly related to both interfaces MultipleSetClassifier as well as

SelectionClassifier. The implementation of this interface should guarantees the de�ni-

tion of selection sizes for each feature set independently.

EnhancedVote extends class weka.classifiers.meta.Vote of the original WEKA framework

by additionally including the combination rule Sum of probabilities to aggregate probability

results of multiple learning algorithms. Because this class should be considered as an

extension of the primary WEKA class, it does not support the simultaneous application of

multiple feature sets.

MyAttributeSelectedClassi�er employs a user-de�ned feature selection prior to successive

learning and classi�cation procedures. Contrary to the interfaces SelectionClassifier

and MultipleSetSelectionClassifier, this meta learning algorithm performs an arbi-

trary feature selection by assigning a list of feature indices corresponding to the underlying

data instance. The actual learning algorithm must also be de�ned during initialization.

It is worth noting that this meta learning algorithm is required to su�ciently realize the

HierarchicalClassifier in order to o�er particular feature selections at every included

inner node of the class taxonomy.

MultipleSetVote combines the concept of simultaneous use of multiple feature sets with mul-

tiple independent learning algorithms. Thus, a MultipleSetVote learner is a very generic

meta learning algorithm which on the one hand can process a single feature set or multiple

feature sets simultaneously, and on the other hand employs a single or a combination of

several learning algorithms. Additionally, the assignment of given learning algorithms to

corresponding feature sets can be done either by the user or automatically due to prior

accuracy estimations. To obtain accuracy estimation for a particular learning algorithm,

separate cross-validation procedures for every available feature set will be employed. Sub-

section 5.2.1 refers to implementation details as well as relevant adjustable options.

HierarchicalClassi�er performs hierarchical classi�cation based on a user-de�ned taxonomy.

Although this learning algorithm is used within this thesis only in context of musical genre

classi�cation, it has been deliberately implemented to support arbitrary classi�cation prob-

lems which can be e�ectively solved by a hierarchical classi�cation approach. Taxonomy

de�nitions have to be formulated by using the standard WEKA XML scheme which is

originally introduced to describe classi�ers or entire experiment environments. The XML-

based taxonomy description can be easily imported into a new HierarchicalClassifier

instance by directly de�ning the absolute path of the �le source. Furthermore, classi�cation
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Processing mode Description

Single-Multiple A single learning algorithm is employed to di�erent and independent
feature sets.

Multiple-Single Multiple independent learning algorithms use the same feature set
respectively.

Multiple-Multiple Multiple independent learning algorithms use di�erent and indepen-
dent feature sets respectively.

Table 5.2: Available processing modes of MultipleSetVote.

results are represented by a classi�cation path which contains the entire path from root

to the respective leaf node which actually depicts the eventual class assignment. Thus, all

assigned sub classes7 as well as the actual result class itself are easily accessible. Subsec-

tion 5.2.2 focuses on implementation details and summarizes relevant adjustable options of

the HierarchicalClassifier as well as some examples of valid XML taxonomy de�nitions.

In addition to above described classes and interfaces, Extended WEKA also includes classes

to perform particular experiments based on the choices of learning algorithms, experiment modes

and feature sets. As original WEKA again only supports single feature set learning, existing

experiment classes8 have been adapted to handle the simultaneous use of multiple feature sets.

Consequently, classi�cation experiments will only support the full scale of possibilities regarding

MultipleSetVote and HierarchicalClassifier if these experiment class extensions are used.

Eventually, some notes concerning the programming environment and the used original

WEKA framework should be given. Extended WEKA is based on the WEKA version 3-5-6
and has been developed under the programming environment Eclipse 3.2 and Windows XP SP2.

Unfortunately, a downward compatibility can not be guaranteed. In order to avoid compile or

runtime errors, the Java SE 5.0 should be used at least.

5.2.1 MultipleSetVote

The MultipleSetVote meta learning algorithm combines the concept of multiple learning algo-

rithms with the simultaneous application of multiple independent feature sets. Obviously, those

feature sets contain di�erent types of features but share the same data origin. Since the works

of Kittler et al. [30] and also Flexer et al. [21] impressively show that the combination of multiple

learning algorithms with a single or several independent feature sets actually has the potential

to improve the classi�cation accuracy, the aim of MultipleSetVote is to encapsulate both meta

learning approaches. As a consequence of this generic implementation, three possible processing

modes which are presented in table 5.2 can be selected.

In order to set the desired processing mode of a MultipleSetVote instance, following meth-

ods must be used:
7Sub classes refers to inner nodes of the taxonomy description.
8The original WEKA framework contains the class weka.experiment.Experiment for de�ning arbitrary clas-

si�cation experiments.
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� public void setClassi�ers (weka. classi�ers . Classi�er [ ] classi�ers ) must be used to select

those learning algorithms which will be successively used for classi�cation. If an array with

only one instance of type weka.classifiers.Classifier is de�ned, the current processing

mode will be automatically set to single-<any>. Otherwise mode multiple-<any> will be

activated.

� public void buildClassi�er(weka.core.Instances data) initiates the learning procedure with

the given feature set data. Because of using a single feature set during learning, the current

processing mode is set to <any>-single.

� public void buildClassi�er(weka.core.Instances[ ] data) starts the learning procedure based

on the given feature set array data. Thus, the current processing mode is set to <any>-

multiple. The array data includes all independent feature sets which will be successively

used during learning.

Table 5.3 lists all relevant options for modifying learning and classi�cation procedures of

MultipleSetVote. Actually, three di�erent ways are available in order to adjust options for a

certain instance. First, every option can be manipulated separately by calling corresponding

setter -methods. Second, a whole selection of desired options can be constituted as an array of

java.lang.String where every array element represents a single option. In other words, every

array element contains both the option name and its value (if required). The invocation of the

method

public void setOptions(java.lang.String[ ] options) throws Exception

processes such an option array. Figure 5.7 shows an example set up in array representation.

Third and last, an option representation with XML can be imported by employing the method

public void setParameterFile(java.util.File parameterFile) throws Exception

Basically, this XML representation is very similar to the original XML support for de�ning

arbitrary WEKA learning algorithms. The WekaDoc website [56] introduces the use and creation

of such XML option �les. The basic XML scheme for a valid selection of options is sketched in

listing 5.1. A comparison of the three di�erent kinds of option representation is presented in

�gure 5.7.

Since the accuracy and performance of almost all learning algorithms, e. g. rule-based or

probabilistic learners, are strongly a�ected by certain properties of applied feature sets, it def-

initely makes sense to speci�cally choose learning algorithms depending on the actually used

feature set. Such feature set properties are for instance the dimensionality or value ranges of

included features. Additionally, the complexity of class regions has a strong impact on the per-

formance of learning algorithms. In other words, only those models should be selected among all

primarily chosen learning algorithms which achieve a classi�cation accuracy higher than some

9One of the following combination rules can be chosen: AVG,PROD,MAJ,MIN,MAX,MED, SUM.
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1 <?xml version="1.0" encoding="utf -8"?>
2 <!DOCTYPE opt ions [
3 <!ELEMENT opt ions ( opt ion ) *>
4 <!ATTLIST opt ions type CDATA "classifier">
5 <!ATTLIST opt ions va lue CDATA "">
6 <!ELEMENT opt ion (#PCDATA | opt i ons ) *>
7 <!ATTLIST opt ion name CDATA #REQUIRED>
8 <!ATTLIST opt ion type ( f l a g | s i n g l e | hyphens | quotes ) "single">
9 ]>

10 <opt ions type="class" value="weka.classifiers.meta.MultipleSetVote">
11 <opt ion name="R">SUM</opt ion>
12 <opt ion name="Pfolds">5</ opt ion>
13 <opt ion name="Sfolds">2</ opt ion>
14 <opt ion name="B" type="quotes">
15 <opt ions type="classifier" value="weka.classifiers.functions.SMO"/>
16 </opt ion>
17 </ opt ions>

Listing 5.1: Outline of a XML scheme to describe an option setting for the class
MultipleSetVote.

Option name Default Option description

-E inactive Apply classi�er selection before actual learning
-Sfolds < num > 3 Cross validation folds for estimating �best� classi�er for

every feature set
-�le < path > � Absolute path to XML source which speci�es classi�er op-

tions.
-R < rule9 > AVG The combination rule to use
-P inactive Active Precision-Boosted Combination for chosen combi-

nation rule (Class attribute must be nominal)
-threshold < num > 0.5 Only those classi�ers will be boosted which actually de-

liver a classi�cation accuracy greater than the threshold
-Pfolds < num > 3 Cross validation folds for estimating classi�er weights
-D inactive If set, classi�er is run in debug mode and may output

additional info to the console.

Table 5.3: Available options of MulitpleSetVote

user-de�ned threshold respectively. In context of MultipleSetVote this model selection is called

primary selection and independently performs cross-validation for estimating model accuracy.

An important implication of primary selection is that if it is performed it can not be guaranteed

that all learning algorithms which have been originally assigned will actually be used. Obviously,

the meaning of primary selection is directly related to the processing mode multiple-multiple. In

all other modes primary selection will be neglected.

Another additional option of MultipleSetVote regarding the meta learning approach of

model combination is precision boosting introduced in [13]. The idea of precision boosting is

to weight the estimations of every learning algorithm during the combination. This means that

instead of considering all learning algorithm equally, some certain model bias is included during

the combination. The estimation of usable model weights will be done in an independent cross

validation procedure.
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Figure 5.7: Exemplary option setting of MultipleSetVote in di�erent representations.

5.2.2 HierarchicalClassi�er

The class HierarchicalClassifier implements a speci�c realization of a hierarchical classi�er

which also incorporates the classi�cation results of several sub learning algorithms which are

based on a given hierarchical class structure. But contrary to MultipleSetVote in which the

results of included models are aggregated simultaneously, the classi�cation result of each sub

learning algorithm will be independently evaluated against a particular hierarchical class struc-

ture, also called taxonomy. Every learning algorithm is embedded into a unique node of this

taxonomy and the �nal classi�cation result is obtained by a successive aggregation of all partial

estimations. In other words, this aggregation can also be de�ned as a certain path of the tax-

onomy tree which starts at the root node and always ends at some particular leaf node which

describes the �nal classi�cation result.

Hierarchical classi�cation is already known in machine learning theory for some time and has
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Option name Default Option description

-�le < path > � Absolute path to XML source de�ning the class taxonomy.
This option is absolutely required.

-C inactive Ignore unused classes at every classi�er node.
-S < num1 . . . numN > all Actual indices of features which will be used during learn-

ing. The corresponding feature selection only considers
attributes at given positions.

-D inactive If set, classi�er is run in debug mode and may output
additional info to the console.

Table 5.4: Available options of HierarchicalClassifier

been employed in various applications. One of those applications is musical genre classi�cation

as section 2.4 emphasizes. In the following, only relevant aspects concerning the design of the

Java class HierarchicalClassifier will be pointed out.

Similar to the class MultipleSetVote several options are provided to modify learning and

classi�cation of the HierarchicalClassifier. Most importantly, a user-de�ned taxonomy de-

scription must be given via a corresponding option before any learning procedure can actually

start. All available options are listed in table 5.4 in which a short description of every option is

included as well. Since HierarchicalClassifier and MultipleSetVote share the same option

assignment interface, again three ways are o�ered to adjust available options. Thus, options can

be set either by calling the corresponding setter -method directly, by assigning a String array

containing desired options or by using an option representation by XML. Review subsection 5.2.1

for further details.

In order to de�ne a particular taxonomy, all nodes of the taxonomy tree must be described

by using a speci�c XML representation. Again, this XML representation is derived from the

original XML support of WEKA for formulating learning algorithms in a single XML �le. The

fundamental outline of a taxonomy description is illustrated in listing 5.2. Since meaningful

taxonomy descriptions are very long, this code example only includes the root node, one inner

node and a leaf node. The related taxonomy tree is visualized in �gure 5.8. A valid XML

taxonomy representation can be assigned to an initialized instance by two di�erent ways. First,

the setter -method

public void setTaxonomy(java.lang.String taxonomyFile)throws Exception

is called with the parameter taxonomyFile which contains the absolute path to the XML rep-

resentation source. Second and last, instead of de�ning an explicit XML speci�cation of the

taxonomy within a �le, all desired taxonomy attributes can be formulated by an array represen-

tation which has to be constructed in similar manner as the array representation of previously

mentioned learning algorithm options. Every element of such an array includes the full descrip-

tion of a particular node. It should be noted that the hierarchical relation of a single node to

other nodes is de�ned by the respective options parent and child. The setter -method
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1 <?xml version="1.0" encoding="utf -8"?>
2 <!DOCTYPE opt ions [
3 <!ELEMENT opt ions ( opt ion ) *>
4 <!ATTLIST opt ions type CDATA "classifier">
5 <!ATTLIST opt ions va lue CDATA "">
6 <!ELEMENT opt ion (#PCDATA | opt i ons ) *>
7 <!ATTLIST opt ion name CDATA #REQUIRED>
8 <!ATTLIST opt ion type ( f l a g | s i n g l e | hyphens | quotes ) "single">
9 ]>

11 <opt ions type="class" value="weka.classifiers.meta.HierarchicalClassifier!">
12 <!−− root node −> nodeID = 1 −−>
13 <opt ion name="node" type="quotes">
14 <opt ions type="node"

value="weka.classifiers.meta.HierarchicalClassifier.ClassificationNode">
15 <opt ion name="id">1</ opt ion>
16 <opt ion name="parent">0</ opt ion>

18 <opt ion name="child">2</ opt ion>
19 <opt ion name="child">3</ opt ion>
20 <opt ion name="child">4</ opt ion>
21 <opt ion name="child">5</ opt ion>

23 <opt ion name="W" type="hyphens">
24 <opt ions type="classifier" value="weka.classifiers.functions.SMO"/>
25 </opt ion>

27 <!−− . . . and more op t ions ! −−>
28 </ opt ions>
29 </opt ion>

31 . . .
32 . . .
33 . . .

35 <!−− l a s t node −> nodeID = 15 −−>
36 <opt ion name="node" type="quotes">
37 <opt ions type="node"

value="weka.classifiers.meta.HierarchicalClassifier.ClassificationNode">
38 <opt ion name="id">15</ opt ion>
39 <opt ion name="parent">5</ opt ion>

41 <opt ion name="label">Country</ opt ion>
42 <opt ion name="classes">country</ opt ion>
43 </ opt ions>
44 </opt ion>
45 </ opt ions>

Listing 5.2: The outline of a taxonomy description for the HierarchicalClassifier.

public void setTaxonomy(String[] options)throws Exception

handles the necessary processing of the given taxonomy array representation.

Finally, it should be noted that the HierarchicalClassifier learning algorithm also im-

plements the interface MultipleSetSelectionClassifier. As a consequence, every feature set

which will be used during learning can be additionally reduced by only taking into account the

�rst k features only. In case of using multiple feature sets during learning, this auxiliary feature

selection is applicable independently for every feature set. Thus, in order to de�ne respective

values for the upper bound k, use the setter -methods

public void setSelectionSize(int selectionSize )
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in case of applying a single set or

public void setSelectionSizeArray(int[] selectionSize )

when multiple feature sets are applied.



<option name="node" type="quotes">
<options type="node">

<option name="id">2</option>
<option name="parent">1</option>
<option name="label">Electronic/rock</option>
<option name="classes">disco,rock,metal</option>
<option name="notes">Electronic/Rock</option>
<option name="child">6</option>
<option name="child">7</option>
<option name="child">8</option>
<option name="W" type="hyphens">

<options value="weka.classifiers.meta.MultipleSetVote">
<option name="file">MultipleSetVoteOptions.xml</option>

</options>
</option>

</options>
</option>
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<option name="node" type="quotes">
<options type="node">

<option name="id">1</option>
<option name="parent">0</option>
<option name="notes">root node of GTZAN music genre database</option>
<option name="label">GTZAN_Root</option>
<option name="child">2</option>
<option name="child">3</option>
<option name="child">4</option>
<option name="child">5</option>
<option name="W" type="hyphens">

<options value="weka.classifiers.meta.MultipleSetVote">
<option name="file">MultipleSetVoteOptions.xml</option>

</options>
</option>

</options>
</option>

Figure 5.8: An exemplary musical genre taxonomy based on the GTZAN music collection. This
taxonomy was �rst introduced in [34]. Additionally, the corresponding XML description of the
root node and one successive inner node is shown below.





Chapter 6

Conclusions

This chapter summarizes the main conclusions of the discriminant analysis as well as of a feature

selection approach using a feature ranking based on the genre discrimination of every feature.

As being a key contribution of this thesis, the DiscriminationAnalyzer tool is also reviewed

and its main functionalities are summarized. During the analysis and evaluation phase of this

thesis further ideas and enhancements have arisen regarding the discriminant analysis and the

evaluation of the feature selection which could not be realized in this thesis. Those ideas are also

outlined as well as possible applications in terms of genre classi�cations for which the proposed

feature selection approach could be used.

6.1 Discriminant analysis

The discrimination analysis showed clearly according to the three music collections used in this

thesis that the heuristic discrimination models implementing the impurity function estimated

very consistent feature patterns. In particular, this means that the same features were recognized

to be discriminative, while the actual discrimination values slightly varied among the calculation

models. It has been pointed out in section 3.2 that entropy-based calculation models tend to

overestimate features having a large range of values. Di�erent approaches of normalizing the

estimates exist in order to reduce the distortion of such multi-valued features. Thus, it is not

surprising that the discrimination values varied. Nevertheless, it could be concluded that the

di�erent approaches of normalizing have a limited in�uence in the calculation of discriminative

features according to all three discussed music collections.

Considering the performances of the Gain Ratio, the Balanced Information Gain and the

ReliefF, the computed discriminative feature patterns according to the Statistical Spectrum

Descriptor were considerable more similar among the three calculation models as in the case

of the other two descriptors. This conclusion was valid for both the GTZAN and the ISMIR

2004 Genre collections but not for the ISMIR 2004 Rhythm collection. Regarding the genre-

to-genre comparisons according to the partially related music collections GTZAN and ISMIR

2004 Genre, it could also be concluded in the case of the Statistical Spectrum Descriptor that
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the three calculation models estimated quite similar discriminative feature patterns for each of

the four examined genre comparisons. In that sense the ReliefF calculation model performed

better compared with the Gain Ratio and the Balanced Information Gain. According to the

Rhythm Pattern descriptor and the Rhythm Histogram descriptor the discrimination results

based on the three calculation models diverged more for both the GTZAN and the ISMIR 2004

Genre collection. Only for few genres the corresponding discriminative feature patterns revealed

a notable degree of similarity. Also the genre-to-genre comparisons of these two partially related

collections revealed diverging discriminative feature patterns. Also in the case of the Classical

genre in both collections, which should correlate at most, a certain degree of similarity could

not be concluded for both descriptors as only in the case of the Rhythm Pattern descriptor

a considerable similarity was shown. Thus, a similarity regarding the performances of three

heuristic discrimination models could not be concluded for all three descriptors. The highest

degree of similarity was observed in the case of the Statistical Spectrum Descriptor but only for

two of three music collections.

Another very important fact was concluded in terms of the Statistical Spectrum Descriptor.

The majority of features related to the statistical measures variance and skewness appeared to

be irrelevant over all three music collections. In fact, for all three music collections it was shown

that only few features were estimated to be discriminative and even only for a small number of

genres. A large number of features corresponding to these two measures consistently exhibited

zero or very low genre discrimination.

6.2 Feature selection

The evaluation clearly showed that the feature selection performances according to the four

calculation models Chi-square, Information Gain, Gain Ratio and Balanced Information Gain

vary marginally only. The feature selection performance based on the ReliefF diverged more

where in particular the limitation of the classi�cation accuracy was di�erent. Nevertheless,

the results of the feature selection evaluation suggested that the classi�cation accuracy of the

selection candidates related to the same genre was strongly limited by a margin of approximately

5% although the actual scale of limitation depended on the learning algorithm used and the

respective descriptor. The limitation of the accuracy variation was always within a margin of

1 � 2% for all music collections, learning algorithms and descriptors if the feature selection

candidates containing 50% or more of the most discriminative features were considered only.

It can be followed that a reduction of 50% according to the original feature set only slightly

decreases the classi�cation accuracy by a margin of 1 � 2%, in some situation this decline of the

accuracy may even be insigni�cant.

Considering the GTZAN music collection, the potential average feature set reduction accord-

ing to the Rhythm Histogram descriptor was remarkably good for the two learning algorithms

Naive Bayes and the J48. The average relative number of selected features was calculated by

only considering those selection candidates over all one-vs.-rest genre situations for which the
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best classi�cation accuracy was achieved. More speci�cally, for the Naive Bayes the achieved

feature set reduction was 97% according to the Balanced Information Gain and the ReliefF. In

the case of the J48 learning algorithm the achieved feature set reduction was 89.6% and 85.4%
according to the Balanced Information Gain and the ReliefF, respectively. The largest feature

set reduction according to the SMO learning algorithm was observed in terms of the descriptors

Rhythm Pattern and Rhythm Histogram. In the case of the Rhythm Pattern descriptor an av-

erage reduction of 62% and 50.1% was achieved according to the Balanced Information Gain

and the ReliefF, respectively, while an average reduction of 50.1% and 46.8% was observed with

the Rhythm Histogram descriptor. The feature set reduction regarding the Statistical Spectrum

Descriptor is 30% according to the SMO and approximately 70% for the other two learning

algorithms. According to the GTZAN musiccollection, it could de�netly be followed that the

feature ranking based on the Balanced Information Gain achieved a larger the feature set re-

duction. It could be concluded that the Balanced Information Gain performed better with the

Naive Bayes and the SMO learning algorithms, while the ReliefF appeared to be preferable with

the J48 learning algorithm. Very interesting is that the performance of the SMO is only slightly

better according to the Rhythm Histogram descriptor, while the margin between the accuracy

achieved by the SMO and the other learning algorithms is considerably larger in the case of the

other two descriptors.

In the case of the ISMIR 2004 Genre music collection, the dependency on the applied learning

algorithm was more crucial in order to conclude which calculation model achieves a larger feature

set reduction together with a limited decline of the classi�cation accuracy. According to the

Naive Bayes the Balanced Information Gain performed better, while the ReliefF model should

be preferred for the J48 learning algorithm. According to the SMO learning algorithm, the

Rhythm Histogram descriptor with the ReliefF outperformed the Balanced Information Gain

with a feature set reductions of 48% and 42.3%, respectively, while the Balanced Information

Gain was the better model for feature ranking in terms of the other two descriptors. Nevertheless,

the average feature set reduction among the best classi�cation accuracy of every genre was also

remarkable in terms of the ISMIR 2004 Genre music collection. For both the Naive Bayes and

the J48 Decision tree an average feature set reduction of approximately 50% was achieved with

the best classi�cation accuracy according to all three descriptors where the average reduction

was enormously high with 75% or even more in the case of the Rhythm Histogram descriptor.

For the SMO learning algorithm a feature set reduction of at least 40% was achieved in with

the descriptors Rhythm Pattern and Rhythm Histogram, while a reduction of at least 25%
was observed with the Statistical Spectrum Descriptor. It could be concluded that the Balanced

Information Gain performed better with the Naive Bayes and the SMO learning algorithms, while

the ReliefF appeared to be preferable with the J48 learning algorithm. Regarding the achieved

classi�cation accuracy quite the same conclusions were valid as in the case of the GTZAN music

collection.
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6.3 DiscriminationAnalyzer

The DiscriminationAnalyzer tool was developed within this thesis to provide speci�c tools to

perform an interactive discriminant analysis based on arbitrary heuristic discrimination models

and also arbitrary feature sets in a convenient manner. The user can choose between various

calculation parameters regarding the normalization of the feature set, the class labeling and

the calculation of discriminative features. Additionally, speci�c tools are provided in order to

interactively select features and to evaluate given feature subsets by arbitrary learning algorithms.

The tool already includes various heuristic discrimination models like those calculation models

which were used in this thesis but new heuristic discrimination models can also be integrated

by using a speci�c interface. The graphical user interface of the DiscriminationAnalyzer tool

as well as the choice of various graphical representations regarding the discrimination results

guarantee both an e�ective analysis and a convenient way to compare discriminative feature

patterns. The DiscriminationAnalyzer tool basically runs in MATLAB, while the main part of

the computations is performed by speci�c Java programs including the WEKA machine learning

workbench.

6.4 Future Work

Throughout the phases of analyzing and evaluating the key questions of this thesis some ideas

and enhancements arose which could not be realized because respective implementations would

have been too time-consuming. The most relevant ideas regarding the discriminant analysis

and the feature selection approach as well as two possible applications of the proposed feature

selection approach are described in this �nal section.

The discriminant analysis introduced in chapter 3 was performed on three music collections

and �ve heuristic discrimination models. In fact, four of the �ve calculation models implement the

impurity function and therefore the discriminative feature patterns computed by those calculation

models were very similar. During the analysis the idea came up to use another calculation model

which utilizes a di�erent approach of estimating the dependency of a speci�c feature to genres

than the �ve models used in the thesis. This speci�c heuristic discrimination model is called

Attribute Discrimination and has already been introduced in chapter 2. The key concept of

the Attribute Discrimination model is described in [11, 18]. It would be an interesting questing

whether this calculation model also estimates diverging discriminative feature patterns and how it

a�ects the feature selection if the feature ranking di�ers compared with those based on the other

calculation models. Another idea was to use binary genre situations during the discriminant

analysis in addition to the employed one-vs.-rest genre situations. With using binary genre

situations features related to a speci�c genre might be more emphasized as the discriminant

analysis is focused on speci�c genre pairs only. This can introduce a better insight to the

question which feature patterns are particularly discriminative for a speci�c genre. Eventually,

a problem of the discriminant analysis according to all three descriptors was that the genres
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of the two collections GTZAN and ISMIR 2004 Genre were only partially correlated, while the

genres of the ISMIR 2004 Rhythm collection were completely di�erent. Thus, the use of music

collections containing more correlated or even similar genres would guarantee clearer comparisons

regarding the performances of the heuristic discrimination models as possible in�uences based

on only partially correlated genres would be eliminated.

During the evaluation of the feature selection approach in chapter 4 also some interest-

ing enhancements were not integrated. One of these enhancements is an extensive correlation

analysis of the feature selection candidates representing feature subsets containing the most k

discriminative features. In fact, the introduced evaluation results of the feature selection sug-

gested that a considerably large number of selected features might be correlated to each other.

This assumption was supported by the fact that the variation of the classi�cation accuracy was

very limited among the feature selection candidates. From the view point of feature selection

it would certainly be worth knowing whether such a correlation between the selected features

exist and which features are correlated to each other. Another interesting enhancement would

be to additionally perform a feature subset evaluation instead of using feature ranking. In that

sense it would be worth knowing how the feature selection performance di�ers if the feature

selection candidates would be assembled by evaluating proper feature subsets of size k which do

not necessarily need to contain the k most discriminative features. Such feature subsets could be

found by a greedy approach searching through all discriminative features to assemble a proper

feature subset. Additionally, a certain threshold could be used to further limit the feature space

being browsed. Eventually, the last enhancement concerns the learning algorithms used during

the evaluation. Chapter 2 pointed out that the Gaussian Mixture Models and k-Nearest Neigh-

bor learning algorithms are often used in genre classi�cation. Thus, it would also be interesting

to know how the feature ranking approach based on heuristic discrimination models works with

these learning algorithms because the choice of the learning algorithm certainly a�ects the overall

classi�cation performance according to machine learning theory.

Finally, two speci�c applications regarding genre classi�cation should be mentioned which

can directly be combined with the introduced feature ranking approach. The �rst application

concerns ensemble learners which use multiple learning algorithms to solve the classi�cation

problem by splitting it into several smaller subproblems. Thus, every learning algorithm solves

a subproblem and the partial results of every learning algorithm must be aggregated by a cer-

tain method. Such ensemble learners were discussed in chapter 2. Since the computation of

discriminative features can easily be adapted to speci�c genre situations, a feature ranking based

on heuristic discrimination models can be used to select features according to speci�c subprob-

lems. Thus, every learning algorithm could be combined with an individually adapted feature

selection. This idea can also work within a hierarchical classi�cation approach representing the

second application. In fact, ensemble and hierarchical learning have in common that the origi-

nal multi-class problem is partitioned into smaller subproblems related to a reduced number of

classes. However, the main di�erence is that hierarchical learning utilizes a speci�c taxonomy

to combine the classi�cation results based on the subproblems. Nevertheless, an individually
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adapted feature selection may also improve hierarchical learning algorithms which have been

discussed in terms of genre classi�cation in chapter 2.



Appendix A

Mathematical notation

The following table lists the mathematical notation which was used throughout this thesis. Since

the key goal of this notation is to guarantee consistent formulations of the heuristic discrimination

models in particular, it was sometimes necessary to deviate from some of the conventions used

in the corresponding research literature.

Vectors are denoted by lower case bold Roman letters such as x, and all vectors are assumed

to be row vectors. For the convenient use of vectors, the notation xi additionally indicates the

ith element of the vector x. Uppercase bold Roman letters, such as G, denote matrices. The

notation (g1, · · · , gm) represents a row vector with m elements, while (g1, · · · ,gm) denotes a

matrix with m columns. A closed interval between the boundaries a and b is de�ned by [a, b],
and {a1, · · · , am} denotes a set of m elements. Particular sets are usually named with Roman

capitals, but in some speci�c cases calligraphic capitals such as A or C are used to emphasize

the meaning of those sets. Functions are constituted by Roman or Greek letters such as f(·) or
γ(·). The density function of a random variable X is denoted by P (X), while the elementary
probability of a particular observation x of X is given by p(x). In terms of the joint probability

according to for random variables X and Y , P (X,Y ) and p(x, y) are used respectively.

Eventually, the following table summarizes important functions and some speci�c sets and

vectors which are frequently used in sections 3.2.1 � 3.2.5 to de�ne the �ve heuristic discrimination

models employed in this thesis. The operation A \ B denotes the usual set di�erence of the

arbitrary sets A and B de�ned by A \B = {x : x ∈ A and x /∈ B}.

D The data model of an arbitrary classi�cation problem which is de-

scribed by the set D = {(x1, y1), (x2, y2), · · · , (xm, ym)} with the

size m. X and Y are the sets of data instances and class targets

respectively.
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A The set of all attributes A = {a1,a2, · · · ,an} according to D.
C The set of all unique class labels according to the underlying clas-

si�cation problem.

X The matrix X ∈ Rm×n of m data instances with n feature values is

de�ned by X = (x1,x2, · · · ,xm).
x Denotes vector x = (x1, x2, · · · , xn) representing a single data in-

stances of X.

Y This vector constitutes the target vector describing the class assign-

ments of every data instance by a speci�c target value and is de�ned

as Y = (y1, y2, · · · , ym) for m instances according to D.
a Constitutes a speci�c attribute aj ∈ A and denotes the vector aj =

(xj)1 ,x
j
2, · · · ,x

j
m) where 1 ≤ j ≤ n denotes the unique index of the

attribute in A. Thus, this vector contains the values of a speci�c

attribute for all instances in D.
ā Denotes the set of all attributes de�ned in A except the speci�c

attribute a by ā = A \ a.

c Denotes a speci�c class label of the set C.
c̄ Denotes the set of all class labels contained in C but the speci�c

class label c inC.
η(·) The function η : Rm 7→ {1, · · · , |A|} returns the unique index of the

feature a ∈ Rm with respect to the feature set.

γ(·) The function γ : R 7→ C returns a unique class label which is directly
related to the given target value y ∈ Y.

H(a) The entropy of a speci�c feature a ∈ A.
H(c) The joint entropy of a speci�c class c ∈ C.
H(a, c) The joint entropy of a speci�c feature a ∈ A and class c ∈ C.
f(a) Returns the discrimination value of a given feature a ∈ A based on

a particular heuristic discrimination model.
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