
M A S T E R A R B E I T

Musical Instrument Separation

ausgeführt
am Institut für Softwaretechnik und Interaktive Systeme (E188)

der Technischen Universität Wien

unter der Anleitung von
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

und der Betreuung von
Dipl.-Ing. Thomas Lidy

durch
Andrei Grecu,

Matrikelnummer 0125662,
Karmarschgasse 18A/2/6,

1100 Wien, Österreich

Wien, am 15.10.2007

Kurzfassung

Das menschliche Gehirn kann das Problem Instrumente innerhalb eines Musikstückes zu
trennen relativ leicht lösen. Für Computer jedoch ist das noch immer ein schwieriges Problem
zu dem noch keine zufrieden stellende Lösung gefunden wurde. Unser Ziel ist es deshalb
Möglichkeiten zu finden, Musikstücke in Formaten wie z.B. mp3 zu analysieren, die Instru-
mente mittels verschiedenen Stereomerkmalen und gewissen Annahmen über die Struktur
von Musik zu separieren und schließlich die Resultate in mehreren Tonspuren zu speichern.

Unser Beitrag besteht aus drei Algorithmen. Der schablonenbasierte Algorithmus nimmt an,
dass die Töne der Instrumente jeweils in ihrer Anzahl über das Musikstück limitiert sind und
deshalb wiederholt werden müssen um eine gewisse Klangvielfalt zu erreichen. Diese Red-
undanz kann ausgenutzt werden um Töne mittels Schablonen zu modellieren. Es wird dabei
versucht das Musikstück mit so wenigen Schablonen und Anschlägen wie möglich zu rekon-
struieren. Schließlich müssen die Schablonen zu Instrumenten zusammengefasst werden. Als
eine Verbesserung dient der zweite Ansatz, wobei wir annehmen dass der Anschlagsvektor
nicht unbedingt unter Zuhilfenahme von Relevanzheuristiken gefunden werden muss, son-
dern dass die Möglichkeit besteht ihn sich iterativ selbst organisieren zu lassen.

Der dritte Ansatz gehört zum Gebiet des Blind Source Separation, wobei er auf Stereomerk-
malen im Frequenzspektrum arbeitet wodurch ein leicht durch Histogramme visualisierbarer
Merkmalraum entsteht. Unter der Annahme dass Instrumente sich während der Aufführung
nicht bewegen, sollte der Merkmalraum Häufungen aufweisen. Durch deren automatische
Identifizierung können darunter fallende Frequenzen separiert werden, wodurch alles ge-
trennt werden kann was an der entsprechenden räumlichen Position, liegt. Dieser Ansatz ist
jedoch nicht neu in der Literatur. Unsere Verbesserung hierbei ist Frequenzen durch Farben
darzustellen, im Gegensatz zu den bisherigen s/w Histogrammen. Zusätzlich clustern wir
das Histogramm automatisch durch einen Netzwerk mit radialen Basisfunktionen (RBFN).

Die Evaluierungsergebnisse von zwei von diesen Algorithmen, unter Zuhilfenahme ver-
schiedener Korpora, zeigen erfreuliche Ergebnisse. Ihre Trennschärfe ist in etwa vier Mal
höher im Vergleich zur Baseline. Daraus resultierte die Idee für zukünftige Entwicklungen
die Konzepte des ersten und dritten Ansatzes in einen neuen Algorithmus zu vereinen.

iii

Abstract

The problem of separating instruments in a musical piece can be easily solved by the human
brain. For computers on the other hand this task is still difficult and no general solution exists
at the time of this thesis. Our goal is therefore to find some solutions using the limited power
of today’s computers at its best to analyze a musical performance given in some common
format like mp3, separate the instruments using two different stereo cues together with some
assumptions about the structure of music and finally save the result into several tracks.

We approached this goal by contributing three separation algorithms where two of them
make use of some different properties of music. The first one being a template matching
algorithm assumes that instrument tones are only limited in number throughout a song and
therefore have to be repeated in order to create diversity. This kind of redundancy can be
used by modeling the tones with templates and trying to reconstruct the musical piece with
as few templates and onsets as possible, which in turn should lead to a solution where each
template matches a tone. The second algorithm is an improvement over the first where we
assume that the onset vector does not need to be found using relevance heuristics, but can
be let to self-organize iteratively which is why we called it the iterative template matching
algorithm (ITM).

The third approach is a blind source separation algorithm using stereo cues in the frequency
domain which form an easily visualizable feature space. Assuming that instruments do not
move during the performance the resulting histogram visualization will show clusterings.
By identifying these clusters we can separate the frequencies falling into them thus separat-
ing whatever is at the spatial location corresponding to the cluster region in the histogram.
This approach is not new in literature, so our improvements are to use the frequency to gen-
erate colours thus adding information to the b/w histograms used before, and to cluster the
histogram automatically using a radial basis function network (RBFN).

The evaluation results for two of these algorithms using different corpora look very promis-
ing. Their separation performance is about four times higher than a simple baseline used
for comparison. As a consequence we then present as an issue for future work, the idea of
unifying the concepts of our first and third approach to create a new algorithm.

iv

to my mother

v

Acknowledgements

I want to thank my father for giving me the opportunity to study at the university,
despite the prevailing circumstances.

I want to thank Andreas Rauber for helping me finish this thesis in time.

Finally, thanks go to the people who taught me what is important in life.

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Formulation . 1

1.3 Input Restrictions . 3

1.4 Overview . 3

1.5 Notation and Conventions . 4

2 Related Work 5

2.1 Introduction . 5

2.2 Blind Source Separation . 6

2.3 Harmonic and Sinusoidal Modelling . 7

2.4 Model and Feature-Based Approaches . 9

2.5 Template-Based Approaches . 10

2.6 Speech Separation . 12

2.7 Benchmarking in Literature . 14

2.8 Summary and Conclusions . 20

3 Direct Template Matching 21

3.1 Motivation . 21

3.2 Problem Reformulation . 22

3.3 Algorithm Overview . 25

vii

CONTENTS

3.4 The Onset Vector . 25

3.5 Main Algorithm . 27

3.6 Tone Search . 28

3.7 Tone Learning . 36

3.8 Fine Tuning . 46

3.9 Final Algorithm . 51

3.10 Summary and Future Work . 54

4 Iterative Template Matching 57

4.1 Introduction . 57

4.2 Overview . 57

4.3 Initialization . 58

4.4 Main Algorithm . 58

4.5 Learning Step . 59

4.6 Fine Tuning . 66

4.7 Final Algorithm . 72

4.8 Summary and Future Work . 75

5 Blind Source Separation Approach 79

5.1 Motivation . 79

5.2 Overview . 80

5.3 Problem Reformulation . 80

5.4 Magnitude-Shift-Frequency Histogram . 81

5.5 Algorithm . 85

5.6 Fine Tuning . 92

5.7 Final Algorithm . 96

5.8 Summary and Future Work . 98

6 Implementation Details 101

viii

6.1 Overview . 101

6.2 Libraries . 101

6.3 Code Structure . 103

6.4 Performance Enhancements . 103

6.5 Summary and Future Work . 107

7 Benchmarking and Evaluation 109

7.1 Overview . 109

7.2 Corpora . 110

7.3 Methods and Algorithms . 113

7.4 Results . 116

7.5 Discussion . 120

7.6 Summary and Conclusions . 122

8 Conclusions and Future Work 125

A Corpora 131

Bibliography 135

ix

List of Figures

2.1 Changing directional receiving patterns of microphones 16

3.1 Concept of music synthesis using templates . 24

3.2 Example of the Lanczos resampling filter for upsampling and phase-shifting . . . 50

x

List of Tables

2.1 Summary of evaluation methods . 19

7.1 Objective evaluation results for the BASS-dB and IS corpus 118

7.2 Summary of the objective evaluation results . 118

7.3 Subjective evaluation results for the BASS-dB and IS corpus 120

7.4 Subjective evaluation results for the IS and RWC corpus and the ISMIRgenre col-
lection . 121

7.5 Summary of the subjective evaluation results . 122

A.1 List of mappings between module file channels and reference tracks 131

A.2 Details of the songs from the BASS-dB and IS corpus 132

A.3 Details of the songs from the ISMIRgenre collection and the RWC corpus 133

xi

Chapter 1

Introduction

1.1 Motivation

Human listeners have the ability to distinguish between a fair amount of instruments in a
musical setting. Their performance in real environments is better by a large margin than
computational auditory scene analysis (CASA) systems which are still a hot research topic.
Research on the human auditory system has revealed a lot of information of the low level
processing in the inner ear which led to many algorithms using these findings in order to im-
prove accuracy in several tasks like audio stream segregation, voice and musical instrument
separation, pitch estimation and music transcription.

Unfortunately a lot of algorithms published in the domain of voice and musical instrument
separation are being evaluated using artificial sound mixtures. This is a problem as in this
artificial environment they can even outperform human listeners but on the other hand when
being fed with real world mixtures their performance degrades rapidly. Yilmaz and Rickard
for example could separate six anechoic mixed voices from two mixtures with acceptable
signal to interference ratio (SIR) in [40] which due to the lack of spatial cues would be an
impossible task for the human auditory system. However when using two echoic mixtures
of only three voices the performance degraded much below the six source result.

Therefore the goal of this thesis is to study how existing algorithms behave in regard to real
world recordings and artificial mixtures, to improve them if possible and to design new ones.

1.2 Problem Formulation

We consider music being a mixture of instrument sounds, reverberation and noise. Given
a musical piece our aim is now to segregate the instrument sounds possibly suppressing

1

1. INTRODUCTION

reverberation and noise. Depending on the approaches for solving this problem we can refine
the former definition on two levels of abstraction.

1. At a high abstraction level we can say that the instruments are well separated if the
resulting pitch and timbre match their original counterpart and the music recomposed
from the separated instruments still sounds “right” to the human listener.

2. At the low level we demand that the digitized waveform of the instruments matches
the original as well as possible.

Although both formulations might look like being equal their difference lies in weighting
errors differently. While for the first one it is acceptable to truncate notes at the end or slip
them entirely if they are not important to the perception of the musical piece, it would cause
high errors in matching the digitized waveform as in the second formulation. On the other
hand, in point two we can tolerate harmonics to be cut or to have an interfering instrument
if it approximates the original waveform better than having all harmonics present.

Moving to more concrete terms if we denote the digitized music waveform as xi for every
input channel i and the original anechoic waveform of the N instruments as sj we can write
the mixture using scalar mixing parameters ai,j for each instrument j and channel i as

xi =
N∑

j=1

(ai,jsj + ri,j) + ε (1.1)

where ri,j denotes the reverberation term and ε the noise term. In the algorithms used in
this thesis we will not attempt to extract information from the reverberation although it may
be possible to do so. Depending on the algorithmic approach the reverberation term will be
included either in the instrument waveform or in the noise term leading to a more simplified
formula

xi =
N∑

j=1

ai,jsj + ε (1.2)

For the estimated instruments ŝi,j we can write the estimated mixture x̂i omitting the noise
term

x̂i =
N∑

j=1

âi,j ŝj (1.3)

With the above notations we can now define the error ei simply as

ei = xi − x̂i (1.4)

We will build our instrument separation algorithms during the remainder of this thesis based
on the formulations and the notations given in this section. These include two approaches

2

Input Restrictions

adhering to the high level goal definition and one approach built to obey the low level for-
mulation.

1.3 Input Restrictions

The input file shall consist of sampled music in uncompressed pulse code modulated (PCM)
format. To be more specific the implemented code accepts Microsoft’s wave sound file format
ending in “wav” and Sun Microsystems’ audio file format ending in “au”. The input file shall
be recorded in stereo or binaural1 mode with a sampling frequency of at least 11025Hz and a
bit depth of at least 8bit per sample. Files with other encodings have to be converted into the
two supported formats.

The input shall consist only of the music signal of interest with no leaders or trailers if they
do not belong to the music. This last restriction is necessary in order to avoid creation of
ghost instruments, which are already hard to cope with.

1.4 Overview

Following this introduction Chapter 2 will discuss related work already reported in litera-
ture. We will give an overview of the different approaches together with their strengths and
weaknesses. This chapter will also give some background on the algorithms used during this
thesis.

In Chapter 3 we will present a new template-based approaches for instrument separation
with an improvement of it in Chapter 4. We will give some theory and practical examples
leaving more rigorous evaluation for a separate chapter.

Chapter 5 contains a blind source separation approach together with some background in-
formation, theory and examples.

Some implementation details will be given in Chapter 6. This includes an explanation of the
code structure, needed libraries and usage of the compiled code.

Chapter 7 provides an evaluation of all three approaches. More precisely, this chapter consists
of a description of the test system, the data used, the testing procedure and the relevant
outcomes in form of quality measures and timings.

1Binaural recordings are characterized by preserving phase information between channels, compared to stereo
which can be mono-downmix compatible meaning that no significant phase difference between both channels
may exist.

3

1. INTRODUCTION

Finally in Chapter 8 we will summarize the work done during this thesis, draw some conclu-
sions and give an outlook of future work.

1.5 Notation and Conventions

In mathematical formulas small letters set in an italic typeface denote scalars, bold letters
denote vectors and bold capitals denote matrices. The indices attached to vectors or scalars
begin counting from 1 unless otherwise noted. The symbol ? denotes convolution where the
right-hand side argument is time reversed and × denotes correlation.

In case of deviations the proper interpretation will be stated explicitly in the text.

4

Chapter 2

Related Work

2.1 Introduction

It is almost a centry ago when Boring [3] published a comprehensive article on how humans
localize sound. At that time this was theory based on findings by studying neural cells and
human behaviour. Nobody thought about trying to decompose a recorded sound into its
parts. This remained that way until computers evolved and recording quality improved.

In 1990 Bregman [4] coined the term auditory scene analysis (ASA) which has now become a
synonym for research on how the auditory system distiguishes sounds in real environments.
Two years later the more common term computational auditory scene analysis (CASA) was first
used by Brown [5] in his PhD thesis. CASA has since then become a framework for algo-
rithms trying to separate sound sources using models of the human auditory system.

It was not until recently when research on separating musical instruments has begun to
evolve. So this domain can be seen as rather new and still developing.

For our purposes we will divide literature relevant to instrument separation into five cate-
gories:

• Blind Source Separation. This is the class of algorithms making least assumptions on the
structural characteristics of the audio signal so they can be applied in a general way.

• Harmonic and Sinusoidal Modelling. Simultaneously playing Instruments are assumed to
have non-overlapping harmonics in the frequency domain most of the time. Therefore
the algorithms listed here have to model each instrument’s harmonic structure in order
to separate them.

• Model and Feature-Based Approaches. Algorithms in this category try to separate instru-

5

2. RELATED WORK

ments by modelling them using a set of features. Some consist of classifiers using the
features for discrimination whereas others use the features to model the instruments
directly.

• Template-Based Approaches. Music is regarded as highly repetitive and structured in these
approaches. So instruments are seen as being made up of templates. In order to sepa-
rate the instruments the corresponding templates have to be learnt.

• Speech Separation. Speech is also regarded as an instrument in music. In this category
we will gather algorithms specialized on separating speech from music.

We will discuss each item in more detail in its own section. In a separate section we will
discuss how algorithms were evaluated in literature. A summary and conclusions will follow
at the end of this chapter.

2.2 Blind Source Separation

Blind Source Separation (BSS) is a very large research field. It usually works with generic
signals and an abitrary number of input channels. The inputs are regarded as mixtures of
sources as in Eq. 1.2. The main goal of blind source separation is to optimize the mixing
parameters ai,j . The literature depicted here is only a small sample of the publications in the
domain of BSS. Only papers concerning core aspects of our work will be discussed here.

As we deal with audio signals we can assume the mixing parameters to have an inter-channel
delay and attenuation, as does Masters in his PhD thesis [20]. In the frequency domain the
delay is transformed to phase differences and the attuation to magnitude differences. Assum-
ing the sources are mixed with zero phase between the channels Masters further assumes that
in the spectral domain a non-zero inter-channel phase difference is a result of two or more
sources sharing that frequency bin. If only two sources are involved then the exact mag-
nitudes can be retrieved by splitting the frequency bin in a way that the results have both
zero phase difference. He exploits these relations using a bayesian estimator to assign the
frequency content to each source and then a weighted substraction approach to separate the
magnitudes. The estimator calculates the probabilities of the magnitude belonging to one
of the sources from the magniude and phase difference input together with the combined
loudness of both channels and the frequency. In order to obtain the distributions needed for
the probability estimation, the bayesian estimator has first to be trained on data with known
mixing parameters. Masters also considers other approaches for separating the magnitudes
like matrix inverse systems and exact approaches, but the weighted substraction approach
turns out to be the most promising one.

6

Harmonic and Sinusoidal Modelling

A downside in Masters’ approach is that the phase difference is only used as an indicator
for whether two sources overlap on a given frequency bin so the input mixture is limited to
signals mixed with zero phase between the channels. For live recordings this is not the case
and for studio recordings it is usually also not the case although phase differences may be
much smaller than in live recordings.

As our input is music we can make further assumptions about the sources and the mixing
parameters. One common assumption is that the sources are sparse, so their amplitude is
mostly zero except for some locations in time. This has the advantage that the number of
simultaneously active sources may decrease, which reduces the problem complexity.

Bofill [2] further assummes the sources to have a laplacian distribution. He uses magnitude
and phase differences between channels but in contrast to Masters he does not assume zero
phase mixing, thus making full use of the phase information contained in the signal. He then
clusters each frequency component according to the magnitude and phase values. If two
sources overlap in the frequency domain then their overlapping frequency bins will have
ambiguous phases and magnitudes. He solves the problem of finding the correct magni-
tudes and phases for each source via second-order cone programming which minimizes the
sum of magnitudes of the sources subject to some constraints. According to Masters [20],
who also considers this approach, second order cone programming is computationally very
demanding with respect to its gains compared to other approaches so the practical value of
Bofill’s approach is questionable.

Another possibility to separate audio sources is to do a segmentation in the frequency domain
labelling each segment which source it belongs to. Hu and Wang [16] acomplish this by using
a three step algorithm. First the frequency domain representation is smoothed in order to
eliminate false positives. The smoothing is done pyramidally so the result is representation
on multiple scales. The onsets and offsets are then detected from coarse to fine scale and
matched in order to generate segments for each scale. Finally, the scales are integrated and
collapsed to form only one segmentation in the time-frequency plot. The authors state that
becaue onsets and offsets are some general cues used by CASA systems they can be used for
separating different kinds of sources as for example voice and music, background noise, etc.
Unfortunately it is not clear from their paper how labelling of the different sources is done
after segmentation. Without correct labelling of each segment separation is not possible.

2.3 Harmonic and Sinusoidal Modelling

As our goal is to separate musical instruments, we can make even further assumptions. Usu-
ally, musical instruments have a harmonic structure. An instrument playing a note will res-

7

2. RELATED WORK

onate on a fundamental frequency and on some integer harmonics. The proportion of the
harmonics to each other and to the fundamental frequency makes up for what we perceive as
the timbre of an instrument. This fact is used by Zhang [41] as he detects and models the har-
monic structure of instruments using some measure of structure evidence and stability. He
then uses a pitch estimation algorithm in order to generate a harmonic data set, which is then
clustered to obtain the harmonic structure of the instruments. The actual separation is done
by predicting the harmonic components in the magnitude spectrum from each instrument
and removing the content from the mixture.

In determining the harmonic structure of instruments or notes in general, overlapping har-
monics pose a major challenge. There are two problems that have to be solved. At first the
overlapping harmonics have to be indentified as such. Then their contribution to every in-
strument has to be determined. The more instruments are playing simultaneously the more
likely they will share some harmonics. With every shared harmonic the probability of cor-
rectly estimating their contribution to the instruments they belong to sinks dramatically.

Every and Szymanski [8] tackle the problem of identifying overlapping harmonics by first
applying a multipitch estimation algorithm which returns the fundamental frequency for
every note and then looking whether the integer harmonics of every note collide with those
of other notes. Non-colliding harmonics are separated and removed leaving only the over-
lapping ones. Usually harmonics will not exactly fall on one frequency so due to the leakage
of the frequency transform their energy will spread over some frequency bins. Whenever
two harmonics collide then their frequency also won’t be exactly the same but due to their
collision their energy peaks may merge. As in most cases their frequency and their energy is
not the same the resulting peak will become asymmetric. Every and Szymanski separate the
collided harmonics by predicting how the peaks may have looked before merging which is
possible due to the aforementioned peak asymmetry. Resynthesis of the played notes is done
afterwards.

Virtanen takes in [39] a more elaborated approach in separating instruments by their har-
monic structure. His method is a form of sinusoidal modelling that is basically a subsump-
tion of Zhang’s and Every’s approach. In sinusoidal modelling the sources are regarded as
being harmonic tones which can be modelled by a sum of cosines with three free parameters
- the frequency, the phase and the amplitude. Thus the modelling formula expressed in time
domain is

x(t) =
N∑

j=1

H∑
h=1

aj,h cos(2πfj,ht+ θj,h) (2.1)

where fj,h is the frequency harmonic h of tone j, θj,h the corresponding phase and aj,h the
amplitude. Note that Virtanen considers only monaural input therefore only one mixture
is available. Optimization of the formula is done by first using an onset detector in order

8

Model and Feature-Based Approaches

to obtain the tone boundaries. Then a multiple fundamental frequency estimator is used to
initialize the fundamental frequencies of each tone. The three free parameters are optimized
by a solver which iteratively optimizes one of the three free parameters keeping the others
fixed. The solver at the same time resolves overlapped harmonics. In a separate step the
notes are assigned to their sources.

2.4 Model and Feature-Based Approaches

Although sinusoidal modeling is an effective method for separating harmonic instruments
we are still left with percusive ones like drums and snares. Because of the rather short and
noise-like sound of percussive instruments we need to find another way to separate them
effectively.

A simple and somehow obvious solution for this problem is to separe the instruments into
two groups, with the first being the harmonic instruments and the second the percussive
ones. This approach is taken by Helen and Virtanen in [14]. They first decompose the magni-
tude spectrum of the input signal into two matrices using non-negative matrix factorization
(NNMF) where one matrix represents a gain matrix and the second the corresponding spec-
tral components. Due to the nature of NNMF both matrices will be exclusively made up
of positive elements so the factorization intuitively will yield physically plausible gains and
spectral components.

Now the main point in separating the spectral components into the two groups is the use
of a set of features which discriminates between harmonic and percussive instruments. The
grouping is eventually done using a classifier, which, following the input of the aforemen-
tioned features, yields a decision which group each spectral component belongs to. More
specifically the autors use some spectral and temporal features combined with a support
vector machine classifier. For more details about the features refer to [14].

The separated spectral components can now be resynthesized to form two audio streams for
each group. As the phases of the frequency spectrum are lost during decomposition they
now have to be reconstructed in order to complete the resynthesis. Helen and Virtanen use a
common trick here: they use the phase of the input signal. Although this is an approximation
to the original phase the artifacts generated are minimal.

Another work using features to discriminate between instruments is [33], where Teddy and
Lai separate only two instruments, assuming that the type of the first instrument is known
(e.g., string). Unfortunately, this is a rather severe limitation as songs usually contain more
than two instruments. Teddy’s and Lai’s work is interesting inasmuch as the authors are
borrowing some concepts of their method from the human auditory system.

9

2. RELATED WORK

The first step is pitch estimation which is accomplished by a feature extraction step using an
auditory image model and a feature segregation step. The auditory image model consists
of several stages which model the signal processing path of the human auditory system, for
more details see [24, 26]. The feature segregation step uses a neural network which stores
knowledge about the instruments in order to separate their feature vectors. In a following
primary feature recognition stage the final feature vector of the first instrument is generated
using another neural network. This primary feature vector is also fed into a third neural
network to generate the pitch. The pitch is then used to anihilate the fundamental frequency
and its harmonics from the mixture which will delete the first instrument leaving only the
second one together with the non-harmonic parts of the first one.

2.5 Template-Based Approaches

A distinctive feature of instruments in modern music is their structurally induced repetitive-
ness. This feature is more pronounced on percussive instruments than on harmonic ones and
therefore many algorithms in literature limit themselves on exploiting repetitiveness just for
drum tracks.

A common approach for separing highly repetitive instruments is based on using templates
which represent typical tones of their associated instruments. The tones described by a tem-
plate are found using some kind of template matching algorithm. In a second step the tem-
plate is usually adapted to better fit the tones associated with it. Separation is achieved by
resynthesizing the audio signal using only templates belonging to one instrument.

In [43] Zils et al. for example use two templates for their drum track separation. They extract
the tracks iteratively using the two templates which are correlated with the mixture and the
resulting peaks picked according to some criteria of relevance. In their work the templates
are initialized with the impulse response of a lowpass filter and bandpass filter. First they use
the lowpass template to detect bass drums then the highpass one to detect snare drums. They
refine the templates iteratively until the number of detected peaks of the correlation between
the templates and the mix reach a fix point. First they use the bass drum template until the
fixpoint is reached then the snare drum template. Separation is achieved by resynthesizing
the templates into one mix resulting in the drum track. It is also possible to use either the
bass drum or the snare drum template to resynthesize just one of the instruments.

Resembling Zils’ approach Benaroya et al. in [1] consider the special case of two sources
mixed into one mixture. In contrast to Zils who used the two templates for two drums Be-
naroya’s approach is more generic and thus allows for more kinds of instruments but on
the other hand is more restricted because it requires training on an previously separated ex-

10

Template-Based Approaches

cerpt of the mixture. Benaroya separates the sources using a bayesian estimator which uses
gaussian scaled mixture models (GSMMs) to estimate the spectral amplitudes of each source.
The GSMMs are introduced in his paper and described as approximating the distribution of
a scaled random variable which has a gaussian distibution instead of a normalized one like
the more common gaussian mixture models (GMMs) do. These GSMM were used because
a sound with a specific power spectral density (PSD) could be repeated on another time in-
dex with a different amplitude which would require a GMM of its own. So the GSMM can
be used for all amplitudes of a sound with a specific PSD. Hidden markov models (HMMs)
were considered for separation but not used because in that case their computational cost for
training them could easily get prohibitive. The bayesian estimator has first to be trained on
previously separated excerpt in order to learn the parameters. This reduces the usefullness
drastically as usually one has only the mixed sources.

Another way to view the template approach is presented in [38] by Virtanen. He considers
the input signal to be a sum of convolutions between onset vectors and their corresponding
magnitude spectrum templates. He adapts the templates and the onset vector using an it-
erative squared error minimization in order to minimize the input reconstruction error. The
problem now is that the onset vector should be kept sparse, which means that only few ele-
ments shall be non-zero. Sparseness ensures that the final solution is plausible in the sense
that the instruments are not hit too often or in too small time intervals. In order to keep the
onset vector sparse, Virtanen uses a special cost term which he adds to the reconstruction
error term. When reconstructing each instrument by doing the convolution only for its onset
vector and template the lost phase spectrum has to be reconstructed, which Virtanen achieves
by simply using the phase of the input signal.

A kind of hybride between blind source separation and template based approaches is the
work of Plumbley et al. [28]. We recall the input signal being viewed as a weighted sum
of sources where the weights represent the mixing parameters. Plumbley approximates the
sources by so called atoms or dictionary items which are sparsely present in the mixed sig-
nal. He calls the matrix formed by the mixing parameters itself a dictionary. He introduces
two approaches for learning the atoms were: time and frequency based ones, where the time
approach is sample shift-invariant while the frequency approach is phase-invariant. The in-
variance is crucial as this means that the dictionary can be kept sparse and thus plausible.
Further it means that a shift of the waveform which is represented by an atom within the
sampling window will not be mapped onto a new atom, but rather on an already existing
one. Concerning time based learning, it produces spikes while frequency based learning pro-
duces something like a piano roll which looks like an on/off activation chart. The output
of both learning methods synthesizes to notes or part of notes during reconstruction. As
Plumbley’s goal is just the representation, no assigment of the atoms and encodings to dif-
ferent instruments is given. But with regard to the new sparse representation the remaining

11

2. RELATED WORK

work of grouping should be made easier.

A similar approach to Plumbley’s but restricted to the frequency domain take Kim and Choi
in [18]. They view the signal as being composed of a weighted sum of optimally shifted spec-
tral basis vectors which can be compared to a shiftable version of Plumbley’s atoms in the
frequency domain. The up or down shift in the frequency domain is done in a way which
leads to the best reconstruction approximation. The spectral basis vectors are taken from can-
didate vectors which are selected to be sparse and to have the smallest reconstruction error
after the mixing matrix which they call the encoding matrix because it also contains frequency
shift information, was calculated by an overlapping non-negative matrix factorization. The
authors achieve separation by resynthesizing only one of the basis vectors. As the basis vec-
tors can not only be gain weighted but also frequency shifted, one basis vector usually is able
to represent one instrument. But this works only with instruments whose harmonic structure
is very stable through the entire note duration and is also stable for all playable notes. If those
both conditions are not fulfilled, more basis vectors are needed for the affected instrument.
This poses the problem of how to find out which of the final basis vectors converged to the
said instrument. This last problem is common for many template based approaches.

2.6 Speech Separation

Because voice is also considered an instrument in music we will also present some works
separating it. Although these algorithms can be considered as special cases of the already
mentioned approaches, we have put them into a separate section because their specialization
makes them stand out from the general instrument separation algorithms.

We begin with the work of Hu and Wang [15] who generally separate speech from interfer-
ence. They begin with analyzing the signal by cochlear filtering model with a bank of 128
gammatone filters [25] and subsequent hair cell transduction [21]. This filtering leads to a
filtered spectral decomposition of the input signal with frequency bins which contrary to the
fast fourier transform (FFT) cover an inequal bandwidth. The resulting frequency bins are
called time-frequency (T-F) units and their bandwidth increase with increasing center fre-
quency. T-F units are merged based on temporal continuity and cross-channel correlation.
Then, segments are grouped into a foreground and background stream. Pitch is detected
from the foreground stream and then the units are labeled according to whether they be-
long to speech. For T-F units which due to uncertainities were note part of the segmentation
more processing is done before labeling. Foreground and background stream labeling is then
refined so that finally the foreground stream represents the target speech.

Li and Wang [19] extend the work of Hu and Wang [15] by focusing on singing voices. First

12

Speech Separation

they detect the presence of voice using a spectral change detector and a speech/non-speech
classificator using mel-frequency cepstrum coefficients MFCC [42] as features. Then they de-
tect the pitch of the voice by analyzing the input signal with a bank of 128 gammatone filters
and by computing a normalized correlogram in order to obtain periodicity information. As
the peaks indicating periodicity may be misleading they use a trained HMM to decribe the
pitch generation process. The output of this stage is a pitch contour. For the final separation
of the singing voice a modified version of Hu and Wang’s algorithm is used which uses the
additional information extracted for a more accurate labelling of the T-F units.

The works discussed previously use only monoaural input signals. Roman et al. on the other
hand creates a binaural input signal in [31] by filtering monoaural input sources through
head related transfer functions (HRTFs) associated to the direction of incidence. In this way
a synthetic mix with several spacial cues is created where the original sources are known
beforehand, wich comes in handy for evaluation purposes. Similar to the previous works
Roman processes the input signal simulating the auditory periphery using a filerbank that
models the cochlear filtering mechanism which is gain-adjusted to account for the direction
independent middle-ear transfer. The result is then half-wave rectified and square-root com-
pressed. The interaural time delay (ITD) is then calculated using cross-correlation of the
channels, and the interaural intensity difference (IID) is calculated by the log power ratio
between the two channels. Furthermore, a cross-correlogram is created to extract further
spatial information. A binary mask is then determined, which selects frequency bands with
more energy in the target source than the interference. During reconstruction the T-F com-
ponents belonging to interference are nullified. In order to generate the binary mask, some
parameters of the ITD/IID evaluator have to be trained. Fortunately, this training procedure
allows using a training set consisting of unrelated audio data to the separation task because
only parameters related to the recognition of the direction of the incident signals have to be
trained which are not bound to statistical properties of the source like in other works using
trainable classifiers. Furthermore, the training needs to be done only once which is a further
bonus considering that in other works the algorithms need to be trained before attempting
separation on every new input.

Some algorithms, although originally developed for speech separation, can also be used for
separating more general audio source and even instruments. An example is the much cited
work of Yilmaz and Rickard [40]. The key of their work is the so called W-disjoint orthog-
onality (WDO) introduced in their paper, which they use for measuring the disjointness of
speech signals. As it turns out this measure can be applied to every audio source with har-
monic character and therefore their algorithm can be used for these sources. More concretely
the WDO exresses how well separated the sources are in the frequency domain, that is, how
good an ideal binary mask could separate the sources in that domain. If the sources share
only a few frequency bins then their ideal separation can be high while on the other hand

13

2. RELATED WORK

if they share many bins their ideal separation will be low. Based on the WDO the authors
present the degenerate unmixing estimation technique (DUET) considering that using two
mixtures in order to extract more than two sources is a degenerate unmixing case. In order
to separate the input they construct a magnitude-delay histogramm from the magnitude dif-
ference and the inter-channel delay of the signal spectrum and smooth it. Then they locate
the peaks whose locations give the delays and magnitude differences of the sources. Using
the parameters found they construct a binary time-frequency mask for every source, select-
ing only frequencies whose delays and magnitude differences are in the vicinity of the found
parameters. Transformation of the selected frequencies in the time domain results in the sep-
arated sources. As shown by the authors this algorithm works well for up to six anechoically
mixed harmonic sources but the performance degrades rapidly as a real-world example is
evaluated where the sources were echoically mixed. In spite of this their algorithm is still
usefull because of its general applicability.

2.7 Benchmarking in Literature

Mixing Modes

Evaluating separation results from real recordings is a difficult task. The main problem lies
in the fact that in a real environment we do not know how the original sources may have
sounded like. Therefore we have no exact measure on how good a separation result is. In
order to get an estimate of the performance of the separation algorithms we have to rely on
subjective evaluations.

A solution to the problem might be to use an artificial mix where the mixing parameters and
the original sources are known. Evaluation can be done using some error measure, ideally a
perceptually weighted one where inaudible artifacts are weighted less. This is the most com-
mon approach seen in literature. Unfortunately this approach has some severe downsides.

• The first one is that artificial mixing is usually done anechoically which is then also
called instantaneous mixing. This is the simplest form of mixing where the source signals
are added, optionally with an associated gain or sample shift. Real environments like
rooms, halls, or even outdoors in the open field have some kind of reverberation. That is
a multitude of small-gain time-decaying echos which are added to the original sound.
Although it is possible to simulate reverberation with good software this is usually not
done.

The effect of reverberation on a separating algorithm is that due to the echos, the re-
peated parts of the input signal will not sound the same. That is due to the interfering

14

Benchmarking in Literature

echos from the former played notes. So the repetition will be harder to detect and the
problem gets worse the shorter the repetition is. Another effect is that the frequency
signature of each instrument gets smeared in the frequency domain. This becomes
even worse whenever the algorithm relies on features like the magnitude difference
and phase shift to locate the sources on stereo or binaural recordings. In that case due to
reverberation the two features will become smeared and in the worst case some sources
may even become undistinguishable.

Mixing with reverberation on the other hand is called convolutive or echoic mixing as
the source signal is convolved with an impulse response of the environment. Here, the
echos come up as spikes in the impulse response. Although reverberation degrades the
performance of most algorithms there are some special kinds which can deal with it.
As each instrument in a musical piece has another position in space it also has another
reverberation or impulse response linked to it, which would theoretically be an aid in
separating the instruments. Unfortunately, the processing power required for using
reverberation information is still pohibitive but we shall note that our brain also uses
reverberation as a cue in order to localize sounds.

• Another downside of artificial mixing is that it does not simulate the changing direc-
tional receiving pattern of the microphones when more than one microphone is used. For
low frequencies microphones have a rather omni-directional pattern whereas for higher
frequencies they get more directional. Figure 2.1 illustrates this behaviour on the po-
lar pattern diagrams of two microphones. The changing pattern now means that the
inter-channel amplitude differences of the sources on low frequencies will be much less
than on high frequencies. The amplitude difference due to the different distances to the
sources remain unchanged by this. So in conclusion algorithms using artificial mixing
do not have to adapt the frequency dependent amplitude differences which leads us to
expect their performance to decline when used in real environments.

• Lastly, the third downside is the missing background and registration noise in the artificial
mix. This is usually a less important aspect as background noise is well controlled
in music recordings. Registration noise with todays technology can be as low as the
quantization noise in the digitization stage. Therefore a noiseless mix may often come
close to reality.

One possible partial solution is to record the sources live in an anechoic room. Obviously, the
missing reverberation problem still remains, but the other two problems would be solved.
This is also a common approach in literature besides software mixing.

A perhaps more interesting solution would be if we could playback some previously digi-
tized sources and record them using two microphones in a regular office room. This should

15

2. RELATED WORK

Figure 2.1 The illustration on the left shows the polar pattern diagram of the omni-directional micro-
phone Behringer B-5. The sensitivity of the microphone is normalized to 0dB on the outer ring with
decreasing sensitivity values on the inner rings. As we can see the pattern is truly omni-directional at
250Hz and below and gets more and more directional at higher frequencies. Note that the pattern is
symmetric but in order to simplify the plot the different frequency patterns were split among the two
halves. On the right we see the polar pattern of the Behringer B-1 microphone which is a directional one.
Here we notice the same behaviour: the 250Hz curve is less directional than the 16kHz one. Source:
www.behringer.com.

solve all three problems but could lead to one additional problem: the loudspeaker used will
inevitably introduce additional distortion which may not be added to the evaluation error of
the separating algorithm. As for the algorithm the distorted loudspeaker output actually is
the source it has to separate so we have to either approximate the output of the loudspeaker
and account for the distortions in the error measure or calibrate the loudspeaker in order to
remove as much of the distortions as possible. The distortions generated by the loudspeaker
can be regarded as being composed of the following parts:

• Phase distortions on more than one-way speaker systems if they have passive crossover
networks. Usually a good speaker system consists of more than one speaker, where
each one reproduces only a part of the frequency range. Therefore, the speaker elec-
tronics has to split the input into usually two or three frequency bands and delegate
each band to the appropiate speaker. There are two kinds of so called crossover net-
works: the passive and the active ones. The passive network uses condensators and
coils to split the frequency range. Unfortunately, this design introduces a phase shift in
the output which, although inaudible, may generate a huge error when recorded and
compared to the original. This is not the case for active crossovers which use more so-
phisticated electronics. Unfortunatley, the speaker specification often does not reveal
the crossover type used which makes more than one-way speaker systems unsuitable
for evaluation. A possible solution is the usage of an single broadband speaker which
does not need any crossovers but even here we have some problems like the narrowed

16

http://www.behringer.com

Benchmarking in Literature

frequency range due to its physical limits.

• Distortions due to the spectral ripple in the frequency response curve and resonances
of the loudspeaker or the speaker system. It is very hard to produce one-way speakers
which are able to reproduce sounds over the entire audible range and even for the more
complex speaker systems it is hard to make their frequency response absolutely flat.

• Non-linear distorsions and noise. This is a less important problem as those errors can be
kept low with today’s technology. Non-linear distortions include harmonic distortions
where a loudspeaker may resonate on some harmonic frequencies of the original sound
and clipping on loud sounds which is very well audible but can be easily avoided by
turning down the volume.

The linear distortions to which we count the phase distortions, the frequency ripple and res-
onances can be dealt with by measuring impulse response of the speaker system and use it to
either calibrate the speaker system or approximate the distorted output. Unfortunately, both
solutions require expensive tools for proper calibration which can easily make this approach
unfeasible. Still, if done right it is the best approximation of a real world scenario and has
the benefit of knowing the original waveform of the sources which in turn enables a precise
measure of the capabilities of the algorithms.

A summary of which mixing methods are used by different works is given later in this sec-
tion.

Error Measures

In order to estimate the distortion created by the separation algorithms we need an error
measure which weights the artefacts according to how good they can be heard, and that is
easy to implement. In literature there is a plethora of error measures, each with its own
benefits but unfortunately this also leads the evaluation to become less comparable as there
is no such thing as a standard measure.

We will define here only the Signal to noise ratio (SNR) which is also known as the signal to
distortion ratio (SDR) or signal to residual ratio (SRR). It is the most common measure which
relates the original signal to the noise energy in the estimated signal. It can be expressed as:

SNR = 10 log10

‖x‖2

‖x− x̂‖2
(2.2)

where mathbfx is the input signal and mathbfx̂ its estimate. This measure is zero if the
noise and signal energy are equal, and ∞ if the estimation is exact and thus there is no noise
term.

17

2. RELATED WORK

The other measures are either very specialized like the W-disjoint orthogonality which mea-
sures the separation quality only for algorithms using time-frequency masks or are ambigu-
ous as for example the source to interference ratio (SIR) where the definition in [40] is not com-
patible to the one used in [1, 12].

A summary of the measures used can be found on Page 2.1.

Corpora

Although some corpora exist the reviewed works tend to avoid them. Due to this fact the
comparability suffers even more because now even the papers using a common error measure
become incomparable due to the lack of a common evaluation basis. So in conclusion most
papers use homebrew test databases built either from some unspecified commercial CDs or
from self-recorded instrument sounds.

For the sake of completness we will give a brief description of the three corpora used more
frequently:

• BASS-dB: the Blind Audio Source Separation evaluation database, [37]. This music database
contains 20 multitrack recordings free for non-commercial use. Parts of it are used
by [20].

• TIMIT Acoustic-Phonetic Continuous Speech Corpus, [10]. This is a speech database with
630 speakers, each one reading 10 sentences. Parts of it are used by [16, 31, 40].

• Cooke’s speech collection, [6]. It consists of 10 speech utterances and 10 intrusions and
is used by [15, 19, 31].

So we have two speech corpora and one music corpus. Unfortunately other music corpora
have some troubling issues not discussed here therefore they are generally avoided by the
research community.

Summary

As we have seen in this section, evaluation is a troublesome topic for blind source separation.
We have to first decide whether to use synthetic mixes which allow an objective performance
evaluation but without realistic results or we can use real world recordings but lacking the
original sources we have to rely on subjective measures. As a third option there is the pos-
sibility of recording a playback in a room thus getting the benefits of the knowledge of the
original sources and the realistic mixing environment but with the tribute of having to first
calibrate the loudspeakers in order to avoid introducing additional distortion sources.

18

Benchmarking in Literature

capacity mixing error measures corpora
ch. src. anechoic echoic SNR others BASS-dB TIMIT Cooke others

[20] 2 * 3 31) 3

[2] 2 * 3 3 3

[16] 1 2 3 31)

[41] 1 * 3 3

[8] 1 * 3 3 3

[39] 1 * 3 3 3

[14] 1 22) 3 3

[33] 1 2 3 33) 3

[43] 1 2 3 3

[1] 1 2 3 3

[38] 1 * 3 3

[18] 1 * 3 34) 3

[15] 1 2 35) 3 3

[19] 1 2 3 3

[31] 2 * 3 31) 3

[40] 2 * 3 3 3 31) 3

Table 2.1 This is an overview of the papers reviewed in this chapter, grouped according to the section
they were reviewed in. ch. represents the number of input channels to the algorithm, src. the maximum
number of sources which can be separated where * means that this number is not limited in theory.

1) Only parts of the corpus were used.
2) Algorithm separates sources into 2 groups.
3) Subjective quality assessment.
4) Visualization only, no error measure.
5) Ideal binary masked signal was used as ground truth.

We have also seen that in literature plenty of error measures are being used, thus making
results incompatible whenever papers do not use the same measure. To make things worse
often homebrew databases were used which further agravates the problem of comparing the
published results.

Finally we will give an overview of the evaluation methods used in Table 2.1. The papers are
shown in the order they were reviewed in their respective sections. From the table we can
see clearly that

• most papers do not use stereo information. This may be good or bad. Using only single
tracks raises the compatibility with older, bandwidth limited or poor recorded music
but on the other hand it misses valuable cues whenever stereo information is available.

• most papers use anechoic mixtures and many papers do not specify which type of mix-
ture they use – where in that case one can usually assume the mixing is done ane-
choically.

19

2. RELATED WORK

• few papers use corpora at all and those using BASS-dB or TIMIT, use only parts of
them.

2.8 Summary and Conclusions

In this chapter we have reviewed several works relevant to instrument separation. First we
have seen some works with algorithms beloging to the domain of blind source separation
with the main focus on using auditory cues and thus being generally applicable to any audio
source separation task. Then we reviewed papers in the more specialized field of harmonic
and sinusoidal modelling where the harmonic structure of instruments was used to differen-
tiate between them. Following that we have seen some template based approaches exploiting
the repetitive structure of music. In a section devoted only to speech separation we have seen
some specialized algorithms for that task.

Finally we reviewed the benchmarking methods used in literature and have seen that eval-
uation is a problem in this field. We are confronted with the problem that we either have
to choose between realistically mixed signals and no knowledge about the original sources
or artificially mixed signals not representing reality well, but where the original sources are
available. To overcome this problem we suggested to playback and record the signal using
loudspeakers in a room. The problem arising from this technique is that the speakers have
to be calibrated in order to not introduce distorsions in the signal path as it would make the
separation afterwards much more difficult than it should be. Finally, in order to complicate
matters, we saw a phenomenon which may be partially caused by the young nature of this
emerging field: the works we reviewed tended to use self-made corpora and error measures
thus making them incomparable to each other.

The illustrations and findings in the evaluation section will also be used as a basis for our
own benchmarking in Chapter 7.

20

Chapter 3

Direct Template Matching

3.1 Motivation

We made an interesting observation which naturally leads to a template based approach. Let
us start with computer generated music. In order to generate or synthesize a musical piece
the computer needs a score and the tones of the instruments belonging to every note in that
score. This approach is taken for example by the musical instrument digital interface (MIDI)
format. When it is used for storing, only the score is saved in a file and the tones have to be
provided separately, usually by the playback application. An interesting point here is, that
due to lack of space in storing the tones of instruments only few tones of each instrument
are really stored and remaining ones are synthesized by interpolating the available ones. If
done correctly, music synthesized this way can sound almost indistinguishable to live played
instrumental pieces.

If synthesizing using a score and a database of tones for each instrument produces a convinc-
ing result there comes the question whether it would not be possible to inverse the process
of synthesization. That is to analyze a musical piece and store it in a score and tone-database
format. If this can be accomplished then we have found an easy way to separate instruments:
we just have to search the tone database for the tones belonging to one instrument and syn-
thesize the score using only them. In top of that we would also have a score which means
that further additional analysis besides instrument separation would be possible.

This may now sound easy but it is not and this is the reason why instrument separation or
blind audio source separation have become such intensely studied fields in the last years.
Still we have some arguments why such an approach intuitively should be successful.

• Computer generated music should intuitively be easy to be reconverted into the score

21

3. DIRECT TEMPLATE MATCHING

and tone-database format because it was synthesized using that format – even if it was
not MIDI. So a possible solution to the analysis problem already exists and that is the
original representation. We only have to find an algorithm which can search for and
discover that solution or an equivalent one.

• A considerable part of commercial music is at least partially computer generated. Some
genres like techno, trance, electro and industrial are entirely made up of computer gen-
erated music.

• Even in music pieces played by humans the musicians have to either play a defined
score or if they do an improvisation they can only use the tones available on their in-
struments and will be bound to some rules about harmonicity. These facts should intu-
itively restrict the search space for a plausible representation thus making the problem
more tractable.

We have also thought about when and why a template based approach may fail which re-
sulted in the following arguments.

• Human voice is very hard to synthesize using a score tone-database approach. So we
may expect that also analysis resulting in a MIDI like will fail on speech.

• A musical piece is usually also post-processed after synthesizing by applying certain
filters and then compressed. The post-processing filters are not necessarily invertible
and are hard to be detected and lossy compression like the commonly used mp3 is by
definition not fully invertible.

• Simple synthesizing applications always use the same tone for an instrument when gen-
erating the same note which eases analysis. However when playing real instruments
this observation does not necessarily hold as it might not be possible or desirable to
produce the same tone when playing the same note. During analysis this case has to be
taken care of which might raise complexity considerably.

As we see success is not guaranteed as the approach may fail. Still we believe that it should
be possible. Literature has shown some so called template based approaches more or less
successfully solving some simpler subproblems as for example only separating the drums.

3.2 Problem Reformulation

We will base the problem formulation here on Section 1.2 where the basics were described.
Now we view the sources as being composed of tones which can occur once ore more often

22

Problem Reformulation

at locations specified by the score for that instrument. So each tone ŝi,j,k has its associated
steering vector âi,j,k which decides when and how loud that tone is played.

The steering vector is as long the entire song duration T in samples and consists of weights
âi,j,k,t which represent the loudness of the tone if it was onset at time t = 1, 2, ..., T . These
weights have to be convolved with the time reversed tone in order to result in the audio
waveform of the instrument playing just that tone. Formally it can be written as

x̂i,j,k = âi,j,k ? ŝi,j,k (3.1)

where x̂i,j,k is the resulting waveform of tone k from instrument j in input channel i. The
tone vector has a fixed length D for all tones and instruments and represents just the time-
domain waveform of the tone. The sum of all convolutions of all tones with all instruments
results in the final waveform representation of the resynthesized musical piece

x̂i =
N∑

j=1

K∑
k=1

âi,j,k ? ŝi,j,k (3.2)

whereK is the number of tones per instrument. For an illustration on how the concept works
see Figure 3.1.

Now we have the problem that we do not know the correct mapping of the tones to their
corresponding instruments. Since solving that problem during the limited time we had for
this thesis was not possible we will have to drop the association between the tone and the
instrument. Formally, this is accomplished by dropping the index j and redefining K to be
the number of tones in total. The simplified Equation 3.2 becomes

x̂i =
K∑

k=1

âi,k ? ŝi,k (3.3)

So far this means that we now have a set of tones and their scores but we do not know which
instrument they belong to. This formula will be taken as the basis of the template based
approaches.

Note that the estimated tone waveform ŝi,k is always normalized to have unity vector norm
‖ŝi,k‖ = 1. Normalization is necessary because we have two free parameters which influence
each other: the steering vector loudness and tone waveform loudness. If we multiply the
steering vector loudness by some constant we have to divide the tone waveform loudness by
the same constant in order to keep the overall loudness. Therefore we have to fix one of these
parameters so we choose the tone waveform loudness. We use the vector norm as a relative
loudness measure which we set to 1 to simplify matters. Note that this can not be viewed
as an absolute loudness measure as it depends on the number of samples D per tone. Still if
all tones have the same length the normalization makes the loudness weights stored in the
steering vector comparable to other tones.

23

3. DIRECT TEMPLATE MATCHING

Tone

Steering Vec.

Tone

Same Tone
Audio

Tone

Steering Vec.

Tone

Same Tone
Audio

Tone

Steering Vec.

Tone

Same Tone
Audio

.

.

.

Same Instrument
Audio

Tone

Steering Vec.

Tone

Same Tone
Audio

Tone

Steering Vec.

Tone

Same Tone
Audio

Tone

Steering Vec.

Tone

Same Tone
Audio

.

.

.

Same Instrument
Audio

Tone

Steering Vec.

Tone

Same Tone
Audio

Tone

Steering Vec.

Tone

Same Tone
Audio

Tone

Steering Vec.

Tone

Same Tone
Audio

.

.

.

Same Instrument
Audio

.

.

.

Figure 3.1 Overview of the music synthesis concept using templates. For each tone the steering vectors
are convolved with the time-reversed tone waveform to produce an audio signal containing only that specific
tone whenever it is played. These signals are summed over each instrument to produce further waveforms
containing only that instrument. Our goal ends here but if we want to synthesize or reconstruct the whole
musical piece we have to finally mix the instrument waveforms.

24

Algorithm Overview

3.3 Algorithm Overview

Our first step is to initialize the score or more precisely the onset vectors and the tone wave-
forms where each combination of onset vector and tone waveform constitute a template. The
exact description of the onset vector and its initialization procedure is given in a separate
subsection on Page 25.

After the initialization an iterative method is employed to build the templates which is will be
called the main algorithm during the rest of this section. An overview of this method is given
on in a subsection on Page 27. The iteration comprises of a tone search step described in a
subsection on Page 28 where the onset vector is estimated using the available tone waveforms
and of a tone learning step beginning on Page 36 where the tone waveforms are adjusted to
better match the found onset vector.

Fine tuning steps have a separate subsection beginning at Page 46. These steps are not nec-
essary for the functionality of the algorithm but may provide better quality.

As all the previously described steps are rather detailed and some contain several versions
and expansions of their corresponding algorithms a final algorithm subsection is presented
on Page 51.

Finally we close the first approach with a summary and future work subsection on Page 54.

3.4 The Onset Vector

We note that the steering vector consists only of a few non-zero values as a single tone will
not be played often in a musical piece. Therefore we can store only these non-zero values
and save a vast amount of space by doing so. We will call the resulting vector the onset vector
as its stored non-zero elements now represent the time locations of the tone onsets together
with the tone loudness.

The convolution operation can also be simplified as we do only need to consider stored onsets
thus we can do the convolution by simply adding a weighted copy of the tone waveform
beginning at the location pointed by the onset vector using the stored loudness as the weight.

Before we begin with finding the right onset vectors and tone waveforms we have to do a
first and for the beginning rather uncomplicated guess. A first try is to initialize the onset
vector with some randomly located onsets with small random loudness weights and the
tone waveform with some white noise which is normalized to have a vector norm of 1. Our
hope is here that the random templates will converge during the algorithm to their real tone
templates they resemble most during the algorithm, but unfortunately this does not work

25

3. DIRECT TEMPLATE MATCHING

out.

So we try a more promising initialization attempt. Now we will not initialize all templates
at the same time but one after the other. More precisely we initialize the first template, do a
learning iteration and then initialize the second template from the reconstruction error left by
the first template. For the third template we use the reconstruction error caused by the first
two templates and so on. This way we can suppress interference from the tones in the input
signal covered by the already initialized templates when initializing the new ones.

The initialization of each template is done by first dividing the reconstruction error into win-
dows of the same size as the tone templates. For the first template we use the original input
signal instead of the reconstruction error. In the next step we search for the window with the
highest energy content using the vector norm as the energy measure and initialize the tone
template with the content of that window. In order to normalize it we divide its content by
the squared vector norm and use the same value to initialize the onset vector at the same
location where the found window begins in the input signal. The rest of the onset vector is
initialized with zeros.

The step by step description of the initialization procedure described in the former paragraph
is as follows:

• divide the input into slices of sizeD (whereD is usually in the range of [5000...50000])
and calculate the loudness λm for each slice m = 1, 2, ..., bT/Dc.

λm = ‖xm,i‖ (3.4)

where xm,i is the vector of slice m.

• find the slice m′ with the highest λm′ .

• initialize the tone waveform ŝi,k with xm′,i.

• initialize the onset vector with ‖ŝi,k‖2 on the time location where the slice m′ begins
and set the rest of it to zero.

• divide the tone waveform by ‖ŝi,k‖2 in order to normalize it to unity vector norm.

This second approach now concentrates on the parts with the highest residual error thus
making a more plausible approach than simple random initialization. Trying to estimate the
parts in the musical piece with the highest residual can be interpreted as trying to estimate
the loudest and more important parts. The results of this initialization are somehow better
but there is still room for improvement. A shortcoming of this approach is, for example, that
the algorithm will concentrate on a few loud and hard to estimate portions of the input and
leave the rest untouched.

26

Main Algorithm

In order to ameliorate this problem we thought of a hybrid between the random initialization
and the residual based one. So after computing the reconstruction residual of the preceding
templates we do the following to initialize the new template:

• compute the mean loudness λ for the whole input

λ =
1√
T
‖xi‖ (3.5)

• divide the input into slices of size D and calculate the mean loudness λm for each slice
m = 1, 2, ..., bT/Dc.

λm =
1√
D
‖xm,i‖ (3.6)

where xm,i is the vector of slice m.

• randomly pick a slice m′ until λm′ > λ.

• initialize the tone waveform ŝi,k with xm′,i.

• initialize the onset vector with ‖ŝi,k‖2 on the time location where the slice m′ begins
and set the rest of it to zero.

• divide the tone waveform by ‖ŝi,k‖2 in order to normalize it to unit vector norm.

In words this initialization procedure randomly picks slices from the input signal until one is
found whose mean loudness is greater than the mean loudness of the entire piece. The tone
waveform is initialized with the found slice and normalized to unit vector norm. Finally, as
in the previous approach the onset vector is initialized by the normalization value of the tone
waveform and the rest is set to zero.

This initialization procedure also initializes the templates with high-energy residual content
but this time the templates are spread more evenly throughout the input. Intuitively, this ap-
proach should cover more different tones than the previous one because of the better spread.

3.5 Main Algorithm

Finding the onset vectors and the tone waveforms is done in an iterative manner. This is
done because we need to either rely on given tone waveforms while searching for the onset
vectors or rely on given onset vectors to find the best matching tone waveforms. Therefore
both the onset vector and the tone waveforms are refined during each iteration.

The algorithm is set to stop when a predetermined number of iterations has been reached.
We decided for this stopping criterion as the algorithm is very time consuming if viewed on a

27

3. DIRECT TEMPLATE MATCHING

per iteration basis and we cannot wait till convergence. Furthermore we have observed that
convergence may even not be given because as we will see in the next subsection, the tone
search step uses some heuristics in order to find a plausible onset vector and these heuristics
do not seem to have a fix-point.

Concerning the tone search and learning steps which are part of this main algorithm, we had
two options on what kind of input signal to feed them. We could either feed

• the original signal xi. This would cause all templates to extract the onsets and tone wave-
forms from the same mixture. It has the disadvantage that already correctly identified
tones would interfere with the tone search and learning steps for the other templates.

• the individualized reconstruction error signal ei,k. The individualized reconstruction error
here is simply the reconstruction error of all templates except the template k to which
it is fed as the input or more formally

ei,k = xi − x̂i + âi,k ? ŝi,k (3.7)

where x̂i is the reconstructed signal as defined in Equation 3.3. This method has the
advantage that the correctly identified tones of the other templates will not be present
in the input. The disadvantage is that it now includes the errors made by the other
templates. Usually the errors made by the other templates should be a smaller problem
because as the other templates try to estimate the input signal their error will be smaller
than their gain thus we can expect this kind of error to remain small.

So depending on the option chosen we would either extract the tones all at once from the
original signal or we would extract tones one by one. We decided for the second one using
the individualized reconstruction error as it proved to be more stable and give higher quality
results.

We shall note here that the final version of the tone learning step uses the original signal
directly as it jointly adjusts all tone waveforms. So in the final main algorithm only the
tone search step is performed for each template separately and therefore is able to use the
individualized reconstruction error.

3.6 Tone Search

One of the main parts of the algorithm is the search for the templates in the input signal.
We have to find the locations in the input signal where the tones waveforms occur. This is
accomplished by a template matching algorithm.

28

Tone Search

Correlation

Our first approach takes the correlation between the input signal and each tone waveform
resulting in the correlation vector ri,k where each element is calculated using

ri,k,t =
D
∑D

l=1 ei,k,t+l−1ŝi,k,t+l−1 −
∑D

l=1 ei,k,t+l−1

∑D
l=1 ŝi,k,t+l−1√

D
∑D

l=1 e
2
i,k,t+l−1 −

(∑D
l=1 ei,k,t+l−1

)2
√
D
∑D

l=1 ŝ
2
i,k,t+l−1 −

(∑D
l=1 ŝi,k,t+l−1

)2

(3.8)
with t = 1..T . Assuming ŝi,k and ei,k have zero mean over any window with a size of D
samples we can simplify the above formula to

ri,k,t =

∑D
l=1 ei,k,t+l−1ŝi,k,t+l−1√∑D

l=1 e
2
i,k,t+l−1

√∑D
l=1 ŝ

2
i,k,t+l−1

(3.9)

The zero mean condition over a specific time usually holds for audio signals when the win-
dow size is sufficiently large because these signals are low-pass filtered in order to remove
imperceptible low frequency waves which may cause clipping problems when present. We
can further simplify the formula as we note that we have normalized the tone waveform ŝi,k

to have unity vector norm so we get

ri,k,t =

∑D
l=1 ei,k,t+l−1ŝi,k,t+l−1√∑D

l=1 e
2
i,k,t+l−1

(3.10)

Unfortunately this equation can not be solved on today’s computers in reasonable time due
to its complexity of O(TD) as the tone size D is in the range of several thousand samples
and the size of the musical piece T is in the range of millions of samples.

So we have to find a way to lower the complexity of this formula. Noting that the numerator
is an unscaled discrete correlation we can use the FFT for solving it where the FFT algorithm
has a complexity of O(T log2 T). Now we can rewrite the formula using our nomenclature
for the discrete correlation as

r′i,k = ei,k × ŝi,k (3.11)

and

ri,k,t =
r′i,k,t√∑D

l=1 e
2
i,k,t+l−1

(3.12)

Furthermore we can use a sliding sum algorithm for calculating the denominator. For that
we square every input sample and calculate the sliding sum resulting in a temporary vec-
tor where each element holds the sum of squares for the needed window size D. Now we
apply the square root on each of its elements and get the final denominator vector. The com-
plexity of this algorithm is O(T) so we finally get a complexity of O(T log2 T) for the entire
correlation formula which is an acceptable result.

29

3. DIRECT TEMPLATE MATCHING

In the correlation vector obtained so far, each element indicates how much energy content of
the D sample sized window following the location of the element is explained by the tone
waveform. The elements are 1 whenever the template matches exactly and 0 if there is no
correlation. As one might expect there is always some correlation between template and the
input therefore ri,k,t is never 0. This may also be partly caused by the zero mean assumption
earlier, as the correlation vector is now an approximation.

Peak Generation

The next step in finding the tones in the input signal is to search for the positions where the
correlation vector has relatively high values. Our assumption is that the tones are located at
positions with high correlation. This is not necessarily always true as the case might occur
when two tones annihilate most parts of each other in the input signal by creating beats which
will make the correlation between the template associated with each tone to get rather low.

Although we are interested in high correlation values we note that there must be a minimum
of time between onsets so we have to find the local peaks of the correlation and ensure that
there is enough space between the peaks found.

Finding all the peaks in the correlation vector is easy. We have to apply the discrete derivative
opertor ∆ on ri,k, which is defined element-wise as

∆ri,k,t = ri,k,t − ri,k,t−1 (3.13)

for all t > 1. And then we have to find those points where ∆ri,k,t is zero or changes sign
from positive to negative and where ri,k,t is positive. The last condition ensures that we use
only positive correlations which are physically meaningful. Negative correlations can not be
explained physically as it would mean that the waveform of the instrument would have to
be inverted. To our knowledge no real instrument can be played that way and it would also
be meaningless because the human ear would not be able to distinguish such a sound from
the non-inverted original. We will thus express the peak picking more formally as having a
set of indices Ti,k storing time indices t of the correlation vector ri,k so that

Ti,k = {t | ri,k,t > 0 ∧∆ri,k,t−1 ≥ 0 ∧∆ri,k,t ≤ 0} (3.14)

with t ranging from 3 to T . Note that the time indices in Ti,k are not bound to the correlation
vector they were taken from. Therefore they can also be used to index other vectors of the
same length as for example the onset vector âi,k and the input vector ei. We will use this
property later during the template learning stage.

30

Tone Search

Peak Picking

After having the set of all peaks there comes the tricky part of choosing the “right” ones. That
means we have to filter the peaks using some heuristics.

Our first heuristic is also the simplest one which we mention here for the sake of complete-
ness. First off we define a desired number of onsets to extract which we call θa and the
minimal distance between the onsets θb. For each tone k we do the following:

1. initialize the filtered set T ′
i,k to the empty set ∅.

2. save Ti,k into T1,i,k.

3. do the following until Ti,k is empty:

• grab the smallest t from Ti,k which we will denote t0.

• search for the ri,k,t∈Ti,k
with the highest value having |t− t0| < θb. We will call the

time index of the result t1.

• add t1 to T ′
i,k.

• remove all t ≤ t1 from Ti,k.

4. go through each element of T ′
i,k and check whether there are any t0 and t1 with |t1 − t0| <

θb. If any such elements are found then remove the one with the smaller value from T ′
i,k.

5. if
∣∣T ′

i,k

∣∣ > θa

• multiply θb with 3 in order to enlarge the minimal distance and get fewer results
next time.

• restore Ti,k from T1,i,k.

• start over again.

6. if
∣∣T ′

i,k

∣∣ < θa

• divide θb by 2 in order to shrink the minimal distance and get more results next
time.

• restore Ti,k from T1,i,k.

• start over again.

7. set Ti,k to equal the filtered set T ′
i,k

31

3. DIRECT TEMPLATE MATCHING

The algorithm in words does approximately the following: It iteratively gets the highest
correlation element within the minimal onset distance from the beginning and saves it into
the new set T ′

i,k. Then it removes all elements which came before it including itself from the
original peak set. This iteration is repeated until the original peak set is emptied. The result
of this is not guaranteed to always have the minimum desired distance so we have to check
if that condition holds in the new set. If two elements are found violating that condition
then we remove the one which has the lower correlation. Now we check whether the desired
number of onsets was found and if not then the minimum onset distance is adjusted so that
after running the algorithm again using a saved version of the original peak set the number
of onsets will come closer to the desired one. We then store the result back in Ti,k.

This algorithm is very simple and has a low complexity but also has several drawbacks.
First the desired number of onsets to be found is predetermined, which is not realistic as we
do not know the number of times a tone is played beforehand. This is a big drawback as
it is crucial that we not only find the right positions of the onsets but also do not find too
many as each false positive will “pollute” the tone waveform by some degree later in the
learning stage. A second drawback, but of lesser importance, is, that even so the algorithm
will usually not find the optimum for a fixed minimum onset distance. If we would want
to find the optimal set of locations with maximal correlation subject to the minimum onset
distance constraint we would have to resort to more complex algorithms. Another drawback
is that this algorithm returns onsets almost evenly distributed through the input signal as
we specify only a minimum distance between onsets. Usually, between two points with
minimum distance there will always be an onset, even if it is weak and around the noise floor.
Therefore the algorithm will find onsets even during parts of silence where noise dominates.
We thus drop this algorithm and design a replacement.

So we have thought of a second peak picking algorithm which should alleviate some of the
problems from the first one. This time we begin with the peaks having the highest correlation
and take them if there is no other peak already taken in the neighbourhood having a distance
smaller than the minimal one. In detail we do the following:

• initialize the filtered set T ′
i,k to the empty set ∅.

• do iteratively until
∣∣T ′

i,k

∣∣ = θa:

– take the time index t0 with highest associated ri,k,t0 from Ti,k and remove it from
Ti,k.

– if there is no other t1 in T ′
i,k so that |t0 − t1| < θb then add it to T ′

i,k.

• set Ti,k to equal the filtered set T ′
i,k

32

Tone Search

Now, though even this algorithm will not find the optimal solution that is the solution with
the maximal sum of correlations it will not return evenly distributed onsets anymore. Com-
pared to the former algorithm the minimal distance between onsets has become more im-
portant now as if it is chosen too small we may easily get false positives and if we choose it
too big we will not get the desired number of onsets. This was not a problem on the former
algorithm as it adjusted the minimal distance in order to obtain the desired number of onsets.

As the problem with the predefined number of onsets still remains we have extended this al-
gorithm in order to eliminate this free parameter and let the algorithm decide on the optimal
number of onsets. In order to do this a new parameter θd with 0 < θd < 1 is introduced
which describes the minimum correlation that must be present for a time index in order to
accepted. The algorithm proceeds as follows:

• initialize the filtered set T ′
i,k to the empty set ∅.

• do iteratively until |Ti,k| = ∅:

– take the time index t0 with highest associated ri,k,t0 from Ti,k and remove it from
Ti,k.

– if there is no other t1 in T ′
i,k so that |t0 − t1| < θb and if ri,k,t0 > θd then add it to

T ′
i,k.

Intuitively θd describes the confidence in whether the onset is a true positive. Note that the
correlation is normalized therefore an onset occurring during a loud passage must be louder
in order to be taken than an onset in a quiet part. This should be intuitively plausible as
during a loud passage there may be many fixed low-loudness matches than during a quiet
one where there may be even none. The fixed correlation approach should alleviate this
problem but unfortunately it creates a new one which we may be familiar with from the
first algorithm: during silent periods we may get matches with noise as we only account for
the relative correlation above a fixed threshold which may still be given even during such
periods. We might overcome this problem by also introducing a free parameter for a low-
loudness threshold below which no correlation peak is accepted at all. Unfortunately we ran
out of time for further pursuing this as the exact value needs some fine tuning to account for
the different music genres.

After some preliminary testing we observed some practical shortcomings of the algorithm:

• in stereo recordings when a peak was detected in one channel no match could be found
in the other channel at a nearby time location. This should not be the case but in very
old computer generated music files.

33

3. DIRECT TEMPLATE MATCHING

• the algorithm often finds matches where there should be none as a result of a low θd.
This allowed the algorithm to pick some coincidentally good matching templates when-
ever a piece of the input signal has not been covered by any template thus constructing
that part of the input signal by templates which do not match there in reality.

• very few tones were found whenever higher θd were used.

It seems that unfortunately there is no ideal value θd. Either it is too high and the instruments
sound choppy or too low and unknown input signals are reconstructed by some random
matching templates.

This led us to an extension which should ameliorate the problems found. The extension does
some additional pre-processing by using stereo cues to filter out implausible peaks and at the
same time lowers θd in order to get more matches through.

The implausible peaks are filtered by the following criteria:

• constrained sample-shift. Peaks in one channel having no matching peak in the other
channel in the interval of ±θe samples are deleted. Here θe ∈ N is a parameter which
can be freely adjusted. Ideally it should represent the maximum sample shift that can
occur when using two microphones. It can be calculated by

θe =
dmic

cair
fmax (3.15)

where dmic is the distance between the two microphones in meters, cair the velocity of
sound in meters per second and fmax is the sampling frequency in Hertz. Unfortunately
we usually do not have information about the distance between the microphones so we
have to guess. Usually microphones are not placed further apart than the distance
between the two ears which is about 25cm but sometimes when a more dramatic effect
is desired the microphones can be placed as far as 50cm apart. That means that a if the
distance in not known it can be assumed to lie in between 25cm and 50cm.

• constrained shift deviation. Assuming that instruments generally are not moved around
in the room while being played we can fix their position and thus their time-shift be-
tween the two channels. This can be done by first getting the average shift between
peaks of all tones belonging to that instrument and then restricting the shift variation
consequently filtering out each peak pair whose variation is too high. Unfortunately
we have no tone to instrument mapping function yet therefore we have to calculate the
average and fix its variation for every tone template in part.

• constrained loudness difference deviation. With the same assumption as the point above
we can also constrain the normalized loudness difference λ̊k,(t1,t2) between the two

34

Tone Search

channels which we calculate from the unnormalized correlation r′i,k,t defined in Equa-
tion 3.11

λ̊k,(t1,t2) =
r′1,k,t1

− r′2,k,t2

r′1,k,t1
+ r′2,k,t2

(3.16)

with t1 ∈ T1,k and t2 ∈ T2,k. As above we also first get the average normalized loudness
difference for each tone in part and then in a second step filter out each peak pair whose
difference is varying above a given threshold θg ∈ N.

• minimum relative loudness. At this stage assume that a pair of peaks must have a min-
imum loudness compared to the total energy in the input signal at the location of the
peak in order to be a hit. As above we use the un-normalized correlation r′i,k,t to calcu-
late the relative summed loudness λ̃k,(t1,t2) as

λ̃k,(t1,t2) =
r′1,k,t1

+ r′2,k,t2√∑D
l=1 e

2
1,k,t1+l−1 +

√∑D
l=1 e

2
2,k,t2+l−1

(3.17)

with ti ∈ Ti,k. Now all pairs having λ̃k,t1 < θh where θh is a threshold parameter with
0 < θh < 1 are considered noise and filtered out.

The extended algorithm starting from a set of candidate peaks identified now works as fol-
lows

• generate a set Tk of all time index pairs (t1, t2) with t1 ∈ T1,k, t2 ∈ T2,k for the two peak
candidate lists T1,k, T2,k of two stereo channels, where each pair is restricted to have a
sample-shift below the treshold θe, or more formally

Tk = {(t1, t2) | t1 ∈ T1,k, t2 ∈ T2,k, t1 − θe < t2 < t1 + θe} (3.18)

Note that the time indices may have been duplicated and can now occur in more than
one pair. There may now be even more pairs than there were time indices before.

• calculate the mean sample-shift deviation z̄k

z̄k =
1

|Tk|
∑

(t1,t2)∈Tk

t1 − t2 (3.19)

• generate a new set T ′
k containing only those peak pairs from Tk whose difference be-

tween time indices is less than θf where θf ∈ N is freely adjustable parameter. More
formally

T ′
k = {(t1, t2) | (t1, t2) ∈ Tk, |t1 − t2 − z̄k| < θf} (3.20)

35

3. DIRECT TEMPLATE MATCHING

• calculate the mean loudness difference λ̄k

λ̄k =
1

|T ′
k |

∑
(t1,t2)∈T ′

k

λ̊k,(t1,t2) (3.21)

where λ̊k,(t1,t2) is the loudness difference as defined in Equation 3.16.

• constrain the normalized loudness difference λ̊k,(t1,t2) with (t1, t2) ∈ T ′
k to have a vary

in the range of [−θg..θg] by generating the set T ′′
k

T ′′
k =

{
(t1, t2) | (t1, t2) ∈ T ′

k ,
∣∣∣̊λk,(t1,t2) − λ̄k

∣∣∣ < θg

}
(3.22)

• enforce the minimum loudness θh by creating another set T ′′′
k

T ′′′
k =

{
(t1, t2) | (t1, t2) ∈ T ′′

k , λ̃k,(t1,t2) ≥ θh

}
(3.23)

where λ̃k,(t1,t2) is the relative loudness as defined in Equation 3.17.

• initialize the set T1,k and T2,k with the empty set ∅.

• do iteratively until |T ′′′
k | = ∅:

– take the index pair (t1, t2) with highest associated relative loudness λ̃k,(t1,t2) from
T ′′′

k and remove it from from T ′′′
k .

– if there is no other pair (t3, t4) in T ′′′
k so that |t1 − t3| < θb or |t2 − t4| < θb then

add t1 to T1,k and t2 to T2,k.

This is now the final version of the peak picking algorithm. We have introduced many new
parameters for the new pre-processing stage but they can be fixed and used for most musical
pieces after some fine tuning.

Although working well this extension also has its pitfalls. It can be observed that the number
of peaks found varies strongly for every iteration of the main algorithm, which makes the
learning procedure unstable. On some iteration it may be even the case that no single peak
is let trough. Regulating these differences needs further investigation in the causes of the
variation which due to time constraints is left as part of future work. At this time as a quick
solution we set the parameters in a way that enough peaks are let through because the more
peaks get out unfiltered the smaller the variance becomes.

3.7 Tone Learning

Having found the onset locations of tone candidates for different instruments, we now have
to determine associated loudness weights and the tone waveform. There are two main ap-
proaches on how we can do that.

36

Tone Learning

The first one is a direct method which computes the loudness weights and the tone waveform
solving linear equations independently for each template. It needs little computational power
and is easy to implement but has two main problems which will be discussed in the respective
subsection.

The other approach is an iterative method which jointly optimizes the templates, thus being
more powerful, which comes at the expense of increased computational cost.

Direct Method

We begin with the loudness weights which we obtain by solving a simple linear equation
system.

âi,k,tŝi,k,l = ei,k,t+l−1 (3.24)

with t ∈ Ti,k and l = 1, 2, ..., D. In order to be able to write the above formula in vector
notation we introduce a new vector qi,k,t which is built by copying a window of length D
from ei,k at location t resulting in the definition qi,k,t = [ei,k,t, ei,k,t+1, ..., ei,k,t+D−1]

T . So we
get

âi,k,tŝi,k = qi,k,t (3.25)

with t ∈ Ti,k. Assuming that the windows copied from ei,k do not overlap we can use
the Moore-Penrose pseudoinverse [22, 27] to compute an approximation of âi,k,t in the least
squares sense which results in

âi,k,t = ŝ+
i,kqi,k,t (3.26)

where ŝ+
i,k is the Moore-Penrose pseudoinverse of ŝi,k defined as

ŝ+
i,k =

(
ŝT

i,kŝi,k

)−1
ŝT

i,k (3.27)

Because ŝi,k is a vector the above equation can be reformulated into

ŝ+
i,k =

ŝT
i,k

‖ŝi,k‖2 (3.28)

Now we can insert the result into Equation 3.26 in order to get

âi,k,t =
ŝT

i,kqi,k,t

‖ŝi,k‖2 (3.29)

with t ∈ Ti,k.

Note that the non-overlapping window assumption means that we assume that the same
tone will not overlap in time with itself. This assumption is violated if for example some
instruments of the same type will start playing the same tone at the same time. This may

37

3. DIRECT TEMPLATE MATCHING

occur for example in classical music but for other genres this should be seldom the case. The
problem here is that overlapping parts of the same tone will result in non-optimal estimates
of âi,k,t.

For example if two loudness weights would overlap over their entire length D then the esti-
mate will result in an optimal loudness for each weight in part but as they overlap completely
they will add together to have twice the optimal loudness. Thus the optimal weight for two
completely overlapping onsets of the same tone would be only the half of the calculated
loudness in that example.

Now that we have the loudness weights of the onsets we can proceed to calculate the tone
waveform. This is accomplished by solving Equation 3.25 for ŝi,k. If we regard all âi,k,t with
t ∈ Ti,k as elements of a vector then we can use its pseudoinverse in order to solve the
equations. This results in the following equation

ŝT
i,k =

(
âi,k,t∈Ti,k

)+
QT

i,k (3.30)

where Qi,k is a matrix whose columns are the vectors qi,k,t with t ∈ Ti,k or more formally
Qi,k = [qi,k,t1 ,qi,k,t2 , ...,qi,k,t|Ti,k|

] with t1, t2, ..., t|Ti,k| ∈ Ti,k. After some reformulations

and simplifications we arrive to

ŝi,k =
Qi,k

(
âi,k,t∈Ti,k

)∥∥(âi,k,t∈Ti,k

)∥∥2 (3.31)

So each element in ŝi,k is calculated as follows

ŝi,k,l =

∑
t∈Ti,k

âi,k,tqi,k,t,l∑
t∈Ti,k

â2
i,k,t

(3.32)

with l = 1, 2, ..., D.

Now we do the usual normalization of ŝi,k to unity vector norm and multiply âi,k by the
normalization constant in order to preserve loudness information.

Iterative Method

We have designed the iterative method in order to overcome two main problems of the di-
rect method: the non-overlapping window assumption and the independent solving of each
template in part. With the iterative method we can now jointly optimize all templates and
are able to handle overlapping windows for the same tone.

As this method represents one tone learning step in the main algorithm, all iterations of this
method will be embedded in this single learning step. As the main algorithm is iterative as

38

Tone Learning

well this will lead to a double-iterative complete algorithm. Unfortunately, double-iterative
algorithms are very time consuming so we will have to ensure that this method will converge
fast in order to get results in acceptable time.

Now that the method is made up of several iterations we will write the free parameters âi,k,t,
ŝi,k,l and the reconstructed signal x̂i as a function of the actual iteration number n which
leads to the notation âi,k,t(n), ŝi,k,l(n) and x̂i(n). With the iteration numbering starting from
one we define âi,k,t(1) to be the result of the direct method for this parameter and ŝi,k,l(1)

to be either the result of a former tone learning step for this tone in the main algorithm or
of the initialization as described earlier. We observe that the direct method is still used for
computing âi,k,t(1) as we need an initial estimate. Note that it is not possible to take this
parameter from former iterations of the main, algorithm because due to the peak picking
step the time indices in Ti,k and thus the non-zero values of âi,k change abruptly at every
iteration.

Our iterative method is based on the gradient descent method which means we will have
to define a cost function Ci(n). We will define this function in the terms of the squared
reconstruction error

Ci(n) =
1

2
‖xi − x̂i(n)‖2 (3.33)

where x̂i(n) is the reconstructed signal at iteration n as defined in Equation 3.3. Note that for
Equation 3.3 we use the free parameters of the actual iteration n.

The free parameters ŝi,k,l and âi,k,t are updated by adding the negative gradient defined by
the first partial derivative of the cost function and each parameter in part. So we get

âi,k,t(n+ 1) = âi,k,t(n)− ηâ∆âi,k,t(n) (3.34)

and
ŝi,k,l(n+ 1) = ŝi,k,l(n)− ηŝ∆ŝi,k,l(n) (3.35)

where 0 < ηâ < 1 and 0 < ηŝ < 1 are learning parameters and ∆âi,k,t(n) and ∆ŝi,k,l(n) are
the gradients of the respective parameters which are define by

∆âi,k,t(n) =
∂ Ci(n)

∂ âi,k,t(n)
(3.36)

and

∆ŝi,k,l(n) =
∂ Ci(n)

∂ ŝi,k,l(n)
(3.37)

For the partial derivative of âi,k,t(n) we get

∂ Ci(n)

∂ âi,k,t(n)
=

T−t+1∑
l=1

(xi,t+l−1 − x̂i,t+l−1(n))
∂ (xi,t+l−1 − x̂i,t+l−1(n))

∂ âi,k,t(n)
(3.38)

39

3. DIRECT TEMPLATE MATCHING

by applying the chain rule and then after solving the last partial derivatives and some sim-
plifications we arrive to

∂ Ci(n)

∂ âi,k,t(n)
= −

D∑
l=1

(xi,t+l−1 − x̂i,t+l−1(n)) ŝi,k,l(n) (3.39)

Analogously for the partial derivative of ŝi,k,l(n) we get

∂ Ci(n)

∂ ŝi,k,l(n)
=

T∑
t=1

(xi,t − x̂i,t(n))
∂ (xi,t − x̂i,t(n))

∂ ŝi,k,l(n)
(3.40)

by applying the chain rule and then after solving the last partial derivatives and some sim-
plifications we arrive to

∂ Ci(n)

∂ ŝi,k,l(n)
= −

∑
t∈Ti,k

(xi,t+l−1 − x̂i,t+l−1(n)) âi,k,t(n) (3.41)

After plugging the results for the partial derivatives into the update formulas we finally get

âi,k,t(n+ 1) = âi,k,t(n) + ηâ

D∑
l=1

(xi,t+l−1 − x̂i,t+l−1(n)) ŝi,k,l(n) (3.42)

and

ŝi,k,l(n+ 1) = ŝi,k,l(n) + ηŝ

∑
t∈Ti,k

(xi,t+l−1 − x̂i,t+l−1(n)) âi,k,t(n) (3.43)

The learning parameters ηâ and ηŝ shall be chosen small enough so that the algorithm will
not diverge. This can usually be done by trying different values in different runs.

After some preliminary testing we found that this algorithm has a too slow convergence be-
haviour. As we observed afterwards this is a common problem of gradient descent methods
and therefore some improvements have been suggested in literature.

We first begin with the simple improvement called the momentum [32, 29]. The problem of
the plain gradient descent method is that it often begins to oscillate, thus slowing conver-
gence significantly. The idea behind the momentum is to introduce some kind of inertia in
order to damp these oscillations making the algorithm pursue a straighter path to the next
minimum. Another side-effect of the momentum is that it gets easier for the algorithm to
escape local minima due to its inertia.

The modifications required to introduce the momentum term affect the gradients themselves,
which then become

∆âi,k,t(n) =
∂ Ci(n)

∂ âi,k,t(n)
+ αâ∆âi,k,t(n− 1) (3.44)

40

Tone Learning

and

∆ŝi,k,l(n) =
∂ Ci(n)

∂ ŝi,k,l(n)
+ αŝ∆ŝi,k,l(n− 1) (3.45)

where αâ and αŝ are free momentum parameters in the range between zero and one just like
ηâ and ηŝ. For the first iteration we define ∆âi,k,t(0) = 0 and ∆ŝi,k,l(0) = 0. The final update
rules including the momentum term now become

âi,k,t(n+ 1) = âi,k,t(n) + ηâ

D∑
l=1

(xi,t+l−1 − x̂i,t+l−1(n)) ŝi,k,l(n) + αâ∆âi,k,t(n− 1) (3.46)

and

ŝi,k,l(n+ 1) = ŝi,k,l(n) + ηŝ

∑
t∈Ti,k

(xi,t+l−1 − x̂i,t+l−1(n)) âi,k,t(n) + αŝ∆ŝi,k,l(n− 1) (3.47)

Using high values for the momentum parameters speeds up convergence as expected but at
the same time the final error levels on a higher value meaning that the algorithm is trapped
more easily in local minima while on the other hand when using low values only a small
convergence speed-up can be noticed.

This led us to choose a further extension called Super-SAB [34] which is itself an extension
of the self-adaptive backpropagation algorithm (SAB) described in [7, 17]. The adaptation is
done in a way which speeds up search on plateaus on the error surface where gradients are
near zero due to the flatness and slows down on steep areas in order to not shoot over the
minimum. More precisely, if the sign of the partial derivate for a parameter changes sign after
one iteration then it means that a minimum was overshoot and so the learning rate for that
parameter is decreased, the previous update is undone and the new gradient is set to zero in
order to not interfere as a momentum term in future updates. On the other hand if the sign
remains the same for two consecutive updates then the learning parameter is increased to
speed up learning.

The Super-SAB method implies that every parameter has its own learning parameter ηâi,k,t
(n)

and ηŝi,k,l
(n) respectively which are adapted at every iteration. The learning parameters can

be initialized with any values in the range (0..1] as it does not matter anymore because the
parameters will be exponentially increased or decreased until a step forward can be done.
However, the learning parameters are not eliminated this way as we now need to specify
the constants for increasing the learning rate and decreasing it which we call η+ and η− re-
spectively. As a rule of thumb these two new parameters shall not be equal, be greater than
one and the increasing parameter shall be smaller than the decreasing one. We found that
good choices are η+ =

√
2 and η− = 1/2. A smaller η+ will lead to a slowdown in conver-

gence and a higher η+ usually makes the gradient change sign very often and thus also slows
convergence down but this time through oscillation.

41

3. DIRECT TEMPLATE MATCHING

The algorithm for Super-SAB works as follows:

• initialize ∆âi,k,t(0) and ∆ŝi,k,l(0) with zero.

• do the following till convergence

– calculate the partial derivative for ai,k,t(n) according to Equation 3.39 and si,k,l(n)

according to Equation 3.41.

– if
∂ Ci(n)

∂ âi,k,t(n)

∂ Ci(n− 1)

∂ âi,k,t(n− 1)
> 0 (3.48)

calculate the gradient according to Equation 3.44, update âi,k,t

âi,k,t(n+ 1) = âi,k,t(n)− ηâi,k,t
(n)∆âi,k,t(n) (3.49)

and increase the associated learning parameter

ηâi,k,t
(n+ 1) = η+ηâi,k,t

(n) (3.50)

– if
∂ Ci(n)

∂ âi,k,t(n)

∂ Ci(n− 1)

∂ âi,k,t(n− 1)
< 0 (3.51)

decrease the learning parameter for âi,k,t

ηâi,k,t
(n+ 1) = η−ηâi,k,t

(n) (3.52)

and set ∆âi,k,t(n) = 0 to avoid interference in the next update in form of a mo-
mentum term.

– if
∂ Ci(n)

∂ ŝi,k,l(n)

∂ Ci(n− 1)

∂ ŝi,k,l(n− 1)
> 0 (3.53)

calculate the gradient according to Equation 3.45, update ŝi,k,l

ŝi,k,l(n+ 1) = ŝi,k,l(n)− ηŝi,k,l
(n)∆ŝi,k,l(n) (3.54)

and increase the associated learning parameter

ηŝi,k,l
(n+ 1) = η+ηŝi,k,l

(n) (3.55)

– if
∂ Ci(n)

∂ ŝi,k,l(n)

∂ Ci(n− 1)

∂ ŝi,k,l(n− 1)
< 0 (3.56)

decrease the learning parameter for ŝi,k,l

ηŝi,k,l
(n+ 1) = η−ηŝi,k,l

(n) (3.57)

and set ∆ŝi,k,l(n) = 0 to avoid interference in the next update in form of a mo-
mentum term.

42

Tone Learning

This approach works now as expected but it turned out to have a significant problem: due
to the differing learning speeds of each ŝi,k,l belonging to the same, tone some discrepan-
cies between neighbouring ŝi,k,l occurred which could be heard as noise in the reconstructed
waveform. Because the noise is not related to any frequencies occurring in the input signal
it becomes disturbing. It is even more disturbing than the usual pollution of the templates
caused by lack of separation, because the pollution consists of the tones which are actually
played during the musical piece which usually have harmonic character. Unfortunately this
noise is unacceptable as the reconstructed input sounds better when using only the simple
momentum extension so we had to drop this extension and look for something else.

So we finally came across the Newton method which differs from the simple gradient descent
method by taking the curvature information into account. As the speedup may be significant
we decided to give it a try.

The curvature information is calculated by the second derivative of the cost function. This
means that in our case the update formulas get a second order gradient operator written as
∆2. The new formulas then become

âi,k,t(n+ 1) = âi,k,t(n)− ηâ(n,m)
∆âi,k,t(n)

∆2âi,k,t(n)
(3.58)

and

ŝi,k,l(n+ 1) = ŝi,k,l(n)− ηŝ(n,m)
∆ŝi,k,l(n)

∆2ŝi,k,l(n)
(3.59)

where the two gradients ∆âi,k,t(n) and ∆ŝi,k,l(n) are defined in Equation 3.36and 3.37 which
do not contain the momentum term and m is the actual refinement iteration which will be
discussed later. The second order gradients are defined as

∆2âi,k,t(n) =
∂2 Ci(n)

∂ â2
i,k,t(n)

(3.60)

and

∆2ŝi,k,l(n) =
∂2 Ci(n)

∂ ŝ2
i,k,l(n)

(3.61)

For the second order partial derivative of âi,k,t(n) we first get

∂2 Ci(n)

∂ â2
i,k,t(n)

= −∂
∑D

l=1 (xi,t+l−1 − x̂i,t+l−1(n)) ŝi,k,l(n)

∂ âi,k,t(n)
(3.62)

and after solving the remaining partial derivative we get

∂2 Ci(n)

∂ â2
i,k,t(n)

=
D∑

l=1

ŝ2
i,k,l(n) (3.63)

43

3. DIRECT TEMPLATE MATCHING

Analogously for the second order partial derivative of si,k,l(n) we first get

∂2 Ci(n)

∂ ŝ2
i,k,l(n)

= −
∑

t∈Ti,k
(xi,t+l−1 − x̂i,t+l−1(n)) âi,k,t(n)

∂ ŝi,k,l(n)
(3.64)

and after solving the remaining partial derivative we get

∂2 Ci(n)

∂ ŝ2
i,k,l(n)

=
∑

t∈Ti,k

â2
i,k,t(n) (3.65)

Plugging the results into the new update formulas we finally get

âi,k,t(n+ 1) = âi,k,t(n) + ηâ(n,m)

∑D
l=1 (xi,t+l−1 − x̂i,t+l−1(n)) ŝi,k,l(n)∑D

l=1 ŝ
2
i,k,l(n)

(3.66)

and

ŝi,k,l(n+ 1) = ŝi,k,l(n) + ηŝ(n,m)

∑
t∈Ti,k

(xi,t+l−1 − x̂i,t+l−1(n)) âi,k,t(n)∑
t∈Ti,k

â2
i,k,t(n)

(3.67)

Note that the second order partial derivative used here is a simple interpretation of the second
order gradient. Newton’s method in optimization can also be used with the whole Hessian
matrix but in order to keep the algorithm simple and fast we decided to take the simple
interpretation of the second order partial derivative.

Now the new equation prove to be rather unstable at the beginning therefore requiring very
small ηâ(n,m) and ηŝ(n,m). This is counterproductive as we expect a speedup from this
extension. Fortunately there is a simple solution to that. We can adapt the learning parameter
by doing a fixed number of refinement iterations. During such an iteration we try out how
the actual learning parameter affects the cost function basically doing a line search for the
best ηâ(n,m) and ηŝ(n,m).

The line search has a simple logic. If the cost function gets smaller than in the former refine-
ment iteration and the learning parameter was increased then the actual learning parameter
is increased by a fixed constant η+. The same happens if the cost function gets bigger and
the learning parameter was decreased. Analogously if the cost function gets smaller and the
learning parameter was decreased then the actual learning parameter is decreased by a fixed
constant η−. The last possibility with increasing cost function and increasing learning pa-
rameter during the former refinement iteration leads to the decrease of the actual learning
parameter. Empirically a good choice for η+ seems to be

√
2 like in the Super-SAB algorithm

and 1/2 for η+. The initial learning parameters ηâ(n, 1) and ηŝ(n, 1) are either taken over
from the former iteration of the gradient descent method or if it is the first iteration then take
the values from the former iteration of the main algorithm. At the very beginning ηâ(1, 1)

and ηŝ(1, 1) are initialized with some small constants in the range (0..1].

The full algorithm for Newton’s method works as follows:

44

Tone Learning

• if this is the first iteration of the main algorithm, initialize ηâ(1, 1) and ηŝ(1, 1) with
some small constants in the range (0..1].

• do the following until convergence

1. initialize ηâ(n, 1) and ηŝ(n, 1) with the learning parameters of the former itera-
tion or if it is the first one take the values from the former iteration of the main
algorithm.

2. calculate the first and second order gradients for the parameters âi,k,t(n) and ŝi,k,l(n)

according to Equations 3.36, 3.39, 3.60, 3.63 and 3.37, 3.41, 3.61, 3.7 respectively.

3. iterate M times using the iteration counter m = 1..M

– update âi,k,t according to Equation 3.66.

– if this is the first refinement iteration

∗ if Ci(n+ 1) < Ci(n) increase the learning parameter by η+

ηâ(n+ 1) = η+ηâ(n) (3.68)

∗ else decrease it by η−
ηâ(n+ 1) = η−ηâ(n) (3.69)

and undo the update by setting âi,k,t(n+ 1) = âi,k,t(n).

– else

∗ if Ci(n+ 1) > Ci(n) ∧ ηŝ(n,m+ 1) < ηâ(n,m) or
Ci(n+ 1) < Ci(n) ∧ ηâ(n,m+ 1) > ηŝ(n,m) increase the learning para-
meter by η+

ηâ(n+ 1) = η+ηâ(n) (3.70)

∗ else decrease the learning parameter by η−

ηâ(n+ 1) = η−ηâ(n) (3.71)

and undo the update by setting âi,k,t(n+ 1) = âi,k,t(n).

4. analogously refine the learning parameter for ŝi,k,l as in step 3 using the appropri-
ate variables and equations.

Due to the common learning parameters for the tone waveform samples ŝi,k,l the noise which
could be observed for Super-SAB is now eliminated. Convergence speed is also good there-
fore we take it for the tone learning step.

Still some further improvements can be done. For example, the onset loudness weights âi,k,t

do not need to have a common learning parameter so we could extend our implementation of

45

3. DIRECT TEMPLATE MATCHING

Newton’s method to have a individual learning parameter for each loudness weight which
is then adjusted by the Super-SAB algorithm. Furthermore, we could use a more general
interpretation of the second order gradient leading to more precise curvature information,
and so on.

3.8 Fine Tuning

After finding and learning the templates we see that these two steps may need some fine
tuning in order to provide higher quality templates. This fine tuning is not essential as the
main two steps will also deliver satisfactory results without it. But as improving the main
steps may cost a lot of time we can build some fine tuning steps which quickly improve
results.

Template Offsetting

One of the fine tuning steps is to offset the template in such a way that it covers the part of
the tone with most of the energy. We thought of this step as we saw that templates often
cover the middle or the ending parts of the tones, thus not optimally approximating the note
as most of the energy is usually found in the onset part and in the middle. The circumstance
of the false coverage can be explained by the inflexibility of the algorithm not being able to
move the templates relatively to their match in the input signal once they have specialized
on a tone. So even if a template has learnt the tone and can find all its locations during the
musical piece it may sound weird because of the absence of the onset.

If we analyze this problem more deeply we see that if the initialization does not lead the
template to the onset and middle part of the tone it later specializes on, it is later not possible
to move that template relatively to the tone. This is because during the tone finding step
we only search for parts in the input signal which match the template. So if the template
matches the wrong parts of the tone then the searching step will return only the positions of
these parts.

In order to solve this problem we thought of an algorithm which finds the optimal offset
according to some criterion so the template can cover the energy rich parts of its associated
tone. The algorithm proceeds as follows:

• compute a new template ŝ′i,k using an enlarged window size of 2D centred around the
original window content and the usual learning step scaled for the new window size.

46

Fine Tuning

• slice the new template into θc ∈ N slices ŝ′1,i,k, ŝ
′
2,i,k, ..., ŝ

′
θc,i,k where θc is a free parame-

ter which shall be divisible by 4.

• calculate the loudness weights a′1,i,k,t−D/2, â
′
2,i,k,t−D/2+2D/θc

, ..., â′θc,i,k,t−D/2+2(θc−1)D/θc

with t ∈ Ti,k for each slice separately using the usual learning step scaled for the win-
dow size of the slice 2D/θc.

• compute for each slice a total loudness coefficient

λm =
∥∥ŝ′m,i,k

∥∥ ∑
t∈Ti,k

â′m,i,k,t (3.72)

with m = 1, 2, ..., θc.

• using a moving window of 1
2
θc slices which moves by one slice, calculate the total loud-

ness of each window by summing over all λm that are part of that window.

• find the window with the highest total loudness and initialize the tone waveform ŝi,k

with the slices ŝ′m,i,k that are part of that window. Offset the onsets to match the be-
ginning of the window and also update the time indices in Ti,k. Finally, recalculate the
onset loudness weights using the usual learning step.

We note that θc has to be divisible by 4 in order to ensure that also the original template
position is considered.

In other words, this algorithm calculates a twice as big template and then searches for a
window of the original size which has maximum energy and onset loudness weights in order
to reinitialize the template and recalculate the loudness weights to match the new template
finally updating Ti,k to reflect the new time indices.

We have also thought about a similar algorithm which is iterative and therefore more expen-
sive in terms of required computational power but is simpler to describe and implement.

• iteratively do the following until convergence

– compute θc ∈ N alternative templates ŝ′1,i,k, ŝ
′
2,i,k, ..., ŝ

′
θc,i,k centred around the

original template position. θc shall be chosen to be divisible by 4 in order to ensure
that also the original template position is considered.

– compute the corresponding alternative loudness weights
â′1,i,k,t−D/2, â

′
2,i,k,t−D/2+2D/θc

, ..., â′θc,i,k,t−D/2+2(θc−1)D/θc
with t ∈ Ti,k.

• search for the alternative m with the highest total loudness

λm =
∑

t∈Ti,k

â′m,i,k,t−D/2+2(m−1)D/θc
(3.73)

47

3. DIRECT TEMPLATE MATCHING

and take it as the new template. Also update Ti,k to reflect the new offset.

In other words, we now search for alternative templates by learning new templates at posi-
tions around the old one and picking the alternative template which has the highest associ-
ated total loudness. We then reinitialize the original template with the new one and update
the set of indices Ti,k to reflect the changes.

During preliminary testing of the first offsetting algorithm we saw some downsides unfor-
tunately. First, the templates tend to move very often and do rather seldom stand still. This
in turn hinders convergence of the main algorithm. Another issue is that the templates be-
gin to collide, specializing on the same tone or forming tone beginning-ending pairs. The
latter could be useful on long tones with high energy content but the former is surely a non-
desirable result. The collision problem could probably be solved by introducing a penalty
term for onset proximity to other tones but unfortunately we were short of time to investi-
gate this further.

Due to the problems above we finally decided to drop the template offsetting, though given
more time it might be improved in order to become more useful.

Phase Matching

After the tone search step we get the set of discrete time indices Ti,k as the result. This means
that the templates are matched with the input signal at discrete time locations with sample
accuracy meaning that the real match may lie in a ±half sample-length neighbourhood. Us-
ing a match with that accuracy leads to templates being attenuated in high frequency range.
This is caused by the summation in the direct and iterative tone learning method over several
occurrences of a template in the time domain which is a main point of the template algorithm
in eliminating interference by applying the sum over occurrences of the same tone and mak-
ing interference cancel itself if the interference is assumed to be some kind of noise and the
tone is assumed not to change over all occurrences.

The sample accuracy now means that in reality the summation is done over shifted occur-
rences of the same tone where the shift is at most ±1/2 sample length. The shift translates in
a phase shift in the frequency domain. The shift is small for low frequencies as their duration
is much longer than the sample shift thus making the shift being only a small fraction of the
duration. But due to the shorter duration of the higher frequencies their phase shift becomes
higher topping at a maximum of ±90◦ at the Nyquist frequency. Assuming that the error
between the real match and the sample accurate match is equally distributed in the range of
[−1/2 sample length..1/2 sample length] we may run the sum over tone occurrences having
their Nyquist frequencies shifted 180◦ apart thus cancelling themselves despite belonging to

48

Fine Tuning

the same tone.

This problem is less pronounced on frequencies lower than Nyquist because they can not
fully cancel themselves but only be attenuated to a certain degree as their maximum relative
phase shift sinks below 180◦.

Now a significant error in the reconstructed output is introduced due to the lack of high
frequencies and consequently also the separation quality is degraded. This happens even if
all other parts of the separation algorithm would give perfect results therefore we have to
consider this problem to be very important and have to solve it.

So in order to overcome the attenuation problem we need to render the template match more
accurate. The more accurate the match gets the lower the attenuation at the high frequencies
will get. There are two solutions for getting a better accuracy.

The first one is to simply upsample the input signal and the template to a higher frequency
and work only on the upsampled signals. After the upsampling we will not have any fre-
quencies higher than half the original sampling rate thus we will only have frequencies lower
than the half the new sampling rate which will be now less attenuated. Or viewed differently
we have moved the Nyquist frequency farther up in the frequency range thus lowering the
attenuation on the original frequencies which remained the same. This solution is very easy
to implement as it needs only an upsampling filter all other things being unchanged which
is the reason we decided to take it into the final version of the algorithm.

For the upsampling filter we take the Lanczos interpolator [35] which is defined as

lanczos(z; θl) =

sin(πz)

πz

sin(π z
θl

)

π z
θl

|z| < θl

0 |z| ≥ θl

(3.74)

where θl ∈ N is a parameter describing the order of the filter and z is the offset around the
actual sample. In words the Lanczos filter is a windowed sinc function where the windows
itself is a sinc function with θl − 1 sidelobes. The more sidelobes are allowed the better the
filter works. We found that a filter with two sidelobes, that is with θl = 3, is already enough
or our purposes.

In order to do the upsampling the centre of the Lanczos filter has to be positioned at a new
raster which will produce the upsampled signal thus involving the use of shifted versions of
the filter. To illustrate how this step works let us consider for example an upsampling factor
of two like in Figure 3.2. The new sampling raster will include all old positions and new
ones which lie in between the old ones. For the old ones we use no shift thus centring the
filter around each sample. Applying the filter will produce the old ones as the filter function
will have the samples positioned exactly at the zero crossings. For the samples in between
the shift will be of half a sample which will result into a non-trivial weighting of the input

49

3. DIRECT TEMPLATE MATCHING

Interpolation by factor of 2 with the Lanczos2 sinc function

Note that with a zero phase filter, the contributions from other than the central pixel are zero, so
that only the central pixel is used.

Decimation by factor of 2 with the Lanczos2 sinc function

The zero phase filter has coefficients that are nearly rational. If the negative coefficients are scaled
so that they are equal to -1, then the remaining coefficients are 9 and 15.7024. This inspired a
search for such filters with rational coefficients. This yielded the following two zero phase filters:

Turkowski Filters for Common Resampling Tasks 10 April 1990

- 10 -

-2 -1 1 2
phase=1/2

–0.009

0.117

0.434

–0.042

0.117

–0.042

–0.009

-2 -1 1 2
phase=0

0

0.284

0.496

–0.032
0.284

000

–0.032

-2 -1 1 2
phase=1/4

-0.084 -0.018
0.233

0.869

-2 -1 1 2
phase= -1/4

-0.084-0.018
0.233

0.869

-2 -1 1 2
phase=1/2

9/16

-1/16 -1/16

9/16

-2 -1 1 2

1

0 0 0 0

phase=0Figure 3.2 The zero sample-offset version of the Lanczos filter with one sidelobe as used for factor 2
upsampling is shown on the right and on the left the 1/2 sample-offset version. Note that the zero offset
version only copies the value of the input sample. Source: [35]

samples. At this point we shall note that for some upsampling factors it is well possible
that the sample weights for some shifts will not sum to 1 resulting into severe interpolation
artefacts. The problem is usually handled by normalizing the coefficients for each shift to
sum to 1.

The second solution is to better align every match by phase shifting the input signal at that
place until it maximally correlates with the template. This solution can be implemented as a
refinement of the peak generation step during the tone search. Here we can first generate the
peaks and then use a refinement step for each peak in part which searches for a better match
by phase shifting the input signal. The best match can be found by a simple line search
algorithm as the problem is one-dimensional. Furthermore, because we are searching in a
range of only ±1/2 samples and the maximum frequency representable by the input signal
lies at Nyquist there cannot be any other peaks in that range. This guarantees that the search
will find the global optimum for the alignment problem.

The phase shifting at the input signal is done using the Lanczos filter analogue to the upsam-
pling described earlier. The filter is now used with a fixed predefined phase shift and the
output raster has the same distance between the sample points.

Compared to the first solution approach we can now get an arbitrarily accurate match until
we reach the noise floor without increasing the memory requirements too dramatically as we
do not have to interpolate and store the whole input signal. Unfortunately, there is also a big
downside: there are usually so many peaks found during the first stage that we might easily
have to do more computing steps than with the first approach. The unfiltered peaks are often
very close by each other so that their distance is only a very small fraction of the template
size. So having many peaks makes the matching inefficient compared to first upsampling the
input signal and then matching using the fast FFT correlation method. In order to illustrate
this point imagine that each second sample has a peak in the correlation function which is

50

Final Algorithm

a worst case scenario. The complexity of the matching algorithm will be O(TD) because
the number of peaks is proportional to the input size T and the template length D. We note
that this is exactly the complexity of the inefficient correlation algorithm described in the
Correlation section earlier. But if we upsample the input signal first then the complexity will
be reduced toO (θuT log2 θuT) where θu is the upsampling factor. As θu is much smaller than
the template length we have a substantial advantage in speed when using the first solution.
It is this unforgivable rise in computational complexity which drove us away from taking the
second solution in the final algorithm.

A theoretical third solution would also exist but we had no time to look closer into it. We
could do the entire separation in the frequency domain. Matching in the frequency domain
would have a much lower accuracy of window-length only but if we would take the mean
over tone occurrences using only the power spectrum and ignoring the phases, no cancel-
lation effects of the frequencies belonging to the same tone would occur. Still, frequencies
belonging to other tones are expected to be attenuated towards a noise floor. This means
that every other part of the main algorithm would work in the frequency domain too, but it
would have taken too much time to implement so we have considered it part of future work.

3.9 Final Algorithm

In this section many versions of the sub-algorithms were presented where some versions
did not work out as expected and were excluded from the final algorithm and other were
expanded and improved. Therefore we though we should include a complete final version
of the algorithm which will be composed of only those sub-algorithms which actually proved
to work.

• upsample the input signal xi by an upsampling factor of θu with a Lanczos filter of
order θl. Rescale the affected template parameters to fit the new sample frequency.

• initialize all onset vectors âi,k and tone vectors ŝi,k with zero.

• do iteratively until maximum number of iterations reached

– calculate the reconstructed signal

x̂i =
K∑

k=1

âi,k ? ŝi,k (3.75)

– do for each template k

51

3. DIRECT TEMPLATE MATCHING

∗ calculate the individualized reconstruction error signal

ei,k = xi − x̂i + âi,k ? ŝi,k (3.76)

∗ if this is the first iteration

· compute the mean loudness λ for the whole input

λ =
1√
T
‖ei,k‖ (3.77)

· divide the input into slices of size D and calculate the mean loudness λm

for each slice m = 1, 2, ..., bT/Dc.

λm =
1√
D
‖xm,i‖ (3.78)

where xm,i is the vector of slice m.

· randomly pick a slice m′ until λm′ > λ.

· initialize the tone waveform ŝi,k with xm′,i.

· initialize the onset vector with ‖ŝi,k‖2 on the time location where the slice
m′ begins and set the rest of it to zero.

· divide the tone waveform by ‖ŝi,k‖2 in order to normalize it to unity vector
norm.

∗ calculate the unnormalized correlation

r′i,k = ei,k × ŝi,k (3.79)

and the normalized one

ri,k,t =
r′i,k,t√∑D

l=1 e
2
i,k,t+l−1

(3.80)

∗ generate the set of time indices

Ti,k = {t | ri,k,t > 0 ∧∆ri,k,t−1 ≥ 0 ∧∆ri,k,t ≤ 0} (3.81)

where ∆ri,k,t is defined in Equation 3.13.

∗ generate a set Tk of all time index pairs (t1, t2) with t1 ∈ T1,k, t2 ∈ T2,k where
each pair is restricted to have a sample-shift below the threshold θe, or more
formally

Tk = {(t1, t2) | t1 ∈ T1,k, t2 ∈ T2,k, t1 − θe < t2 < t1 + θe} (3.82)

Note that the time indices may have been duplicated and can now occur in
more than one pair. There may now be even more pairs than there were time
indices before.

52

Final Algorithm

∗ calculate the mean sample-shift deviation z̄k

z̄k =
1

|Tk|
∑

(t1,t2)∈Tk

t1 − t2 (3.83)

∗ generate a new set T ′
k containing only those peak pairs from Tk whose differ-

ence between time indices is less than θf where θf ∈ N is freely adjustable
parameter. More formally

T ′
k = {(t1, t2) | (t1, t2) ∈ Tk, |t1 − t2 − z̄k| < θf} (3.84)

∗ calculate the mean loudness difference λ̄k

λ̄k =
1

|T ′
k |

∑
(t1,t2)∈T ′

k

λ̊k,(t1,t2) (3.85)

where λ̊k,(t1,t2) is the loudness difference as defined in Equation 3.16.

∗ constrain the normalized loudness difference λ̊k,(t1,t2) with (t1, t2) ∈ T ′
k to

have a vary in the range of [−θg..θg] by generating the set T ′′
k

T ′′
k =

{
(t1, t2) | (t1, t2) ∈ T ′

k ,
∣∣∣̊λk,(t1,t2) − λ̄k

∣∣∣ < θg

}
(3.86)

∗ enforce the minimum loudness θh by creating another set T ′′′
k

T ′′′
k =

{
(t1, t2) | (t1, t2) ∈ T ′′

k , λ̃k,(t1,t2) ≥ θh

}
(3.87)

where λ̃k,(t1,t2) is the relative loudness as defined in Equation 3.17.

∗ initialize the set T1,k and T2,k with the empty set ∅.

∗ do iteratively until |T ′′′
k | = ∅:

· take the index pair (t1, t2) with highest associated relative loudness λ̃k,(t1,t2)

from T ′′′
k and remove it from from T ′′′

k .

· if there is no other pair (t3, t4) in T ′′′
k so that |t1 − t3| < θb or |t2 − t4| < θb

then add t1 to T1,k and t2 to T2,k.

– if this is the first iteration initialize ηâ(1, 1) and ηŝ(1, 1) with some small constants
in the range (0..1].

– do the following until convergence

1. initialize ηâ(n, 1) and ηŝ(n, 1) with the learning parameters of the former it-
eration or if it is the first one take the values from the former iteration of the
main algorithm.

2. calculate the first and second order gradients for the parameters âi,k,t(n) and
ŝi,k,l(n) according to Equations 3.36, 3.39, 3.60, 3.63 and 3.37, 3.41, 3.61, 3.7
respectively.

53

3. DIRECT TEMPLATE MATCHING

3. iterate M times using the iteration counter m = 1..M

∗ update âi,k,t according to Equation 3.66.

∗ if this is the first refinement iteration

· if Ci(n+ 1) < Ci(n) increase the learning parameter by η+

ηâ(n+ 1) = η+ηâ(n) (3.88)

· else decrease it by η−

ηâ(n+ 1) = η−ηâ(n) (3.89)

and undo the update by setting âi,k,t(n+ 1) = âi,k,t(n).

∗ else

· if Ci(n+ 1) > Ci(n) ∧ ηŝ(n,m+ 1) < ηâ(n,m) or
Ci(n + 1) < Ci(n) ∧ ηâ(n,m + 1) > ηŝ(n,m) increase the learning
parameter by η+

ηâ(n+ 1) = η+ηâ(n) (3.90)

· else decrease the learning parameter by η−

ηâ(n+ 1) = η−ηâ(n) (3.91)

and undo the update by setting âi,k,t(n+ 1) = âi,k,t(n).

4. analogously refine the learning parameter for ŝi,k,l as in step 3 using the ap-
propriate variables and equations.

• downsample the templates by a factor of θu to match the sample rate of original input
signal.

3.10 Summary and Future Work

In this section we have presented a template based approach to musical instrument source
separation. We have begun with the introduction of the onset vector as a sparse version of
the steering vector in order to save space and computation time. Then we discussed the
initialization procedure, where we took randomly selected parts of the reconstruction resid-
ual whose energy was higher than the average residual energy in order to initialize the tone
waveform and the onset vector.

The main algorithm was described as an iterative approach of tone searching and tone learn-
ing where the tone searching was fed an individualized reconstruction error for each template
in order to minimize false detection rates caused by interference of already recognized tones.

54

Summary and Future Work

We then discussed the tone search in detail which is made up of several steps with the first
being the correlation of the template with the input signal which can be done fast by means
of the FFT. Then we talked about peak generation where the positive peaks of the correla-
tion function were indexed by their time location and stored as a set of time indices. This
set was then filtered in the peak picking stage in order to keep only the most plausible peak
combinations among stereo channels. This was done by taking stereo cues into account and
making some assumptions about the stationarity of the instruments during play. We then
presented two tone learning methods. A direct one where each tone waveform was cal-
culated separately using the Moore-Penrose pseudoinverse and assuming non-overlapping
tone occurrences in the input. The more advanced second method was based on a gradient
descent formulation which was extended several times due to its notorious slow convergence
leading to a form of Newton’s method which also uses second-order information about the
error surface.

Some fine-tuning methods were shown. First a template offsetting approach was presented
where the content of the template was offset relative to every match in the input signal and
newly learnt in order to capture the part of the tone carrying most of its energy. Then the
importance of accurate phase matching during tone searching was discussed because the
lack of it attenuates high frequencies in the tone waveforms of the templates. The phase
matching was described to mean a sub-sample accurate tone search which could be achieved
by two approaches. A simple and easy to implement one where the input signal is upsampled
and the templates are enlarged to a higher sample frequency and a more sophisticated by
computationally intensive way of refining every match in the input signal.

Finally the whole algorithm resulting from taking the versions of the sub-algorithms of each
subsection which proved practically usable, was presented.

Now several questions and problems were raised and remained open during this section,
which are good candidates for future work.

We begin with the initialization which proved to be an important step in the algorithm as
the initial conditions have a high impact on the capability of the templates to find proper
tones and their ability to separate them. A more educated guess is needed here which should
eliminate the random component completely as the results become unreliable because of the
variation introduced by it. Perhaps a clustering in the frequency domain according to some
spatial and temporal cues as well as a repetitiveness indicator could prove useful.

The Peak picking could also be more refined. It has big variations in the number of peaks let
through in every iteration. This may be caused by starting from zero in every iteration and
not using any information from the results of the former iterations. An analysis of how the
peaks have changed from the last iteration could give new insights in the behaviour of the

55

3. DIRECT TEMPLATE MATCHING

algorithm.

The iterative method of tone learning could also benefit from some improvements. The onset
vector and the tone waveform could be trained using different methods. Each method could
then be better tailored to the vector type it is adjusting. Furthermore, the simple implemen-
tation of Newton’s method could be extended to use more precise curvature information of
the error surface presumably achieving an even faster convergence.

Furthermore, the template offsetting approach which was not working as expected should be
more elaborated upon as it is believed to play an important role in separation performance
by allowing more flexibility at choosing the best part of a tone in order to represent it as a
tone waveform which is not given otherwise.

Another important problem which should be resolved in order to make the approach more
complete is that of organizing the individual tones into instruments. While separation may
work for tones only, without any higher semantic clustering we have a hard time evaluating
the separation quality because we are not used to listening to single tones occurring sporadi-
cally the audio signal. A solution for the problem would be some clustering according to the
harmonic structure and spatial cues as tones from the same instrument can be assumed to
have the same spatial parameters as sample-shift and magnitude difference between chan-
nels.

Generally, we could make more use of frequency domain representations in order to get
better results for tone searching as well as tone learning because in the frequency domain the
tones should be better decorrelated due to their typically high amount of harmonic content.

Lastly we shall note that it usually is also a good idea to analyze and make use of relationships
between tones at a higher level in order to minimize template matching errors by taking
harmonicity rules into account for example or by looking for repeating patterns in the musical
piece.

56

Chapter 4

Iterative Template Matching

4.1 Introduction

The first approach had some problems especially in finding plausible tone waveforms repre-
senting as much of the input signal as possible. So we thought of an approach similar to the
first one but allowing more freedom of choosing the tone waveforms by letting the loudness
weights of the steering vector self-organize themselves.

We will not discuss algorithms and problems which are in common with the first approach
but only reference to the corresponding subsection.

4.2 Overview

The first step in this method is the initialization of the steering vector and tone waveform
described on Page 58. As in the first approach we then have an iterative main algorithm
consisting of two steps. An overview of the main algorithm and the first step is given on
Page 58. In a separate subsection on Page 59 the second step which is learning step is de-
scribed in more detail.

As the learning step is rather detailed and contains several versions and expansions of its
algorithm a final algorithm subsection is presented on Page 72.

Finally we close the first approach with a summary and future work subsection on Page 75.

57

4. ITERATIVE TEMPLATE MATCHING

4.3 Initialization

The initialization plays a very important role in this algorithm, even more important than in
the first approach as it now influences the outcome systematically.

We have first tried a random initialization as usual. That is, the steering vector as well as
the tone waveform is assigned some Gaussian noise with small amplitude. More precisely,
the noise for the steering vector is generated by taking the absolute value of the generated
Gaussian noise with mean around zero. After initializing the tone waveform with noise
it is then normalized. Initializing this way leads to an outcome of the algorithm which is
probably less surprising some noise with small amplitude and amplitude shaped according
to the amplitude shape of the original signal. Not having any useful results we then tried
another initialization.

The second method initializes the tone waveform with an exact copy of the input signal
chosen at a position with relatively high energy and the steering vector with an one at that
position and zero elsewhere. The steering vector is then multiplied with the norm of the tone
waveform and finally the tone waveform is normalized to unity vector length. Choosing the
position was done by randomly picking two locations in the input signal and then choosing
the one with the higher energy content which was measured by simply taking the sum of
squares of each sample value.

Although this approach worked better we now observed a new phenomenon. The algorithm
tended not to change the tone waveform but rather to find a steering vector which could
reconstruct the input using the given tone waveform. Therefore the tone waveform remains
the one it was initialized with. This phenomenon now has two implications. First the ini-
tialization has to be rather accurate and second the learning algorithm has to be improved in
order to choose a better suiting tone waveform. Now due to time constraints on this work
both issues have been left to be elaborated upon for future work. As for now we use the
second method for initialization as it is.

4.4 Main Algorithm

This approach works iteratively, where each iteration is made up of two steps. The first
one is a synthesizing step where all steering vectors are convolved with the respective tone
waveforms as in Equation 3.3 in order to produce a reconstruction of the input signal x̂i. This
step resembles the tone search step of the first approach except that the tone onsets are not
explicitly searched for but are already encoded in the onset vector as a result of the learning
step which tries to minimize the reconstruction error using as few non-zero elements in the

58

Learning Step

steering vector as possible. This sparsity property of the steering vector is discussed more
thoroughly later in the learning step.

The second step is a learning step where the steering vector and the tone waveform are ad-
justed in order to minimize the reconstruction error. In order to calculate the reconstruction
error it needs the estimate of the input signal generated in the synthesizing step before.

The algorithm stops after a predetermined number of iterations. Other criterions may also be
applied as for example when the cost measure of the whole input signal falls below a given
threshold or when the decrease of that cost measure falls below a given threshold but the
first criterion gives greater control over the time span needed to terminate and thus the total
computational expense for a final separation.

In order to get the estimate for each tone in part we only need to convolve the steering vector
and tone waveform of the desired template and get an estimated input signal x̂i,k with

x̂i,k(n) = âi,k(n) ? ŝi,k(n) (4.1)

where only that tone is played. As in the first approach we cannot get an estimation of the
sound of the whole instrument as we do not yet have an algorithm to group the tones into
instruments, which is left for future work.

4.5 Learning Step

During the learning step the algorithm will adjust the steering vector as well as the tone
waveform which will be use used in the next synthesizing step iteration. We note that con-
trary to the first algorithm the steering vector is now reused in the next iteration and is subject
to iterative fine adjustment whereas the onset vector in the first approach was thrown away
after learning except when the last iteration was reached.

We use for the weight adaptation of the steering vector and tone waveform a gradient descent
algorithm as in the first template-based approach. In order to build the algorithm we first
have to define a cost function which in our case will consist of the reconstruction error as
Equation 3.33 in the first approach

Ce,i(n) =
1

2
‖xi − x̂i(n)‖2 (4.2)

plus an additional cost measure for non-zero steering vector elements as proposed in [38] in
order to keep the steering vector sparse

Cs,i(n) =
K∑

k=1

|âi,k(n)|
‖âi,k(n)‖

(4.3)

59

4. ITERATIVE TEMPLATE MATCHING

where | · | denotes the L1-norm of the vector and ‖ · ‖ the L2-norm. Finally the new cost
function becomes

Ci(n) = Ce,i(n) + β(n)Cs,i(n) (4.4)

where β(n) is a weighting term similar to the one described in [38]. This term should ensure a
balance between error minimization and sparseness maximization as the difference between
the values of both error functions may be very high, leading to different implicit weighting
during minimization if there would be no weighting term correcting this unbalance. Unsur-
prisingly the optimal value for β(n) is very dependent on the input signal characteristic and
thus has to be determined for each musical piece in part. A good rule of thumb is to choose
β(n) in the range

0 < β(n) <
1

4

Cs,i(n)

Ce,i(n)
(4.5)

as suggested in [38]. Note that the range defined in our work is dependent on the values
of the cost functions at the actual iteration and thus β(n) must be assigned a new value at
each iteration. Obviously the suggested range leaves a wide margin for picking the weight
parameter making a good guess a challenging task. More tightly defined ranges would make
guessing easier and could possibly improve the end result to a great extent which is left at
that point as a topic of future work. At the time being we choose

β(n) =
1

4

Cs,i(n)

Ce,i(n)
(4.6)

which seems to work well.

We need the new non-sparseness cost function which penalizes for non-zero elements in the
steering vector in order to obtain a vector with only few non-zero elements as in the first
approach. If we would not enforce sparseness a trivial solution to the reconstruction vector
x̂i would be possible. The algorithm could create a copy the original input signal in the
steering vector of one template and manipulate the respective tone waveform to contain an
one in the first position with the rest set to zero. If this steering vector is then convolved
with the tone waveform the reconstruction will be perfect assuming all other templates have
either a zero-filled steering vector or zero-filled tone waveform.

So in order to minimize both parts of the total cost function the algorithm will have to find
those tone onset positions where the tone waveforms will fit best or looking from another
point of view it will have those tone onset positions where the un-normalized correlation
between the input signal and the tone waveform is high. This should remind us a little of
the first approach where we searched for the onset positions with maximal correlation and
loudness among other things and that corresponds to the onset positions with maximal un-
normalized correlation.

60

Learning Step

To continue with the design of the algorithm we will now have to calculate the first partial
derivative of the cost function with respect to the steering vector âi,k,t and separately with
respect to the tone waveform ŝi,k,l in order to obtain the gradient information. Because we
want to minimize the cost function we will go in the direction of the negative gradient which
means we have to add the negative gradient to each parameter in part.

The main update equations are taken from the first approach

âi,k,t(n+ 1) = âi,k,t(n)− ηâ∆âi,k,t(n) (4.7)

and

ŝi,k,l(n+ 1) = ŝi,k,l(n)− ηŝ∆ŝi,k,l(n) (4.8)

where 0 < ηâ < 1 and 0 < ηŝ < 1 are learning parameters and ∆âi,k,t(n) and ∆ŝi,k,l(n) are
the gradients of the repsective parameters which are define by

∆âi,k,t(n) =
∂ Ci(n)

∂ âi,k,t(n)
(4.9)

and

∆ŝi,k,l(n) =
∂ Ci(n)

∂ ŝi,k,l(n)
(4.10)

New are the equations of the partial derivatives whose differences come from the fact that
we now use the steering vector without assuming it to be sparse. So without an associated
index set Ti,k which would show the non-zero values of the steering vector we cannot skip
the zero elements in that vector during differentiation. The partial derivative of the steering
vector also becomes different due to the new non-sparseness cost function resulting in

∂ Ci(n)

∂ âi,k,t(n)
=

T−t+1∑
l=1

(xi,t+l−1 − x̂i,t+l−1(n))
∂ (xi,t+l−1 − x̂i,t+l−1(n))

∂ âi,k,t(n)

+ β(n)

sgn (âi,k,t(n)) ‖âi,k(n)‖ − âi,k,t(n)
|âi,k(n)|
‖âi,k(n)‖

‖âi,k(n)‖2

 (4.11)

by applying the chainrule where sgn(·) denotes the signum function which is defined as

sgn(z) =

−1 z < 0

0 z = 0

1 z > 0

(4.12)

61

4. ITERATIVE TEMPLATE MATCHING

After solving the last partial derivatives and some simplifications we arrive to

∂ Ci(n)

∂ âi,k,t(n)
= −

D∑
l=1

(xi,t+l−1 − x̂i,t+l−1(n)) ŝi,k,l(n)

+ β(n)

(
sgn (âi,k,t(n))

‖âi,k(n)‖
− âi,k,t(n)

|âi,k(n)|
‖âi,k(n)‖3

)
(4.13)

However, now the time index t will not be chosen from an index set indicating the non-zero
values, but will sweep through the whole length of the input signal. Analogously for the
partial derivative of ŝi,k,l(n) we get

∂ Ci(n)

∂ ŝi,k,l(n)
=

T∑
t=1

(xi,t − x̂i,t(n))
∂ (xi,t − x̂i,t(n))

∂ ŝi,k,l(n)
(4.14)

by applying the chain rule and then after solving the last partial derivatives and some sim-
plifications we arrive to

∂ Ci(n)

∂ ŝi,k,l(n)
= −

T−l+1∑
t=1

(xi,t+l−1 − x̂i,t+l−1(n)) âi,k,t(n) (4.15)

where we should note the changed summation here which, compared to Equation 3.41, now
runs over the whole range of the steering vector.

Now the computational complexity for solving these equations has drastically changed for
the worse. The partial derivative for the steering vector uses a sum overD elements and must
be evaluated for each sample and of that vector the partial derivative for the tone waveform
uses a sum over T − l + 1 elements and must be evaluated over each of the D samples
of the waveform. This results in a complexity of O(TD) which means a too high compu-
tational burden for today’s personal computers as we already discussed in the Tone Search
subsection of the first approach. This complexity should look familiar as it was the same for
the simple correlation in the said subsection. The solution was found by making use of the
fact that correlation can be solved fast using the FFT which had a much lower complexity
of O(T log2 T). Now we can speed up the calculations of our partial derivatives the same
way. Using the definition of the reconstruction error ei given in Equation 1.4 and making
it a function of the iteration number n we can rewrite the partial derivative for the steering
vector in Equation 4.13 as a correlation in vector form plus the unchanged non-sparseness
cost function derivative

∂ Ci(n)

∂ âi,k(n)
= −ei(n)× ŝi,k(n) + β(n)

(
sgn (âi,k(n))

‖âi,k(n)‖
− âi,k(n)

|âi,k(n)|
‖âi,k(n)‖3

)
(4.16)

where the signum function applied to a vector results in a vector where the function is ap-
plied to each element in part. We can rewrite the partial derivative for the tone waveform in

62

Learning Step

Equation 4.15 in the same way resulting in

∂ Ci(n)

∂ ŝi,k(n)
= −ei(n)× âi,k(n) (4.17)

Now we can solve the correlations using the FFT as in the first approach making the calcula-
tions feasible again.

So after plugging the results for the partial derivatives into the update formulas which we
now have to rewrite in vector form, we finally get

âi,k(n+ 1) = âi,k(n) + ηâei(n)× ŝi,k(n)− ηâβ(n)

(
sgn (âi,k(n))

‖âi,k(n)‖
− âi,k(n)

|âi,k(n)|
‖âi,k(n)‖3

)
ŝi,k(n+ 1) = ŝi,k(n) + ηŝei(n)× âi,k(n) (4.18)

We shall observe here that the update may cause some elements of the steering vector to
become negative. As negative values have no physical meaning as was already pointed out
in the tone search subsection in the first approach we simply set all negative elements to
zero after every update. As this condition occurs fairly often we get the nice side-effect of
enhancing sparseness in the steering vector at no additional cost.

After implementing the above formulas we learned that the gradient descent algorithm de-
scribed here is highly unstable. In order to avoid divergence we had to keep the learning
rate parameters ηâ and ηŝ at very low values resulting in a painfully slow error decay. The
unstable behaviour might be explained partly by the vast amount of free variables which are
adjusted during every iteration. More precisely there areK(T +D) variables which depend-
ing on the length of the input signal and the number of templates may be in the range of some
ten to hundreds of millions. The assumption of the gradient descent method that whenever
adjusting one parameter all others are constant has now come to be a very rough approxi-
mation of the real circumstances. This is then the reason why the learning rate parameters
have to kept that small as the assumption holds only in that case because the changes in the
variables are then forces to be small making the variables behave almost like constants.

The slow speed and the inherent instability made us search for improvements. So we tried
the extensions already described in the Tone Learning subsection of the first approach like
momentum, Super-SAB and Newton’s method, where none of them worked as expected.
Especially Super-SAB and Newton’s method were slow due to the divergent behaviour of the
algorithm which made Super-SAB back up very often and decreasing the individual learning
rates too much and Newton’s method needing more refinement iterations in order to find a
good common learning rate.

This led us to an algorithm coming from the neural network domain called resilient back
propagation (RPROP) as described in [30]. This algorithm may be viewed as an extension to
Super-SAB as it very similar to it.

63

4. ITERATIVE TEMPLATE MATCHING

In the RPROP algorithm the error surface is assumed to be very rough having plateaus and
steep descents. So if we reach a plateau we need to increase our steps to traverse it more
quickly and if we reach a steep descent we have to decrease our steps in order to not miss
a minimum. Up to this part Super-SAB is based on the same idea. Now here comes the
difference in RPROP. Super-SAB manipulates the learning step size but if we do that we
will still not be in full control of our step length in the direction pointed by the gradient
as the gradient magnitude also changes. For example if we reach a steep part of the error
surface our gradient magnitude may become 10 times higher as before while our learning
rate decrease constant is usually set to divide the learning rate by two although in order to
not overshoot it should divide by 20 in this case. So in conclusion we may overshoot our
target position by a large amount and possibly have to increase learning rate again to come
back thus having to perform some additional steps which might be unnecessary. This is the
part where RPROP improves speed. It throws away the gradient magnitude and uses only its
sign giving full control of the step length on the error surface. It does not use learning rates
but uses an estimated gradient which is made up of an estimated magnitude and the sign of
the actual gradient. Now the estimated magnitude is changed similarly to the learning rate
of Super-SAB. If the gradient sign does not change between two iterations then the estimated
gradient magnitude is increased by a multiplicative constant η+ and if it changes then the
magnitude is decreased by η− and the update in the former equation is undone. We have
chosen η+ and η− to be 1.1 and 1/2 respectively whereby η+ is kept smaller than in the first
approach because of the inherent instability of the equation system.

Now the RPROP algorithm works as follows:

• if this is the first iteration of the main algorithm

– initialize ∆̂âi,k,t(0) and ∆̂ŝi,k,l(0) with zero.

• calculate the partial derivative for âi,k(n) according to Equation 4.16 and ŝi,k(n) accord-
ing to Equation 4.17.

• do for each time index t

– if
∂ Ci(n)

∂ âi,k,t(n)

∂ Ci(n− 1)

∂ âi,k,t(n− 1)
> 0 (4.19)

update âi,k,t

âi,k,t(n+ 1) = âi,k,t(n)− sgn (∆âi,k,t(n)) ∆̂âi,k,t(n) (4.20)

and increase the estimated gradient of âi,k,t

∆̂âi,k,t(n+ 1) = η+∆̂âi,k,t(n) (4.21)

64

Learning Step

– if
∂ Ci(n)

∂ âi,k,t(n)

∂ Ci(n− 1)

∂ âi,k,t(n− 1)
< 0 (4.22)

restore âi,k,t

âi,k,t(n+ 1) = âi,k,t(n− 1) (4.23)

decrease the estimated gradient of âi,k,t

∆̂âi,k,t(n+ 1) = η−∆̂âi,k,t(n) (4.24)

and set
∂ Ci(n)

∂ âi,k,t(n)
= 0 to avoid decreasing the gradient once more

• do for each sample l

– if
∂ Ci(n)

∂ ŝi,k,l(n)

∂ Ci(n− 1)

∂ ŝi,k,l(n− 1)
> 0 (4.25)

update ŝi,k,l

ŝi,k,l(n+ 1) = ŝi,k,l(n)− sgn (∆ŝi,k,l(n)) ∆̂ŝi,k,l(n) (4.26)

and increase the estimated gradient of ŝi,k,l

∆̂ŝi,k,l(n+ 1) = η+∆̂ŝi,k,l(n) (4.27)

– if
∂ Ci(n)

∂ ŝi,k,l(n)

∂ Ci(n− 1)

∂ ŝi,k,l(n− 1)
< 0 (4.28)

restore ŝi,k,l

âi,k,l(n+ 1) = ŝi,k,l(n− 1) (4.29)

decrease the estimated gradient of ŝi,k,l

∆̂ŝi,k,l(n+ 1) = η−∆̂ŝi,k,l(n) (4.30)

and set
∂ Ci(n)

∂ ŝi,k,l(n)
= 0 to avoid decreasing the gradient once more

This algorithm seems to work very well and is also stable. But like Super-SAB in the first
approach it has the problem of introducing noise in the tone waveform due to the different
adaptation speed of each sample. This might be solved by updating the tone waveform with
another algorithm which keeps one learning rate for all samples but as already mentioned
the other methods were much slower and thus were not a real option.

During preliminary testing we also discovered another problem. As musical pieces usually
consist of millions of samples the steering vector also consists of that many loudness weights.

65

4. ITERATIVE TEMPLATE MATCHING

Now considering that relatively many templates have to be used the memory consumption
grows to critical levels for common personal computer as of 2007 as all weights from all
templates, their estimated deltas and their former and actual partial derivatives have to be
held in memory. Here we can give as a small example a monaural song 3:20 minutes long,
sampled at 44.1kHz which has 8 820 000 samples. As we save all our parameters in floating
point numbers each needing 4 bytes of memory space we need 141.120 MBytes of memory to
store just one template representing one single tone. We would consume 1.41 GByte by just
having 10 templates and 14.1 GByte for 100 templates which would be a more realistic count.
For longer songs possibly recorded in stereo we would need even more space.

A solution to the memory problem could be to split one main iteration into subiterations
for each template. This means that each template would be updated for a fixed number of
subiterations alone. The other templates could be temporarily swapped to the more spacious
hard-disk leaving us with just one template in memory at a time. Knowing that the other tem-
plates will remain constant during the subiterations we can calculate the reconstructed signal
x̂i(n) once and update it with whenever the actual template is updated in the subiteration.

We have not implemented this solution yet so we cannot say anything about how the quality
of the result would be affected by this strategy as the proposed update is not equivalent to
the joint optimization that we have considered until now. But it may be an interesting topic
for future work.

4.6 Fine Tuning

We already discussed some problems of the main algorithm including its major steps and
provided some suggestions on how to solve them. The algorithm will work that way but
quality can be further improved. Therefore we will show some thoughts in this subsection
which can usually be quickly implemented and result in an output with better quality.

Non-Sparseness Cost Function

We took the cost function suggested in [38] for the learning step. Unfortunately we had to
learn that although it works it has some major problems, mostly of theoretical nature.

Cs,i(n) =
K∑

k=1

|âi,k(n)|
‖âi,k(n)‖

(4.31)

The first problem is that the global minimum of the cost function is not situated at zero but at
one as the maximally sparse vector has just one non-zero element and in this case the L1 and

66

Fine Tuning

the L2 norm are equal. This comes in contrast to the reconstruction error part of the total cost
function whose minimum is obviously situated at zero (see the trivial example described at
the beginning of the learning step subsection on Page 60). This offset by one caused by each
template can sum up depending on how many templates are used. It may be less of concern
considering that the ones will vanish during differentiation but it may have an averse effect
on the weighting parameter β(n) especially when the reconstruction error approaches zero.
An obvious solution here is to subtract the ones from the cost function resulting in

Cs,i(n) =
K∑

k=1

|âi,k(n)|
‖âi,k(n)‖

−K (4.32)

With this out of the way we can examine the more interesting aspects of the cost function.
As we know from Equation 4.13 the derivative of Cs,i(n) results in the use of the signum
function

∂ Ci(n)

∂ âi,k,t(n)
= −

D∑
l=1

(xi,t+l−1 − x̂i,t+l−1(n)) ŝi,k,l(n) (4.33)

+ β(n)

(
sgn (âi,k,t(n))

‖âi,k(n)‖
− âi,k,t(n)

|âi,k(n)|
‖âi,k(n)‖3

)

The problem that arises here is that the signum function is not continuous around zero. This
leads to an abrupt change in the gradient for an element of the steering vector whenever it
reaches zero or is set to zero because it became negative during the former iteration. As we
know abrupt changes are not good in gradient descent algorithms even if the step size is con-
trolled by RPROP as they are often not plausible. For example an element reaching zero will
have a more or less constant gradient coming from the non-sparseness cost function consist-
ing of −1/ ‖âi,k(n)‖ while the âi,k,t(n) |âi,k(n)| / ‖âi,k(n)‖3 term reaches zero as expected.
Now we would expect the first term to also slowly tend to zero in order to allow some fine
adjustments to be done coming from the reconstruction error cost function. We might note
here that the said term might be low in practice as the vector norm of âi,k is not normalized
unlike the tone waveform. A possible solution here could be the use of the L2-norm now
denoted by ‖ · ‖2 together with the L3-norm denoted by ‖ · ‖3 resulting in a non-sparseness
cost function

Cs,i(n) =
K∑

k=1

‖âi,k(n)‖2

‖âi,k(n)‖3

−K (4.34)

67

4. ITERATIVE TEMPLATE MATCHING

Now taking the partial derivative for the steering vector elements we get

∂ Ci(n)

∂ âi,k,t(n)
=

T−t+1∑
l=1

(xi,t+l−1 − x̂i,t+l−1(n))
∂ (xi,t+l−1 − x̂i,t+l−1(n))

∂ âi,k,t(n)

+ β(n)

 âi,k,t(n)
‖âi,k(n)‖

3

‖âi,k(n)‖
2

− â2
i,k,t(n)

‖âi,k(n)‖
2

‖âi,k(n)‖2

3

‖âi,k(n)‖2
3

 (4.35)

by applying the chain rule. After solving the last partial derivatives, some simplifications
and reformulating in vector notation we arrive to

∂ Ci(n)

∂ âi,k,t(n)
= −ei(n)× ŝi,k(n)

+ β(n)

(
âi,k,t(n)

‖âi,k(n)‖2 ‖âi,k(n)‖3

− â2
i,k,t(n)

‖âi,k(n)‖2

‖âi,k(n)‖4
3

)
(4.36)

The update formula in our vector notation using correlation then becomes

âi,k(n+ 1) = âi,k(n) + ηâei(n)× ŝi,k(n)

− ηâβ(n)

(
âi,k(n)

‖âi,k(n)‖2 ‖âi,k(n)‖3

− â2
i,k(n)

‖âi,k(n)‖2

‖âi,k(n)‖4
3

)
(4.37)

Analyzing the partial derivative we now see that indeed the gradient generated by the non-
sparseness cost function becomes continuously smaller when a steering vector element is
about to reach zero. The modifications needed to use RPROP with the above equation should
be straightforward.

At this point it should be mentioned that there also are some other cost functions out there
in literature as for example log

(
1 + â2

i,k,t(n)
)

presented in [23] whereby this function should
be normalized in order to exclude the trivial solution of setting all âi,k,t to zero. This would
result in

Cs,i(n) =
K∑

k=1

T∑
t=1

log
(
1 + â2

i,k,t(n)
)

‖âi,k(n)‖
(4.38)

and the partial derivative of the total cost function would be

∂ Ci(n)

∂ âi,k,t(n)
= −

D∑
l=1

(xi,t+l−1 − x̂i,t+l−1(n)) ŝi,k,l(n) (4.39)

+ β(n)âi,k,t(n)

(
2

‖âi,k(n)‖
(
1 + â2

i,k,t(n)
) − log

(
1 + â2

i,k,t(n)
)

‖âi,k(n)‖3

)
Obviously the derivative is continuous near zero which is an argument speaking for it but
as we did not try it out we can hardly further comment on it. So we leave it as part of

68

Fine Tuning

future work to investigate more kinds of non-sparseness cost functions and their effects on
the quality of the separation.

After providing these minor corrections to the non-sparseness cost function we remain with
another objectionable flaw. The cost function reaches its global minimum if the steering vec-
tor achieves maximal sparseness. This is the case when all but one element in the vector has
a non-zero value. Now in order to be precise we have to say that this is not really our aim
as we want the steering vector to contain exactly as many non-zero elements as there are
tone occurrences in the input signal and not any fewer. So it is possible that by minimizing
the cost function we will miss the optimum which is not what we intended. Unfortunately,
we do not know any solution to this as any improvement method would require knowledge
about the number of occurrences to expect, which poses a difficult problem as it can at best
be estimated. On the other hand if we already knew the number of tone occurrences we
probably would not need this algorithm as it may be more efficient to search for the tones
explicitly like in the first approach and not let the algorithm self-organize. But to our relief
we saw in our preliminary tests that this problem will not be of much concern as the vector
sparseness remains usually low and thus we do not even reach the part where we may have
too few non-zero elements in the vector.

Lateral Inhibition

The discussion about the non-sparseness cost function was about the number of non-zero el-
ements in the steering vector until now. But nothing was said on how they might be spatially
distributed. We have nothing to gain if all non-zero elements would be situated one after the
other without any zero elements in between. We want the non-zero elements as they rep-
resent onsets to be placed where onsets are most probably in a musical signal. This means
that there must be at least some minimum time interval between the onsets representing the
duration of the shortest note played in the musical piece. Other constraints would be that
these onsets may be more probable at some specific locations derived from the metrum of the
song. We will focus here on the minimum distance problem leaving the study of the other
constraints as an issue for future work.

So in order to keep a minimum distance between the non-zero elements we thought about
introducing some kind of lateral inhibition connections. They should cause that only the
element with the highest positive value will remain active and the others be pushed towards
zero by it. This idea is based on concepts of artificial neural networks which were copied
from real structures of neural networks found in brains. In the nervous system the lateral
inhibition weights are intended to remove noise by suppressing activity of weakly excited
neurons and letting only the strongly excited ones fire. In our separation algorithm we can

69

4. ITERATIVE TEMPLATE MATCHING

also consider the weak onset weights in the steering vector to be noise if there is a strong
weight nearby.

Another possible point of view of what lateral inhibition does can be that of sharpening
signals like images. Sharpening means here, enhancing the contrast between neighbouring
samples. And that is what lateral inhibition is intended to do. It maximizes the difference
between neighbouring weights by suppressing the weak ones thus making the difference to
the strong ones bigger.

Now after we got to the idea on what the lateral inhibition connections are supposed to do
we can move on to a more formal definition. For that we will change the gradient of the
elements of the steering vector to simply subtract the sum of neighbouring elements

∆âi,k,t(n) =
∂ Ci(n)

∂ âi,k,t(n)
+ γ(n)

θo∑
o=−θo,o6=0

âi,k,t+o(n) (4.40)

where θo ∈ N is the range parameter measured in samples and γ(n) is a weighting coefficient
for striking a balance between the inhibition term and the partial derivative in the gradient.

Analyzing the above equation we see that the sum will be zero for an element if all its sur-
rounding elements are zero. The weighting coefficient now plays the role of not letting the
inhibition term get as big as to annihilate the promising strong elements. This coefficient is
important for the lateral inhibition to work correctly. Unfortunately as we did not have time
to investigate on the initialization of this coefficient we simply set it by trial and error.

As we saw in literature it is also possible to express the lateral inhibition in a more elegant
way. We saw that the lateral inhibition is a result of trying to minimize the autocorrela-
tion function of the steering vector. Minimizing the autocorrelation can be done by simple
gradient descent which means partially differentiating it by every variable that needs to be
updated. The result of the differentiation is then lateral inhibition already discussed. So in
conclusion we can extend the non-sparseness cost function with the autocorrelation of the
steering vector

Cs,i(n) =
K∑

k=1

‖âi,k(n)‖2

‖âi,k(n)‖3

−K + γ(n)
1

2

K∑
k=1

T∑
t=1

θo∑
o=−θo,o6=0

âi,k,t(n)âi,k,t+o(n) (4.41)

and after a small rearrangement

Cs,i(n) =
K∑

k=1

(
‖âi,k(n)‖2

‖âi,k(n)‖3

+ γ(n)
1

2

T∑
t=1

θo∑
o=−θo,o6=0

âi,k,t(n)âi,k,t+o(n)

)
−K (4.42)

The scaling term of 1/2 is used to simplify differentiation. Note that the autocorrelation is
not done for the entire signal but on a sliding window basis with window size 2θo because

70

Fine Tuning

we want to restrict lateral inhibition to a plausible range of time instead of having it over the
entire signal.

After defining the cost function we can differentiate the total cost function arriving to

∂ Ci(n)

∂ âi,k,t(n)
= −

D∑
l=1

(xi,t+l−1 − x̂i,t+l−1(n)) ŝi,k,l(n)

+ β(n)

(
âi,k,t(n)

‖âi,k(n)‖2 ‖âi,k(n)‖3

− â2
i,k,t(n)

‖âi,k(n)‖2

‖âi,k(n)‖4
3

)

+ γ(n)
θo∑

o=−θo,o6=0

âi,k,t+o(n) (4.43)

If we want to use our vector notation we first have to introduce a new lateral inhibition
weight function h(z) defined as

h(z) =

1 z 6= 0, |z| ≤ θo

0 z = 0

0 |z| > θo

(4.44)

which can be evaluated to the weight vector

h = [h(−θo), h(−θo + 1), ..., h(−1), h(0), h(1), ..., h(θo)]
T (4.45)

We will use this weight function in the final formula to introduce a new correlation which
can be solved fast by the FFT

âi,k(n+ 1) = âi,k(n) + ηâei(n)× ŝi,k(n)

− ηâβ(n)

(
âi,k(n)

‖âi,k(n)‖2 ‖âi,k(n)‖3

− â2
i,k(n)

‖âi,k(n)‖2

‖âi,k(n)‖4
3

)
− ηâγ(n)âi,k(n)× h (4.46)

where the last correlation has to match the offset anchor of the weight vector which is not at
the beginning but in the middle where the element h(0) relies.

As we saw there is some fine tuning possible to this weight function h(z). For example we
could give the elements of the steering vector nearer to the element whose inhibition value
is calculated some higher weights than those farther away. This approach should lead to a
smoother transition at the end of window. One possibility would be for example some linear
increase from the ends of the window towards the centre where the centre sample remains
zero or a Gaussian function with zero centre.

Now as we tested the lateral inhibition a little we did not see much improvement if any in
the structure of the steering vector. This may be caused by the fact that the steering vector

71

4. ITERATIVE TEMPLATE MATCHING

does not really get as sparse as we would expect it to be. We did not investigate the lateral
inhibition further due to lack of time so we decided to drop it despite the efforts we put into
this approach. Still we are confident that this fine tuning method would benefit the quality of
the separation result due to the reason described earlier that the global non-sparseness cost
function does not take spatial arrangement constraints into account. Perhaps this issue will
be resolved at some time in future work.

Phase Matching

This algorithm exhibits the same phase matching problems like the first template-based ap-
proach. We described this issue in detail in the corresponding phase matching subsection on
Page 48f in the first approach. But this time we are left with just one option.

As the algorithm does not search explicitly for the templates but does a self-organized search
by the steering vector we cannot do the phase matching by iteratively fine adjusting every
candidate match. So we have to resort to up- and downsampling the input signal.

Now as we know we already have limited memory resources so upsampling will aggravate
this problem even more. Unfortunately there is nothing we can do about it as we have no
other way but to store the steering vector weights in an “upsampled” steering vector. The
stability problem also gets worse as the upsampling will introduce new weights in the steer-
ing vector as it gets larger thus giving the algorithm even more free parameters which have to
be adjusts simultaneously. But as we tried it out we saw that the upsampling helped quality
considerably so we opted to choose fewer templates in order to preserve memory and save
time, which seemed a good compromise to us.

4.7 Final Algorithm

As for some steps we discussed several possibilities to be solved resulting in more than one
version of the step and some improvements were taken out from the final algorithm because
of problems encounters we thought we should include a complete final version of the algo-
rithm which will be composed of only those steps and their improvements which actually
worked.

• upsample the input signal xi by an upsampling factor of θu with a Lanczos filter of
order θl. Rescale the affected template parameters to fit the new sample frequency.

• do for each template k

– pick randomly two positions in the input signal t0, t1

72

Final Algorithm

– choose the position with its highest associated loudness λt measured as

λt =
D∑

l=1

x2
i,t+l (4.47)

where t = t0 or t = t1.

– copy the part from the original signal at that position into the tone vector ŝi,k ini-
tialize the steering vector âi,k at that position with one and the rest of it with zeros.

– divide âi,k by the vector norm of the tone vector

– normalize the tone vector to unity vector norm.

• do iteratively until maximum number of iterations reached

– calculate the reconstruction

x̂i =
K∑

k=1

âi,k ? ŝi,k (4.48)

– calculate β(n) as being

β(n) =
‖xi − x̂i(n)‖2

8
K∑

k=1

‖âi,k(n)‖2

‖âi,k(n)‖3

−K

(4.49)

– do for each template k

∗ if this is the first iteration of the main algorithm

· initialize ∆̂âi,k,t(0) and ∆̂ŝi,k,l(0) with zero.

∗ calculate the partial derivative for âi,k(n) according to Equation 4.36 and ŝi,k(n)

according to Equation 4.17.

∗ do for each time index t

· if
∂ Ci(n)

∂ âi,k,t(n)

∂ Ci(n− 1)

∂ âi,k,t(n− 1)
> 0 (4.50)

update âi,k,t

âi,k,t(n+ 1) = âi,k,t(n)− sgn (∆âi,k,t(n)) ∆̂âi,k,t(n) (4.51)

and increase the estimated gradient of âi,k,t

∆̂âi,k,t(n+ 1) = η+∆̂âi,k,t(n) (4.52)

73

4. ITERATIVE TEMPLATE MATCHING

· if
∂ Ci(n)

∂ âi,k,t(n)

∂ Ci(n− 1)

∂ âi,k,t(n− 1)
< 0 (4.53)

restore âi,k,t

âi,k,t(n+ 1) = âi,k,t(n− 1) (4.54)

decrease the estimated gradient of âi,k,t

∆̂âi,k,t(n+ 1) = η−∆̂âi,k,t(n) (4.55)

and set
∂ Ci(n)

∂ âi,k,t(n)
= 0 to avoid decreasing the gradient once more

∗ do for each sample l

· if
∂ Ci(n)

∂ ŝi,k,l(n)

∂ Ci(n− 1)

∂ ŝi,k,l(n− 1)
> 0 (4.56)

update ŝi,k,l

ŝi,k,l(n+ 1) = ŝi,k,l(n)− sgn (∆ŝi,k,l(n)) ∆̂ŝi,k,l(n) (4.57)

and increase the estimated gradient of ŝi,k,l

∆̂ŝi,k,l(n+ 1) = η+∆̂ŝi,k,l(n) (4.58)

· if
∂ Ci(n)

∂ ŝi,k,l(n)

∂ Ci(n− 1)

∂ ŝi,k,l(n− 1)
< 0 (4.59)

restore ŝi,k,l

âi,k,l(n+ 1) = ŝi,k,l(n− 1) (4.60)

decrease the estimated gradient of ŝi,k,l

∆̂ŝi,k,l(n+ 1) = η−∆̂ŝi,k,l(n) (4.61)

and set
∂ Ci(n)

∂ ŝi,k,l(n)
= 0 to avoid decreasing the gradient once more

• downsample the templates by a factor of θu to match the sample rate of original input
signal.

74

Summary and Future Work

4.8 Summary and Future Work

As the first template-based approach had problems finding plausible tone waveforms due
to its explicit search for onsets, we developed and presented an alternative approach which
uses self-organizing steering vectors to ameliorate that problem. We have begun with its
initialization procedure which copies randomly picked slices from the input signal into the
tone waveforms of the templates and sets the weights in each associated steering vector to
match the location of the corresponding slice.

The main algorithm was introduced as being an iterative approach consisting of two steps.
The first one was the synthesizing step where the signal is reconstructed by a sum of con-
volutions of the steering vectors with their corresponding tone waveforms. The tone onsets
were not being searched after explicitly as in the first approach this time because they were
already encoded in the steering vector.

The learning step following the synthesizing stage adjusts the tone waveforms and the steer-
ing vectors by a gradient descent method. For that method we introduced a new non-
sparseness cost function which should force the algorithm to use few tone onsets in order
to reconstruct the input signal, and which should avoid trivial solutions like copying the in-
put signal into the steering vectors. As the algorithm proved very unstable due to its many
free parameters and thus converged only slowly even when using the extension discussed
in the first template-based approach, we decided to improve the method with RPROP which
eliminates the impact of the gradient magnitude by estimating the gradient directly. We then
found a memory space problem due to the large amount of data which has to be stored si-
multaneously, as the steering vector is not sparse anymore and thus cannot be compressed
by just indexing it. The problem remained unresolved but we suggested the usage of refine-
ment steps where each template is optimized separately during an iteration thus making it
possible to temporarily swap the other templates to the hard disk, freeing up memory.

We also showed some fine tuning methods which are expected to improve the algorithms
quality. At first we discussed the non-sparseness cost function and its problems. One of them
is that its optimum is not at zero, which distorts the true ratio of the reconstruction error to the
non-sparseness cost. The ratio is used for calculating a weighting term keeping the ratio fixed
in order to string a balance between both cost functions. The solution to this problem was
simple as one only needs to subtract the number of templates from the non-sparseness cost
function. Another problem was the discontinuity of its derivative around zero which may
be a cause of the instability of the total algorithm. A new non-sparseness cost function was
proposed to eliminate that problem. The last problem of that function was that its optimum
is found when the steering vector is maximally sparse which is the case whenever this vector
is made up of a single non-zero element and all others being zero. Obviously, this does

75

4. ITERATIVE TEMPLATE MATCHING

not correspond to the desired minimum as we want the vector to contain as many non-zero
elements as there are real onsets of the corresponding tone waveform. We could not come
up with a solution to this problem as it would require knowledge about the number of real
onsets.

Another fine tuning method we presented was the lateral inhibition which should assure
that the non-zero elements of the steering vector keep a minimum distance to each other. The
lateral inhibition was accomplished by negative feedback from the elements in a predefined
neighbourhood each vector element. We presented an elegant way of adding the lateral inhi-
bition in form of an autocorrelation term in the non-sparseness cost function thus conceptu-
ally simplifying the derivation of the update formulas for the steering vector. Unfortunately
as this fine tuning method did not work as expected we had to drop it.

We also discussed phase matching which was first introduced in the first approach. This
time only we had no per-onset fine tuning option and thus had to take the input signal and
template upsampling approach in order to obtain the higher template matching precision.
Unfortunately, this aggravates the memory space problem we already mentioned, due to the
increased amount of data.

Though we invested some considerable amount of time in the development of this approach
it still has much room for improvement. We begin with the initialization procedure which like
in the first template-based approach has a random component which should be substituted
by some more elaborate deterministic method. Then, we want to mention the calculation
of the weighting parameter keeping the two cost functions in balance. This parameter is
actually set to make the non-sparseness cost a fourth of the reconstruction error cost. The
parameter is important because unbalance of the cost functions will either yield to an almost
trivial solution using too many onsets but estimating the input signal very well or it will
make the algorithm adjust the templates to represent one slice of the input signal perfectly
leading to a maximally sparse vector. So a better estimation of the parameter is expected to
greatly improve the separation quality. As the optimal value depends on the structure of the
musical piece some data mining using a large set of songs might reveal some rules for better
estimation of this parameter.

We already suggested a solution for the memory problem. It remains to be tested how con-
vergence and separation quality is affected by the proposed method using subiterations.

Most work is left to be done in the fine tuning of the algorithm. The non-sparseness cost
function is very far from optimal and we believe that it is possible to find a better one. The
cost function should ideally indicate how far the steering vector is from the real onset vector.
More precisely, the cost function should be built on an estimate of the number of real onsets
for each steering vector. Currently this number is always estimated to be one. Then the func-

76

Summary and Future Work

tion should also be able to favour configurations of locations of the non-zero elements which
are more probable given some background knowledge on where these onsets are usually sit-
uated. For example, the onsets should be synchronized with the metrum of the song which
means that they may only lie near some points of a raster derived from that metrum.

Lateral inhibition might constitute a solution, or part of a solution, for the improved non-
sparseness cost function. It needs some improvements over the method described in this
work as it did not lead to a perceivable enhancement of the separation quality. The lateral
inhibition has to be designed so as to not kill the strongest weight in presence of only small
surrounding weights in the steering vector, but at the same time suppress weak weights.
One improvement was already suggested and that is optimizing the weights of the lateral
inhibition weight function, but also other improvements are possible.

Some other improvements could be the inclusion of stereo cues into the non-sparseness cost
function in order to better estimate the probable locations of the onsets. This could be done
by lateral excitations weights situated between the channels for example.

One last improvement we have thought of would be the exact calculation of the tone wave-
form. With a given steering vector we can calculate its corresponding tone waveform by de-
convolution which can be done fast by means of the FFT. This exact calculation would prob-
ably ameliorate the problem we have observed that the tone waveform is hardly changed by
the algorithm with the steering vector being the one which is primarily adapted.

Summing up there is much work left to do for this algorithm. But we believe that it has
potential as there are many possibilities left for what subalgorithms to incorporate.

77

Chapter 5

Blind Source Separation Approach

5.1 Motivation

After building the two template-based algorithms we realized that their assumption of re-
peating tones was somehow restrictive as they do not perform very well on classic or live
recorded music. In order to overcome this restriction we decided to seek another substan-
tially different way to separate instruments.

We thought about making an algorithm which is biologically more plausible and decided
therefore to focus more on stereo cues as the human auditory system also relies on them for
separating sounds. Humans and presumably also other animals are even capable of distin-
guishing sounds they have never heard before which means that much of the information
needed to segregate audio sources must lie in the available stereo cues and in the structure of
the sources themselves. We also know that the ear is doing a frequency analysis which means
we basically hear frequencies and not amplitudes of some small time slices as it is the case
in our former approaches where only the tone waveforms were considered. In the frequency
domain the signals are better decorrelated and harmonic tones can be detected more easily
due to their typical patterns they generate in the spectrum, which should facilitate our quest
of separating musical sound sources which are usually harmonic.

So after some literature work we came across the work of Master [20] and of Yilmaz and
Rickard [40] where sources are separated mainly by stereo cues. We decided to build upon
their works as they described exactly what we intended to do. So basically the outcome is
now a mixture of their works with some improvements where the idea of the main algorithm
is taken from [40] and some features taken from [20].

79

5. BLIND SOURCE SEPARATION APPROACH

5.2 Overview

We first introduce the concept of the two dimensional magnitude-phase-frequency histogram
in Section 5.4 showing the magnitude and phase differences between two channels at differ-
ent frequencies. Based on the assumption that every instrument has its own spatial location
meaning that every instrument has an magnitude ratio and time shift of its own, we develop
an algorithm in Section 5.5 which clusters this histogram in order to find accumulations of
those differences, and uses this information to separate the instruments in the frequency do-
main.

Some fine tuning possibilities are then discussed in Section 5.6. Here we focus specifically on
how long to choose the FFT window size and how many overlaps to use in order to improve
separation quality and suppress musical noise artifacts.

Finally a summary is given and some possibilities for future work are discussed in Section 5.8.

5.3 Problem Reformulation

We will base the problem formulation here on Section 1.2 where the basics were described.
Our goal is now to separate the waveforms of the instruments from a musical piece in such a
way that they match the real instruments which were played as closely as possible. We will
do the separation in the frequency domain because the frequency analysis already does some
separation work by decorrelating the signals. The individual frequencies in the spectrum
usually originate from one single instrument with some small interference, with some excep-
tions where the frequencies may overlap, thus we now need only to assign these frequencies
to their corresponding instruments.

The frequency picking is usually done via time-frequency masking where a binary mask
is created for each instrument which ideally selects only those frequencies in the spectrum
where the target instrument has most of the energy. The search for a good mask is now what
our algorithm will have to perform.

Moving to more concrete terms we apply an overlapped windowing on the input signal xi

with window length θw ∈ N and 0 < θr < 1 overlap resulting in

W =

⌈
T

θw (1− θr)

⌉
(5.1)

windows. As the windows may need samples from the input signal after time T , we extend
the signal with zeroes in order to be able to generate all windows. Afterwards we multiply

80

Magnitude-Shift-Frequency Histogram

the content of each window with Hanning-type weights resulting in

xi,w,tw = sin

(
π (tw − 1)

θw

)
xi,t+θww(1− 1

θr
)+tw−1 (5.2)

where tw is the time index for the window which ranges from 1 to θw, and xi,w,tw is the
windowed and weighted input signal, and w is the index of the window with 1 ≤ w ≤ W .

Now denoting the frequency transformation as F (xi,w) and the resulting complex spectrum
vector Xi,w we get

Xi,w = F (xi,w) (5.3)

The magnitude of an element of the spectrum is denoted |Xi,w,fθ
|where the index fθ denotes

the frequency bin with 1 ≤ fθ ≤ θw/2. The frequency of each bin f can be calculated as

f = fθ
F

θw

(5.4)

where F is the sampling frequency. Furthermore we denote the phase as ∠ (Xi,w,fθ
) which

we measure in radians. As the numbers are complex we denote the real part as < (Xi,w,fθ
)

and imaginary part as = (Xi,w,fθ
).

5.4 Magnitude-Shift-Frequency Histogram

In order to detect the locations of the various instruments we make use of a histogram show-
ing the relationship between inter-channel magnitude ratio and time shift at different fre-
quencies. We note that these two parameters which represent stereo cues correspond roughly
to the interaural intensity difference (IID) and the interaural time delay (ITD). This is no one
to one correspondence as the IID is a difference while the magnitude ratio is obviously not.

We begin first with the simpler version of the histogram which shows only the magnitude
ratio and time shift which resembles the magnitude-shift histogram of Yilmaz and Rickard
in [40]. Our histogram uses on the x-axis the magnitude phase

∠ (|X1,w,fθ
| , |X2,w,fθ

|) = arctan
|X1,w,fθ

|
|X2,w,fθ

|
(5.5)

resulting from the ratio of the magnitudes of the two channels where the magnitude phase
values remain in the range of [0, ..., π/2] because magnitudes are always positive. We de-
cided to use the angular notation because this way we can represent all ratios as big as they
may be within the boundaries of our histogram range. If we would use the ratios directly
we would always have some points lying outside the boundaries of the histogram no matter
how large they are, as the ratio may theoretically assume values up to infinity. Another rea-
son we use the magnitude phase is that it is hard to properly visualize a ratio as half of the

81

5. BLIND SOURCE SEPARATION APPROACH

values are in the range of [0, ..., 1] and the other half in (1, ...,∞]. By converting the ratios
to radians we obtain a range of [0, ..., π/4] and (π/4, ..., π/2] respectively which results in an
evenly distributed plot.

The y-axis shows the time shift δfθ
(∠ (X1,w,fθ

),∠(X2,w,fθ
)) which is calculated from the cir-

cular phase difference ∆ (∠ (X1,w,fθ
),∠(X2,w,fθ

))

δfθ
(∠ (X1,w,fθ

),∠(X2,w,fθ
)) =

∆ (∠ (X1,w,fθ
),∠(X2,w,fθ

)) θw

2πfθ

(5.6)

where ∆(·) is the circular difference operator. Circular means here that the difference wraps
around π and −π due to the periodic nature of phases.

∆(y, z) =

y − z |y − z| ≤ π

y − z + π y − z < −π
y − z − π y − z > π

(5.7)

The circular operator used during time shift calculation now poses a problem whenever the
difference wraps around ±π as the resulting time shifts from Equation 5.6 become ambigu-
ous. This may happen with frequencies having a wavelength smaller than a specific thresh-
old which is determined by the spacing of the microphones used for recording. If a sound
wave is smaller than double the microphone spacing one can not determine whether a shift
is greater than ± one half of the wavelength or not. This comes from the fact that a shift of
more than ± one half wavelength causes the phase difference to wrap around and result in a
shift of less than ± one half wavelength and so we always get a shift of less than ± one half
wavelength from Equation 5.6 even if it is not the case.

The ambiguity problem can be ameliorated by some heuristics which will be described in
more detail in Section 5.6. As for now we will ignore frequencies having a wavelength smaller
than double the microphone spacing.

Our histogram has a fixed resolution of θv × θv bins va,b where θv ∈ N is the number of bins
per axis and a, b are indices for the magnitude phase and time shift respectively with values
in the range [1, ..., θv]. Having a fixed resolution means we have to downsample the data
points to that resolution where the data point is defined as a magnitude phase and time shift
pair for a frequency bin fθ. In order to calculate the value of a bin we have to introduce the
sampled magnitude phase φ∠ (X1,w,fθ

,X2,w,fθ
) and time shift φδ (X1,w,fθ

,X2,w,fθ
) with

φ∠ (X1,w,fθ
,X2,w,fθ

) =

[
θv − 1

2π
(∠ (|X1,w,fθ

| , |X2,w,fθ
|) + π)

]
+ 1 (5.8)

φδ (X1,w,fθ
,X2,w,fθ

) =

[
θv − 1

2tmax

(δfθ
(∠ (X1,w,fθ

),∠(X2,w,fθ
)) + tmax)

]
+ 1 (5.9)

82

Magnitude-Shift-Frequency Histogram

where the brackets [·] denote rounding to the nearest integer and tmax the maximum non-
ambiguous time shift defined as

tmax =
dmicF

cair

(5.10)

where cair is the velocity of sound in m/s and dmic the distance between the two micro-
phones in meters. A more detailed explanation of the maximum non-ambiguous time shift
and frequency threshold will be given in Section 5.6. The energy of the bins is now computed
as a magnitude-weighted, normalized sum over the entire set of windows resulting in

va,b =

W∑
w=1

θn∑
fθ=1

Ia,b (φ∠ (X1,w,fθ
X2,w,fθ

) , φδ (X1,w,fθ
,X2,w,fθ

)) (|X1,w,fθ
|+ |X2,w,fθ

|)

W∑
w=1

θn∑
fθ=1

(|X1,w,fθ
|+ |X2,w,fθ

|)
(5.11)

where θn ∈ N is the cut-off frequency for the histogram with 1 < θn ≤ θw, and Ia,b (·) is an
indicator function defined as

Ia,b(y, z) =

{
1 a = y ∧ b = z

0 a 6= y ∨ b 6= z
(5.12)

In words we first sample the magnitude phase and time shift and stretch them to be in the
range [1, ..., θv] using the sampling functions φ∠ and φδ and then calculate the “intensity”
values of each bin by doing a normalized summation over all pairs of magnitude phases and
time shifts in all windows and all frequencies in the range limited by θn. The normalization is
applied in order to make the intensity values independent of the size T of the input signal and
its average loudness. The intensities now represent the average energy over the entire input
at their magnitude-shift coordinates. Now if an instrument is played in a specific location we
expect it to have a constant magnitude phase and time shift across the entire spectrum which
should result in a high intensity value at the bin with the sampled coordinates matching these
two parameters.

So we should be able to separate that instrument if we are able to find these high intensity
spots in the histogram. Their coordinates would then indicate the parameters of their respec-
tive instruments we will have to look for in the spectrum. So if we find a pair (X1,w,fθ

,X2,w,fθ
)

having these parameters we can copy them to the spectrum of the respective instrument.

Unfortunately this procedure is not as easy as it may seem. The frequency bins Xi,w,fθ
are

not generated solely by one instrument but are “polluted” to a specific degree by the other
instruments or by its own echo due to reverberation and harmonic overlaps in the spectrum.
Therefore the spots in the histogram become smeared over several histogram bins resulting
in high intensity clusters which usually overlap by some degree.

83

5. BLIND SOURCE SEPARATION APPROACH

The clusters often overlap or in some situations even get absorbed in other clusters as for
example whenever a loud playing instrument is situated near a weaker one, the loud instru-
ment will usually have a bigger cluster which will merge with the smaller cluster of the weak
instrument. But in order to not drown the weak instrument during the musical performance,
it is either played whenever the stronger one is not or it will have another frequency than the
loud instrument.

In the simple magnitude-phase histogram the frequency of an instrument is not taken into
account and therefore we would not be able to distinguish both instruments in the above
example. As our histogram is made up of greyscale values when visualized, we had the idea
to extend it by visualizing the frequency as a colour. In this way we should now be able to
distinguish overlapping clusters with different frequencies.

Introducing the frequency in our histogram means that we have to redefine the bins as three
dimensional vectors va,b where the first element is interpreted as a red, the second as green
and the third as blue intensity. Then we will need a frequency to colour mapping function
ψ(fθ) which maps each frequency to a colour vector where we require the colour vector
returned to be of unity length in order to preserve luminosity of the respective colour. Using
these definitions we can rewrite Equation 5.11 to include the colour mapping function

va,b =

W∑
w=1

θn∑
fθ=1

Ia,b (φ∠ (X1,w,fθ
X2,w,fθ

) , φδ (X1,w,fθ
,X2,w,fθ

))ψ(fθ) (|X1,w,fθ
|+ |X2,w,fθ

|)

W∑
w=1

θn∑
fθ=1

(|X1,w,fθ
|+ |X2,w,fθ

|)

(5.13)
Usually the frequency mapping function is used to generate continuous colour gradations
between some predetermined key colours as the frequency parameter increases. We found
a good colour mapping to include key colours in that order: red (1, 0, 0)T , middle yellow
(1/2, 1/2, 0)T , green (0, 1, 0)T , middle cyan (0, 1/2, 1/2)T and blue (0, 0, 1)T . This mapping
follows the colours of the spectrum and uses some common associations as red with low
frequencies or bass and blue with high frequencies or trebles.

Looking at the colour mapping above we may observe that the colours may not have the same
luminosity at the same values. For example green at its maximum intensity (0, 1, 0)T will be
brighter than blue at its maximum intensity. We deemed this issue not to be that important to
investigate further, so we left as a possible topic for future work whether generating colours
of equal brightness will improve results.

As we have seen, the frequency colour mapping in the histogram really works and clusters
can be now separated due to their differing centre frequencies where the centre frequency is
the average frequency for that cluster. Now the interesting question arises whether extending

84

Algorithm

the histogram bin vectors va,b by more dimensions would give better results in the main
algorithm which uses this histogram for clustering. This would of course abandon the idea
of visualizing the histogram or at least make it more challenging as we cannot simply add
more colour channels.

Generally we can view this histogram as a kind of feature space which is used by the cluster-
ing algorithms described in the next section. Visualization although being a good idea is not
really necessary which means we could render this feature space more complex in order to
possibly be able to better separate the frequency bins from each instrument. This would be
an interesting topic to be further elaborated upon in future work.

5.5 Algorithm

We have already hinted some of the methods used in the algorithm during the previous
section. The algorithm begins with converting the input signal into the spectral domain rep-
resentation Xi,w,fθ

which is obtained using the windowed frequency transform described in
Section 5.3. We then calculate the Magnitude-Shift-Frequency histogram described in the
previous section in order to obtain the histogram bins va,b.

The histogram will now be used to obtain a magnitude difference and time shift range for
each instrument. More precisely we will use clustering for parting the histogram into areas
belonging mostly to one instrument.

Clustering

The goals during clustering are finding the number of instruments N and splitting the his-
togram intoN parts so that each part’s associated instrument accounts for most of the energy
contained in the histogram bins belonging to that part.

As we have no prior knowledge about how much energy an instrument contributes to each
histogram bin, we have to use some heuristics. Here we observe that the energy in the his-
togram tends to cluster around some values. Assuming that the instruments remain on a
fixed location during the musical piece, they will have some fixed magnitude difference and
time shift parameters which should show up as high energy points in the histogram. Due
to different interference effects the parameters will exhibit some variance leading to the ob-
served clusters. Now by applying some algorithm identifying these clusters and approxi-
mating their extent we obtain an area for each instrument in the histogram approximating
its parameter range. This result can then be used to separate the instruments in the next
stage by assigning each frequency bin pair (X1,w,fθ

,X2,w,fθ
) the instrument associated with

85

5. BLIND SOURCE SEPARATION APPROACH

the histogram area the pair belongs to due to its parameters.

As we saw during development of different clustering algorithms, it is problematic to esti-
mate N , due to overlapping clusters and complex cluster forms. Because we ran out of time
to further investigate on solutions to that problem we decided to makeN an input parameter
which has to be supplied by the user. But as we deem the automatic estimation of the number
of instruments to be crucial for usability of the algorithm we see this issue as to be important
topic for future work.

Our first clustering algorithm is a slightly modified version of the K-means clustering. The
vanilla version of the algorithm works iteratively by first assigning the data points to their
nearest cluster centres µj with 1 < j < N and

Marg minj‖(a
b)−µj‖ = Mj ∪ (a, b) (5.14)

for all indices (a, b) with 1 < a < θv and 1 < b < θv where Mj is the set of histogram bin
indices assigned to the cluster j. In the second step it is recalculating the cluster centres as
the mean of its assigned data point locations

µj =
1

|Mj|
∑

(a,b)∈Mj

(
a

b

)
(5.15)

As long data points change their assigned centre after each iteration, the centres will keep
moving. Usually the centres will move to locations containing a high data point density until
convergence. The algorithm is iterated either until no data point changes its cluster or until
a fixed number of iterations is reached. The initialization is done by randomly positioning
the cluster centres in the histogram. As the algorithm implicitly tries to minimize the sum of
squared distances between the data points and their nearest cluster, which can be written as

C =
N∑
j

∑
(a,b)∈Mj

∥∥∥∥(ab
)
− µj

∥∥∥∥2

(5.16)

we can use this cost function as a quality measure for the result.

Now the simple K-means clustering will not work for our histogram as only the locations of
the histogram bins are accounted for and not the energy content of each bin. But with the
simple modification of calculating the cluster centres by the energy-weighted mean of the
bin locations instead of the simple mean, the algorithm is able to return usable results. The
cluster centers are now calculated as

µj =
1

|Mj|
∑

(a,b)∈Mj

va,b

(
a

b

)
(5.17)

86

Algorithm

and consequently the cost function for measuring the quality of the result changes to

C =
N∑
j

∑
(a,b)∈Mj

va,b

∥∥∥∥(ab
)
− µj

∥∥∥∥2

(5.18)

Basically, the modified clustering algorithm now estimates the energy density in the his-
togram rather than the bin density which is always constant, thus leading to our desired
clustering. We note that we use only the simple magnitude-shift histogram bins va,b in the
equations above. We did not test the algorithm with the colour-extended histogram version.

After implementation of the algorithm we saw that the results were poor and noticed that
C varied drastically on each run. According to literature this outcome is not unexpected as
the standard algorithm for computing the K-means clustering is susceptible to local minima
and thus the results depend strongly on the initialization. We might have tried to ameliorate
this problem by implementing some suggested improvements as doing multiple runs using
different initializations or doing some intelligent initialization based on some pre-processing
but due to the very weak performance we decided to rather try another algorithm.

We decided to use a radial-basis function network (RBFN) with supervised learning for our
second clustering approach. A radial basis function (RBF) has a centroid vector µj where its
value peaks at its maximum wj . The value falls as the input vector - in our case the indices
of the histogram bins (a, b) - gets farther away from the RBF centre. The fall off rate in each
dimension is controlled by the covariance matrix Σj . Now a RBFN is simply an additive
mixture of several RBFs. The network tries to estimate the energy density directly using the
following cost function

C =
1

2

θv∑
a=1

θv∑
b=1

‖va,b − v̂a,b‖2 (5.19)

where v̂a,b is the estimated energy at the bin with index (a, b). If we use gaussians of the form
of

Ga,b

(
µj,Σ

−1
j

)
= exp

(
−1

2

((
a

b

)
− µj

)T

Σ−1
j

((
a

b

)
− µj

))
(5.20)

for the RBFs, the estimated energy can be calculated as

v̂a,b =
N∑

j=1

wjGa,b

(
µj,Σ

−1
j

)
(5.21)

where Σ−1
j is the inverse of the covariance matrix.

For adjusting the three parameter types wj , µj and Σ−1
j we use the iterative gradient descent

method from [13] which we have extended for multidimensional output in order to account
for the colour in the magnitude-shift-frequency histogram. As the algorithm is iterative we

87

5. BLIND SOURCE SEPARATION APPROACH

will write the three parameter types, the cost function C and the estimated energy value v̂a,b

as functions of the actual iteration n. Now the update equations using this method are

wj(n+ 1) = wj(n)− ηw∆wj(n) (5.22)

µj(n+ 1) = µj(n)− ηµ∆µj(n) (5.23)

Σ−1
j (n+ 1) = Σ−1

j (n)− ηΣ∆Σ−1
j (n) (5.24)

where 0 < ηw < 1, 0 < ηµ < 1 and 0 < ηΣ < 1 are learning parameters and ∆wj(n),
∆µj(n) and ∆Σ−1

j (n) are the gradients of the respective parameters which are defined by

∆wj(n) =
∂ C(n)

∂wj(n)
(5.25)

∆µj(n) =
∂ C(n)

∂ µj(n)
(5.26)

∆Σ−1
j (n) =

∂ C(n)

∂Σ−1
j (n)

(5.27)

We note here that we maintain and update the inverse of the covariance matrix Σj directly
thus we can omit the matrix inversion and save some computational time. For the partial
derivatives we first define the error vector ea,b(n) as

ea,b(n) = va,b − v̂a,b(n) (5.28)

and the difference-to-centre vector δj,a,b(n) as

δj,a,b(n) =

(
a

b

)
− µj(n) (5.29)

then writing the equations for the partial derivatives themselves as

∂ C(n)

∂wj(n)
=

θv∑
a=1

θv∑
b=1

ea,b(n)Ga,b

(
µj,Σ

−1
j

)
(5.30)

∂ C(n)

∂ µj(n)
= 2

C∑
c=1

wj,c(n)
θv∑

a=1

θv∑
b=1

ea,b,c(n)Ga,b

(
µj(n),Σ−1

j (n)
)
Σ−1

j (n)δj,a,b(n) (5.31)

∂ C(n)

∂Σ−1
j (n)

= −
C∑

c=1

wj,c(n)
θv∑

a=1

θv∑
b=1

ea,b,c(n)Ga,b

(
µj(n),Σ−1

j (n)
)
δj,a,b(n)δT

j,a,b(n)(5.32)

where C denotes the number of colour channels which is usually 3 for red, green and blue.

The initialization of the RBFN is rather simple. The centroid vectors µj(1) are randomly
distributed across the histogram, the inverse covariance matrices Σ−1

j (1) are initialized as

Σ−1
j (1) =

(
0.1 0.001

0.001 0.1

)
(5.33)

88

Algorithm

and the output weights wj(1) are assigned 1/N to each vector element.

After some preliminary tests we observed that the output weights may become negative for
one or more vector elements. This configuration has to be avoided as densities can only be
positive. Therefore we clamped all negative weight vector elements to zero after every itera-
tion. Now such configuration with negative weights may happen to lead to a better overall
estimation of the energy density but we are interested in the clusters which are represented
by the RBFs and not in a good overall estimation of the energy density.

We also made some further observations. In particular we noted that the centroid vectors and
the inverse covariance converged very fast to local optima while the output weights adapted
steadily. The solution we found for this problem was to adapt only the weight vectors for
some iterations and then adapt all parameters for the remaining iterations after this initial
start-up. This way we avoided getting distorted gradients for the centroids and the inverse
covariance matrix caused by the undeveloped weights during the first iterations thus allow-
ing the weight vectors to settle first and then also adjusting the other two parameters.

There were also two other important problems. The first one was that the centroids some-
times tended to move to coordinates beyond the histogram range of [1..θv] × [1..θv]. Our
explanation of this phenomenon was that in a suboptimal configuration the RBFs lying at the
borders of the histogram would have to “jump” over the ones round the middle in order to
reach their optimal position. But they cannot jump over these RBFs as it would temporarily
rise the cost function so they will rather try to get as far away from the RBFs in the centre as
possible. If we would have allowed negative weights is might have been possible that this
problem would not have occurred as in that case every RBF could contribute to minimize the
cost function inside the histogram range of coordinates. As a solution we restricted the cen-
troids to be able to move only inside the coordinate space belonging to the histogram. There
might also be other solutions, as for example trying to put the centroid on every possible
coordinate inside the range and check whether the cost functions decreases. As the range is
discrete and usually small the computational cost should not increase much by doing this.
We have not tried this or other alternative solutions as the one we first found also worked
well because after some iterations at the border the centroids sometimes got back into more
central positions.

The second problem we observed was that sometimes the inverse covariance matrix began
to grow to very high values thus making the RBF having a very small spread. This may have
the same cause as the first problem as the RBFs are not in their optimal location and thus
would have to jump over other RBFs temporarily rising the cost function. But this time the
RBF is trapped in the middle of other RBFs and thus the best solution to decrease the cost
function would be for the RBF to become very small and specialize on solely one histogram
bin. This solution is also unacceptable for us and therefore we have to counter this problem

89

5. BLIND SOURCE SEPARATION APPROACH

by restricting the inverse covariance matrix to not get larger than θΣmax on any of its elements.
For practical purposes we saw that a value of 10000 for θΣmax is sufficient for a RBF to spread
over small clusters and at the same time not getting as small as one histogram bin.

As the RBFN algorithm had a slow convergence behaviour like all gradient descent methods
we decided to improve convergence with RPROP [30] as we did in Section 4.5 in the previous
chapter. We will not describe the algorithm in detail once again here but refer to the descrip-
tion in Section 4.5 on Page 63. Some implementation specific details we want to mention here
are:

• the estimated gradients are computed element wise for each vector and matrix quantity.
That means that we treat the elements of vectors or matrices as being independent.

• that we use different η+ for the output weight vector elements and the other parame-
ters. For the output weights we use a value of 1.1 and for all other parameters a more
prudent value of 1.01. η− is set to 1/2 and remains the same for all parameters.

Now after the RBFN was trained, we have to assign a RBF to each histogram bin in order to
get our parameter range areas for our instruments. At this point we shall mention that we
will not take the different colours of the RBFs into account as there is no possibility to use the
colour information during the RBF to bin assignment. The colours generated by the presence
of different frequencies were only used to train the RBF as it can better cluster the histogram
using the colour information than without it. We will collapse the three colour components
into one value by summing over all three responses for each colour channel. The assignment
procedure now becomes:

• initialize all sets Mj of indices of histogram bins assigned to cluster j with ∅

• do for all histogram bins va,b

– get the RBF m with the maximal activation value

m = arg max
j

C∑
c=1

wj,cGa,b

(
µj,Σ

−1
j

)
(5.34)

and set

Mm = Mm ∪ (a, b) (5.35)

After the assignment is complete we have enough information to proceed to the separation
stage.

90

Algorithm

Separation

After the histogram has been clustered and each histogram bin has been assigned an instru-
ment, we can proceed by assigning each frequency bin pair (X1,w,fθ

,X2,w,fθ
) from the input

signal to an instrument depending on which histogram bin it can be mapped to using the
sampling Equations 5.8 and 5.9. Now we are able to separate the input signal by copying the
frequency bin pairs to the spectrum of their assigned instruments where the spectrum was
previously initialized with zeroes.

We obtain the windowed time domain signal for each separated instrument xi,j,w we use the
inverse of the frequency transform F−1 resulting in

xi,j,w = F−1 (Xi,j,w) (5.36)

Now we have to undo the overlapped windowing in order to obtain the whole time domain
signal. But if we would try to undo the windowing by simply dividing through the Hanning-
type weights which we initially used to generate the windows, we would introduce severe
artefacts at both ends of the window. Those artefacts were introduced during separation of
the frequency bin pairs, and are more or less equally distributed within the window. As the
Hanning-type weights decay to 0 at both ends, dividing by these weights would strongly
amplify any artefacts introduced. Not dividing by the weights is also not an option because
adding the overlapped windows would then result into a signal without constant gain, mean-
ing there will be some audible beat. In addition this would lead to audible cracks and pops
due to the non-zero gain at the ends of the windows which would result into discontinuities
in the summed signal.

Here we note some interesting properties of Hanning windows

• if the Hanning-type weights, which represent a positive sine wave, are multiplied once
more with the window we get a squared sine.

• at 50% overlap for all odd numbered windows the squared sine generated in the previ-
ous point behaves like a squared cosine.

• so in conclusion, simply adding 50% overlapped windows which were multiplied once
more with the Hanning-type weights will result into a signal reconstruction with con-
stant gain of one. This comes from the fact that for each target sample we will have a
sample from a squared sine and a sample from a squared cosine window overlapping
which will add up to have unity gain due to the relation sin2 + cos2 = 1.

• each overlap θr = 1 − 1/2z with z ∈ N of squared sine shaped windows will have
squared sinus-cosinus pairs which add resulting in a gain of 2z−1.

91

5. BLIND SOURCE SEPARATION APPROACH

Multiplying once more with Hanning-type weights reduces the artefacts at the borders to
zero due to the zero-gain behaviour of the weights at both ends of the window. This way we
are able to solve the border-artefact problem. Now also having a power of two overlap we
can reconstruct the unity gain time domain signal for each instrument which is the goal of
this separation algorithm.

Summing up, the separation algorithm works as follows

• initialize all frequency bins Xi,j,w,fθ
of all instruments to zero.

• do for each frequency bin pair (X1,w,fθ
,X2,w,fθ

) of the input signal

– calculate the sampled magnitude phase a and time shift b

a = φ∠ (X1,w,fθ
,X2,w,fθ

) (5.37)

b = φδ (X1,w,fθ
,X2,w,fθ

) (5.38)

– update the frequency bins of the instrument assigned to the histogram bin va,b

with the actual frequency bin pair in the input signal by

Xi,j,w,fθ
=

{
Xi,w,fθ

(a, b) ∈Mj

0 (a, b) 6∈ Mj

(5.39)

with i = 1, 2 and j = 1..N .

• undo the frequency domain transform

xi,j,w = F−1 (Xi,j,w) (5.40)

for all channels, instruments and windows.

• multiply all samples of all instruments with Hanning-type window weights

x′i,j,w = xi,j,w sin

(
π (tw − 1)

θw

)
(5.41)

• merge of each instrument’s windows into one final time domain instrument signal xi,j,t

by aligning and adding them on a sample by sample basis and then multiplying the
result by 2 (1− θr).

5.6 Fine Tuning

After describing the basic algorithm we can move on applying some fine tuning which we
expect would raise the quality of the result. The algorithm will also work without the addi-
tional fine tuning but the output quality can be usually improved by only a few additional
considerations.

92

Fine Tuning

Window Size and Overlap

The window size and overlap parameters have an important role in balancing different types
of artefacts generated by the separation stage of the algorithm. The artefacts which can be
controlled by the two parameters are

• Musical noise. This is a kind of noise which consists of short sine tones or a sum of
such. The sound of this noise resembles somehow playing some random notes on a
synthesizer. This is a very annoying artefact as it can hardly be filtered by the human
brain and thus distracts much more from the signal of the separated instrument than
standard white or coloured noise.

The source of musical noise is the binary and time-independent decision whether a in-
strument spectrum is assigned a frequency bin pair or whether it remains zero. There-
fore it may occur that a frequency bin pair with no other bins in the spectral neighbour-
hood is assigned to one instrument at for one window. Due to the missing neighbours,
the frequency bin pair then sounds like a more or less pure tone. Now if the pair is not
assigned to the same instrument for the next window, then the tone will fall silent. If it
happens for a longer period of time that pairs without neighbours are assigned for the
time span of only one window to an instrument and then changed to another instru-
ment, then the result will sound like musical noise. It is important that the frequency
bin pairs assigned to the same instrument have either no neighbours or very weak ones
because if this is not the case, it becomes more improbable that the main pair with all
its neighbours would not be assigned to the same instrument for the next window.

• Echo, pre-echo and reverberation. All three kinds of artefacts are all produced by the
same cause. These three artefacts are better audible at longer window sizes. The cause is
that often frequency bin pairs with a low magnitude are more susceptible to be polluted
by echo and reverberation of other instruments or get distorted by harmonic sharing.
Therefore they are often assigned to the false or to a catch-all instrument which con-
tains only of frequencies bin pairs which could not be attributed to one of the other
instruments and may therefore contain content of those instruments. Frequencies with
weak magnitudes are usually created by transients in the time domain signal. These
weak frequencies which are usually many compared to the strong ones thus sum up
to reconstruct a transient. If these frequencies are missing then the transients become
wider in time. For longer window lengths even short tones may get audibly widened,
thus lasting longer than they should. This widening encountered in longer window
lengths is then perceived as echo and reverberation. As the widening happens both
forward and backward in time, the forward widening is perceived as pre-echo which
is the most annoying of the three artefacts. For very long window lengths the pre-echo

93

5. BLIND SOURCE SEPARATION APPROACH

gets so long that it is perceived as a kind pre-reverberation announcing the tone that
will be played at some point in the near future. This is a very strange effect and marks
the upper limit of usable window size.

There is also a connection to musical noise here. If for some time instant there are only
weak frequencies where a few of them are at the threshold of being assigned to the
instrument then the situation will be encountered where tones without neighbours in
the spectrum are assigned to the instrument for only one window which is what we
described as cause of musical noise.

After describing the artefacts we show a connection of the window length and overlap pa-
rameter and the artefact types. Obviously the longer the window length the more echo,
pre-echo and reverberation we will encounter as they are best perceptible at longer window
lengths. We found empirically that window lengths of about one third to a half of a second
lead to an acceptable amount of these artefacts with longer windows having perceivable pre-
echo and reverberation. Thus we can say that a window length of half of a second is the
practical upper limit. We shall note here that smaller window lengths will decrease spectral
resolution and thus separation capability. Therefore we should aim for the longest possible
practical window length.

Now contrary to the echoes which have to be held imperceptible or at least keep them from
becoming annoying, musical noise can be actually suppressed. This is done via the overlap
parameter. The higher the overlap the less musical noise will be present. The reason here
is that the spectral change from one window to the other becomes more blurred for each
frequency. This way the frequency bin pair assignment becomes less time-independent. The
higher overlap also causes the abrupt changes due to the binary nature of the assignment -
either the pair is assigned to a specified instrument or it is not - to be smoothed over due
to averaging effects. From another point of view it can be said that the high overlap makes
the binary assignment to behave like a probability-weighted assignment due to averaging
of the different windows consisting frequency pair binary assignments as the many time-
independent binary decisions are averaged over to result in a mean which is not binary itself
but reflects the probability of the pair to be assigned to that instrument. Assignments based
on probabilities are therefore less susceptible to musical noise than binary decisions.

One downside of high overlaps is the increased computational time caused by the extra win-
dows generated from the input signal. As we can use only powers in the calculation of the
overlaps we have not much room for fine tuning the overlap parameter. We have decided to
use an eight-fold overlap in our implementation, meaning θr = 87, 5% for a good balance
between musical noise and computational time.

94

Fine Tuning

Time Shift Disambiguation

As we have already mentioned in Section 5.4 whenever the length of a sound wave becomes
smaller than double the spacing between the recording microphones, we cannot measure
their exact time shift due to ambiguities. This problem cannot be solved exactly as the infor-
mation needed for disambiguation is not available in the signal, but we can use a heuristic in
order to ameliorate that problem.

Moving to concrete terms we first have to determine the frequency threshold famb from where
higher frequencies begin to become ambiguous

famb =
cair

2dmic

(5.42)

where cair is the velocity of sound inm/s and dmic the distance between the two microphones
in meters. Now we assuming that phase differences between the channels cluster around
locations of instruments we can solve the ambiguity heuristically for all frequencies higher
than famb by generating all possible phase differences for each frequency and picking the one
which is situated next to a cluster centre. The possible phase differences can be generated
either by adding or subtracting 2π from the phase difference, without wrapping, until the
resulting time shift exceeds the range of maximum time shift [−tmax, ..., tmax] with

tmax =
F

2famb

(5.43)

This method assumes that the frequency bins corresponding to each frequency above the
threshold contain magnitudes which are contributed from the most part by one instrument,
or in other words this heuristic works with unpolluted bins. Those bins which are shared by
two or more instruments will have a phase difference not corresponding to any of the clusters
so this heuristic will probably assign an inappropriate cluster to such bins.

We shall note here that phase differences of frequencies above famb do “gradually” become
ambiguous. As the wavelength becomes smaller the ambiguous values start at the extremes
of the possible time shift interval and move inwards until all values in the interval become
ambiguous. This observation is explained by the shrinking maximum non-ambiguous time
shift interval for higher frequencies [−tmax,f , ..., tmax,f] where tmax,f which can be written as

tmax,f =

{
tmax

(
2− 2tmaxfamb

F

)
famb < f < 2famb

0 f > 2famb

(5.44)

So only values lying in the maximum non-ambiguous time shift interval of famb but not in
the maximum non-ambiguous time shift interval for the specific frequency are ambiguous.
The higher the frequency the smaller its own maximum non-ambiguous time shift interval
becomes and the more values become ambiguous until above a second frequency threshold

95

5. BLIND SOURCE SEPARATION APPROACH

all values become ambiguous. This gradually rising ambiguity also continues above that
second threshold were we have to count the number of possible values. For some time shift
values there will be three other possibilities where the true time shift may be and for some
other values only two. This also goes on till a third frequency threshold is reached where all
calculated values have three alternatives and the four alternative ambiguities start, and so
on.

This gradually rising ambiguity now means that if we calculate a time shift of 0 for a fre-
quency bin pair with famb < f < 2famb then we can still be sure that it comes from an
instrument playing in the middle of the two recording microphones even though this fre-
quency bin pair will have its frequency above the threshold famb.

Unfortunately due to time constraints we had no time to implement the disambiguation
heuristic so we left it as an issue for future work.

5.7 Final Algorithm

As we have done in the previous chapters we will give a summary of the algorithm we
have discussed during the previous sections of this chapter. In this summary we do not
include versions or improvements we were not able to implement due to different reasons
and therefore the listed algorithm will be the final version which can be found in the source
code generated during development of this thesis.

• apply an overlapped windowing on the input signal xi with window length θw and θr

overlap.

• multiply the content of each window with Hanning-type weights resulting in

xi,w,tw = sin

(
π (tw − 1)

θw

)
xi,t+θww(1− 1

θr
)+tw−1 (5.45)

where tw is the time index for the window, and xi,w,tw is the windowed and weighted
input signal, and w is the index of the window.

• transform each window to obtain its spectrum vector Xi,w from

Xi,w = F (xi,w) (5.46)

• calculate the color vector va,b each of the θv × θv histogram bins according to Equa-
tion 5.13.

• initialize the RBFN

96

Final Algorithm

– randomly distribute the centroid vectors µj(1) across the histogram

– initialize the inverse covariance matrices Σ−1
j (1) with

Σ−1
j (1) =

(
0.1 0.001

0.001 0.1

)
(5.47)

– set each element of the output weight vector wj(1) to 1/N , for all weight vectors.

• do iteratively, using the iteration counter n

– update the parameters µj(n), Σ−1
j (1) and wj(1) using the RPROP method first

presented in Section 4.5 and discussed in Section 5.5 for details concerning the
separation algorithm of this chapter. For calculating the estimated gradients use
the partial derivatives in the Equations 5.30, 5.31 and 5.32. Concerning the adap-
tation parameters η+ and η− use a value of 1.1 for η+ of the output weights and for
all other parameters 1.01. Use η− with 1/2 for all parameters.

– clamp all negative weights to zero.

– restrict the centres to lie within the coordinate range [θv..θv] of the histogram.

– clamp all the elements of the inverse covariance matrix Σ−1
j (n) being bigger than

θΣmax to θΣmax . Where a good value for θΣmax is 10000.

• initialize all sets Mj of indices of histogram bins assigned to cluster j with ∅

• do for all histogram bins va,b

– get the RBF m with the maximal activation value

m = arg max
j

C∑
c=1

wj,cGa,b

(
µj,Σ

−1
j

)
(5.48)

and set

Mm = Mm ∪ (a, b) (5.49)

• initialize all frequency bins Xi,j,w,fθ
of all instruments to zero.

• do for each frequency bin pair (X1,w,fθ
,X2,w,fθ

) of the input signal

– calculate the sampled magnitude phase a and time shift b

a = φ∠ (X1,w,fθ
,X2,w,fθ

) (5.50)

b = φδ (X1,w,fθ
,X2,w,fθ

) (5.51)

97

5. BLIND SOURCE SEPARATION APPROACH

– update the frequency bins of the instrument assigned to the histogram bin va,b

with the actual frequency bin pair in the input signal by

Xi,j,w,fθ
=

{
Xi,w,fθ

(a, b) ∈Mj

0 (a, b) 6∈ Mj

(5.52)

with i = 1, 2 and j = 1..N .

• undo the frequency domain transform

xi,j,w = F−1 (Xi,j,w) (5.53)

for all channels, instruments and windows.

• multiply all samples of all instruments with Hanning-type window weights

x′i,j,w = xi,j,w sin

(
π (tw − 1)

θw

)
(5.54)

• merge of each instrument’s windows into one final time domain instrument signal xi,j,t

by aligning and adding them on a sample by sample basis and then multiplying the
result by 2 (1− θr).

5.8 Summary and Future Work

In this chapter we developed a blind source separation algorithm as an alternative for the
two template-based methods in the previous chapters. This alternative was thought to be
biologically more plausible as it now would make use of two stereo cues - IID and ITD -
which are also processed by the human auditory system. Furthermore we decided for this
algorithm to work on a spectral domain representation as the frequency transform would
better decorrelate the signal sources.

The main idea of this algorithm is to use a magnitude-shift-frequency histogram which shows
the distribution of the magnitude ratio and time shift parameters for each frequency bin rep-
resenting roughly the two stereo cues IID and ITD respectively, together with the frequency
of each bin visualized as a colour. We use the magnitude phase rather than the ratio directly
when calculating the histogram because it distributes the ratios more evenly and limits them
to a finite range.

We discussed the main problem when generating the histogram which are the ambiguous
time shifts of frequencies higher than a certain threshold frequency which itself depends on
the spacing between the recording microphones used to generate the stereo input signal.

98

Summary and Future Work

Due to the ambiguity we had to set the maximal frequency shown in the histogram to the
threshold frequency to get plausible results.

The main algorithm for separating the instruments from the input signal now uses the his-
togram to estimate the spatial position of the instruments which is translated to a specific
magnitude phase and time shift. The spatial location is estimated using a clustering approach
where a RBF network with a fixed number of RBFs is trained to adapt to the intensities and
colours of the histogram bins where the number of RBFs is fixed to the number of clusters
which have to be supplied by the user. After training the histogram is parted by assigning
each histogram bin to the cluster represented by the RBF which has its highest activation for
that bin.

The actual separation is now achieved by is then splitting and copying the spectrum of input
signal into the spectra of the different instruments which were previously initialized with
all zeroes. The splitting is done on the basis to which histogram bin and thus cluster the
frequency bin pair consisting of frequency bins from both channels at the same time and
spectral position, is assigned to. Finally the spectrum of each instrument is transformed back
to time domain resulting in the waveform representation of each estimated instrument which
is what we searched for.

We also discussed some fine tuning methods for improving the quality of the algorithm. The
first topic was a deeper insight into which kinds of artefacts were generated by the separation
algorithm and how they could be best suppressed and how the they could be suppressed by
adjusting the window size and overlap during the windowed frequency transform and its
inverse. We introduced the notion of musical noise which is used in literature for the espe-
cially disturbing distortion characterized by its pure tones which sound like being played
erratically by some synthesizer and thus is sometimes not perceived as noise but rather as
a kind of interference. We explained that musical noise can be best fought by choosing a
high window overlap as it averages over the binary decisions during separation. The sec-
ond kind of noise being added echoes, reverberation and pre-echoes which were caused by
loss of weak frequencies and thus widening of transients could be reduced by using shorter
window length where we also had a practical limit for the smallest length as it would reduce
frequency resolution too much which would impair separation performance and could also
cause musical noise.

The other topic was an attempt for disambiguation of the time shifts for higher frequencies.
We proposed there a heuristic where we would try every possible time shift in the range of
the maximum possible time shifts and take the shift which would be next to a cluster. We
also noted there that the ambiguities rise gradually when the frequency threshold where the
ambiguities begin is reached and thus there are portions in the shift interval where the calcu-
lated time shifts are still non-ambiguous although the frequency is higher than the threshold.

99

5. BLIND SOURCE SEPARATION APPROACH

This is true till a higher second threshold where all shifts are ambiguous. This attempt was
left to be further elaborated upon in some future work.

Another topic which should be investigated in some future work is how the histogram could
be further extended to include either more spatial cues or other parameters capable of dis-
criminating between instruments. We view this histogram as a kind of feature space rather
than a visualization. So by adding some new features we would possibly destroy the possi-
bility to visualize this feature space but we would expect to be able to obtain better results by
doing this. New features would mean that the trained RBF would have more input dimen-
sions and could possibly better approximate the clusters formed by each instrument thus
leading to better separation decisions during assignment of the frequency bin pairs to their
corresponding instruments.

A potential improvement which should be considered for future work is the automatic recog-
nition of the number of clusters in the histogram. Actually this number has to be supplied by
the user who in turn must somehow either “see” from the histogram how many clusters an
input signal may have or count the different instruments by careful listening which may have
to be repeated to in order get a good estimate. The automatisation will not be trivial as there
may be clusters at different resolutions and often clusters overlap thus making the estimate
less precise. Fortunately we saw that even when providing a wrong number of clusters the
performance does not degrade too rapidly as to require very precise approximations of that
number.

We should also mention here that it may be advantageous if some heuristics could be added
to split frequency bins which are shared by more than one instrument. This can often be the
case in musical pieces as we consider in this thesis and thus might raise the separation quality
considerably. Furthermore also some heuristics for signal separation an frequency bin split-
ting based on repetitiveness of signals like in our first two approaches could be considered
as a further improvement as is often done lately in blind signal separation literature.

Summing up we have come with a working blind source separation algorithm and also pre-
sented some quality improvements but there is still much work to do. We believe that this
algorithm can be drastically improved by finding new and better features for the histogram
of rather for the feature space and by implementing a good disambiguation algorithm.

100

Chapter 6

Implementation Details

6.1 Overview

In this chapter we will give a short overview of the implementation of the three separation al-
gorithms discussed in this thesis. Reading this chapter may prove helpful when considering
the speed figures in the evaluation chapter which will come next.

The code was written in C++ using Microsoft’s Visual C++ (MSVC) 2003 as the program-
ming environment. The three algorithms were implemented in three separate programs each
having its own MSVC project. Each application was designed to run on the command line
in order to keep the overhead down which would be incurred by a graphical user interface
(GUI).

The three programs are all separate versions of the base program we called INEX which
stands for INstrument EXtractor.

We will give some details on the libraries we used in Section 6.2, then we will give an
overview of the code structure in Section 6.3. Some discussion on performance enhance-
ments especially on multithreading and the more theoretic topic of the optimal FFT size in
regard to speed for convolutions and correlations will be given in Section 6.4.

Finally we will summarize the content of this chapter in Section 6.5 and will also explain
some improvements which could be realized in future work.

6.2 Libraries

We did not have to code the whole program from ground up as libraries with pre-coded
routines for often used high-level functionality already exist thus allowing us to have more

101

6. IMPLEMENTATION DETAILS

time to code the main algorithms.

The first library we used was Marsyas [36] version 0.1 which is an open source audio analy-
sis framework. Important to us was the capability of reading and writing audio files with
different extensions like reading *.wav, *.au and *.mp3 and writing *.wav and *.au. The li-
brary is rather big and complex because it can do much more than reading and writing audio
files therefore we have separated the code for the formats we needed and added it to our
projects. We then implemented an own wrapper class to interface with the separated library
code where the wrapper also included some additional functionality we needed. On some
occasions we found out that the wave file format reading and writing code was either strange
or buggy so we had to debug it at some points before we could definitively use it. We should
mention here that at the time of writing a new version of this library is available. As the sep-
arated code from version 0.1 had all the functionality we needed, we felt it was not necessary
to upgrade especially because this would have implied that we would have to take the time
to do another separation of the code from the new library.

For the widely used fast Fourier transform (FFT) we took the fftw1 library [9] version 3.1.2
which is open source and is known for being fast due to its many optimizations in the FFT al-
gorithm and also due to its capability of adapting the algorithms to the computer it is ran on
in order to achieve maximum speed. We shall note here that the FFT is very a time consuming
task because the number of operations it needs is bound by O(N log2N). So with large win-
dows with a length of 214 samples for example it needs at least 14 ·214 operations. Now as we
use the FFT extensively for all three algorithms either for frequency domain transformation,
correlation or convolution, having a fast implementation can speed things up considerably.

While we were using the fftw we noticed that we could not get working real to complex trans-
forms (i.e., the time domain to frequency domain transform) for window sizes above 220 as
the resulting spectra were completely off. This turned out to not be a problem since as we
will see in Section 6.4 the optimal FFT size for convolution and correlation is a smaller than
that number. We were running into this anomaly as we tried to use long window lengths for
the blind source separation based algorithm which in this case did not create any meaningful
histograms. Still this posed no problem to us as we already mention in Section 5.6 a window
length of half a second is the practical maximum due to noise considerations. The half sec-
ond translates to about 214 samples for a sampling rate of 44.1kHz which is well under the
window size where the anomaly starts.

As MSVC 2003 has problems with getopt we had to use an external library. We decided to
go for GetPot2 which implements the functionality of getopt using object oriented code. Ac-
cording to the website in recognition to getopt, the name GetPot was chosen as an anagram.

1http://www.fftw.org
2http://getpot.sourceforge.net

102

http://www.fftw.org
http://getpot.sourceforge.net

Code Structure

6.3 Code Structure

All three algorithms were implemented using the same structure so we will need only to
explain it once.

There are three C++ files where each one represents one component:

• DMX.cpp - Implements the DeMiXing class which represents the separation algorithm.
Here we use the fftw library for calculating the FFT and its inverse.

• SoundFile.cpp - This is the interface class to our code fragment taken from Marsyas.
For the two template based algorithms this includes the up- and downsampling func-
tionality mentioned in Section 3.8.

• INEX.cpp - This file contains the command line parsing where we use GetPot and the
main program which uses the SoundFile interface to Marsyas in order to read and write
sound files and calls the separation algorithm DMX with the appropiate input.

6.4 Performance Enhancements

Multithreading

Although the code was written on a dual-core Pentium we did not use threads in the demix-
ing class nor did we use the threading functionality of the fftw library. Using all cores on
a multi-core processor would in the best case divide the time needed for running the al-
gorithm or the FFT by the number of cores which in our case would be two. Implementing
multithreading capability would have needed some additional time especially for debugging
and because we were short of time we simply skipped it. In this case the speed given in the
evaluation results can be considered to be about double as much as the computer may have
been capable of if both cores were used concurrently.

Theoretically all time consuming sub-algorithms of the three separation methods presented
in this thesis can be parallelized using threads. Especially the FFT, Newton’s method, RPROP,
Lanczos up- and downsampling and histogram calculation can be split up in several parts
with only a small computational overhead.

As a shortcut for making our code multithreading capable we have used the Intel compiler
for doing some automatic parallelization but it could split up only very simple loops. It also
did not improve the fftw at all when trying to recompile it, rather it worsened performance so
we had to turn off the optimizations for it - this is an issue which is mentioned on the website

103

6. IMPLEMENTATION DETAILS

of the fftw. So, in conclusion, parallelization has still to be taken care of when the program is
designed and coded and can not be added by the compiler.

32 bit versus 64 bit

A performance aspect of our implementation which we came across while we ran our exper-
iments was that our code was written and compiled on a 32 bit machine which induces that
though having 3 GB or available physical memory we could use at most 2 GB thereof in the
best case. This issue is caused by the addressing capability of a 32 bit memory pointer. The
detrimental effect of not being able to use the physical memory is that we had to consider
unloading temporarily some arrays from memory on to the hard disk in order to free up
some process memory which not only induced some coding overhead but also slows down
the algorithm.

Here we should note that we are working with stereo audio files consisting of millions of
samples, each sample occupying in memory 4 bytes. Now as we need some more arrays for
storing intermediate results, or for pre-computing some time-intensive operations, gigabytes
of physical memory are consumed rather fast.

So in some future work it may be an interesting issue to consider whether an upgrade to
a 64 bit application would be worthwile, especially as it would then require to be run on a
64 bit machine which would break compatibility to the more widespread 32 bit architecture.
Therefore it must be weighted whether a 64 bit implementation would have more benefits by
being much faster due to the ability to use the whole physical memory or more losses due to
compatibility problems.

fftw Wisdom

The fftw adapts its algorithms to each computer it is run on by estimating the behaviour of the
algorithms or by performing several FFTs with different internal configurations and choosing
the fastest one. The latter method generates faster algorithms but takes a very long time to
complete which is impractical to be run each time the program is started. The estimation
method on the other hand is very fast but usually chooses suboptimal configurations for the
algorithms thus making them slower. We observed a difference in the algorithms by up to a
factor of two in speed between the two adaptation methods.

Now the fftw has the possibility to save the parameters it found which according to its web-
site work well only for the computer they were generated on. These parameters are then
called collectively wisdom and can be saved to the hard disk once they were found so the
adaptation need to be done only once for every computer. Interestingly the optimal parame-

104

Performance Enhancements

ters may also vary for the same computer between different user sessions on the operating
system due to memory and CPU load. So loading wisdom from file does not necessarily
mean that the parameters will be optimal for the time the program is ran.

Unfortunately again due to time constraints we did not look further into the wisdom mech-
anism of the fftw and how to optimally use it. So this topic may be considered worth some
further investigation in some future work.

Considerations of FFT Size

While the size of the FFT in the blind source separation algorithm matters due to the desired
high frequency resolution and the noise effects, we can choose it freely for the other two
algorithms. More precisely when using the FFT for correlation and convolution we can aim
to choose a FFT size which will need the least time to calculate.

From now on we will discuss the optimal size of the FFT for correlation which is the same as
for convolution because correlation and convolution differ only by the time reversal of one
of the input signals.

So in order to do a non-cyclic correlation we need to choose a suitable FFT size θF . An
obvious but naı̈ve solution would be to choose the size as the size of the first input signal
TA plus the size of the second input signal TB . We then pad both signals with zeroes until
they reach the length TA + TB . We note here that we need to pad the bigger signal which we
choose to be A, with the length of B in order to ensure that the resulting correlation will be
non-cyclic. Now although the naı̈ve solution will work, it is not optimal in terms of speed.

We shall note here that fast algorithms for the FFT can be used if θF can be factored into small
prime numbers. The fftw will also employ algorithms with a complexity of O(N logN) if
this is not the case but they are not fast in absolute terms. The fastest speeds can be achieved
if the θF is a power of two and therefore we should aim for such a θF in our search for the
optimal FFT size.

Now the logical improvement for choosing θF is to have it be the next power of two which
is bigger than TA + TB and pad A and B with zeroes to fill up the extra space. Assuming
TA = 223−214 samples which is equivalent to about 3 : 10 minutes at a 44.1kHz sample rate
and TB = 214 samples which equals 0.37 seconds, we can calculate the approximate number
of abstract FFT operations as

3 (TA + TB) log2 (TA + TB) = 3 · 223 log2 223 = 3 ∗ 23 ∗ 223 = 578 813 952 (6.1)

where we had to multiply the outcome with three as we have to transform signalA and signal
B and have to transform the result back in the time domain. We do not count the number

105

6. IMPLEMENTATION DETAILS

of complex multiplications in the spectrum which represent the correlation operation itself,
as they do not correspond to abstract FFT operations but we have to keep in mind that they
exist and will change with further improvements discussed in the next paragraphs. Note
that in our example the result has the same number of operations as the naı̈ve method but
in general the naı̈ve method will need fewer abstract operations. The difference will usually
be that if θF is not a power of two then one abstract operation will in average need more
concrete operations and therefore the naı̈ve solution will not necessarily be faster than the
this power of two solution. There is also another aspect of this: zeroes consume much less
computational time (i.e., CPU cycles) than non-zero entries. So padding a signal with zeroes
will not slow down the calculation speed too much.

We observe here that the correlation can now be split up in smaller segments. This means
that we can do the FFT for smaller sizes thus reducing the number of abstract operations
and speeding up the calculations. A second benefit of smaller segments is that we need to
calculate the FFT of B only once and can reuse it for each segment. The minimum segment
size is 2TB if we are to use powers of two. In order to calculate the segments correctly we
have to introduce an overlap before the end of the segment instead of the zero padding. This
will increase the total size of the samples needed to be transformed. Because the overlapping
is exactly TB the smallest possible segmentation will increase the number of samples which
need to be processed by about two.

Now having the information about the smallest segment size and the fixed required over-
lap we see that we have to minimize the function O (W ;TA, TB) of abstract operations for
segment size W

O (W ;TA, TB) = 2NWW log2W +W log2W (6.2)

or equivalently

O (W ;TA, TB) = (2NW + 1)W log2W (6.3)

by choosing the right segment size W , where NW is the number of segments. In the fol-
lowing we will minimize this function for our example in order to show how many abstract
FFT operations can be saved but usually the segment size must be determined by trial and
error on each computer in part as there are also other factors as for example the processor
cache, the number of complex multiplications in the frequency domain in order to produce
the correlation, and so on.

We note that the number of segments NW is a function of W , TA and TB , defined as

NW =

⌈
TA + TB

(W − TB)

⌉
(6.4)

where W is rounded up to the next power of two through the ceiling operator d·e. So

106

Summary and Future Work

O (W ;TA, TB) then becomes

O (W ;TA, TB) =

(
2

⌈
TA + TB

(W − TB)

⌉
+ 1

)
W log2W (6.5)

Using the values from our example this function has one minimum at NW = 74 with W =

217 resulting in 332 005 376 abstract operations. This is only 57.4% of the operations of the
non-segmented method. Note that this result is a worst case reduction because the example
was made to be comparable with the naı̈ve method. If we were to choose TA = 223 − 214 + 1

instead of TA = 223−214 we would have had 1 207 959 552 compared to 332 005 376 abstract
operations for the segmented method which would be a reduction to 27.5 percent. This
would now be a best case reduction compared to the non-segmented method.

As we see, doing correlation and convolution segment-wise using the FFT can reduce the
number of abstract operations needed from one half to one fourth of a non-segmented method.
Considering that for smaller FFT sizes the processor cache can be better reused then the speed
gain for segmented calculation may be even higher.

6.5 Summary and Future Work

In this chapter we explained the libraries we used during the development of the code. More
precisely we talked about Marsyas where we separated the code we needed and used it
through a wrapper class. Then for the fast Fourier transform we used the fftw library which
is known to be a fast implementation of the transform. And lastly, due to problems with the
getopt function in MSVC 2003 we mentioned the use of GetPot as a worthy replacement.

After a brief overview of the code structure of the three implementations, each containing
three files we arrived to the topic of performance enhancements. The benefits of enhancing
the implementation with multithreading capability which is expected to cut processing time
in half for a dual core processor, were discussed. Though not being implemented at the time
of writing, this enhancement should be considered for future work especially as multi-core
processors are becoming mainstream.

During evaluation we came across the problem of our implementations being able to ad-
dress only 2 GB of physical memory due to their 32 bit addressing. As our algorithms work
with big amounts of data originating from audio files and also need to store the resulting
variables, they fill up the whole addressable memory space rather fast. Upgrading to 64 bit
which would enlarge the addressable amount of memory but would at the same time break
compatibility to 32 bit machines which are widespread by the moment is left as an issue to
be carefully thought upon in some future work.

107

6. IMPLEMENTATION DETAILS

Another possible performance improvment using fftw wisdom was discussed where wisdom
is the capability of the library to save internal configuration parameters which result in fast
transforms. As finding such parameters is a time consuming task saving it for future use is
an option to be considered. This capability is not used in the current implementation and
therefore was left for some future work.

The more theoretical aspect of optimal FFT size in regard to execution speed was elaborated
upon in the next part. Following the idea that a convolution or correlation using the FFT
can be done segment-wise, we can opt to choose a favorable segment size in regard to speed.
Here we saw that segments with lengths being powers of two were suitable for this purpose
due to the availability of fast implementations for these special sizes. Furthermore keeping
the segments short compared to the length of the input signal not only reduces the number
of abstract operations needed for the FFT but also increases cache reusability.

108

Chapter 7

Benchmarking and Evaluation

7.1 Overview

Now we have come to the point where we have to show that the algorithms we have come
up with, are indeed capable of separating instruments as they should. As we cannot for-
mally prove their capability we will empirically show their efficiency by running them on
well known music collections and on our own corpus of publicly available music files and
measuring their outcome either subjectively by a rating system or objectively by an error
measure in order to generate scores which should be comparable between our algorithms
and possibly between further publications in this field.

We will continue this chapter with a discussion on the corpora used and the songs we selected
in Section 7.2. Here we will also describe how we generated our own corpus called the IS
corpus and what types of recordings it contains.

In Section 7.3 we will explain our testing methods, the scoring system, the error measure as
well as the algorithms used for comparing the output of our implementation with the given
reference tracks. Furthermore we will also introduce a base-line in order to include a simpler
algorithm in our comparison.

The results will be published in Section 7.4 continuing with a discussion in Section 7.5 where
we will interpret the results more deeply.

Finally we will give a summary and draw some conclusions in Section 7.6.

109

7. BENCHMARKING AND EVALUATION

7.2 Corpora

Existing Corpora

We used songs from three existing corpora and our own corpus for evaluation. The existing
corpora are in detail the

• BASS-dB [37], the Blind Audio Source Separation dataBase. Although this database is
the most interesting one, it is no longer actively maintained at its website cited in the
reference. Still, due to the Creative Commons (CC) license, some of the songs can be
found and downloaded legally in the Web either at the Internet Archive1 or on their
respective websites (see Appendix A for further details). This is the reason we decided
to use what was left of the database. The interesting part here is that due to the BASS-
dB being especially made for blind source separation, the songs were selected to also
include their reference tracks before the final mixdown. Thus using these songs allows
us to compare the output of our algorithms to the reference tracks using an objective
error measure.

• ISMIRgenre collection, containing full songs from different genres. We included two
songs from each genre in our benchmarks making a total of twelve titles.

• RWC [11], containing full songs, copyright cleared for research usage. Ten titles were
selected for our benchmarks from this database.

Summing up we have 25 songs from existing corpora, counting the three songs we could take
from the BASS-dB. As a sidenote we should mention that we found more than three songs
belonging to the BASS-dB but the other songs did not have their tracks aligned and therefore
needed some complicated mixing and stereo panning in order to obtain the outcome intended
by the author, which determined us to exclude them from testing.

Instrument Separation Corpus

Now, while these corpora may be representative for music available today, we felt that we
also needed to include some songs where our algorithms are expected to achieve good results
which lead us to build an additional corpus of our own, the IS corpus.

First we decided to use some module files, also known for their .MOD ending. Unlike WAVE
files they do not contain the waveform of the song but notes similar to the MIDI format.
Additionally they also contain the sound of the corresponding instruments which makes

1http://www.archive.org

110

http://www.archive.org

Corpora

these files have the same rendered output on different computers, unlike MIDI where the
sounds of the instruments are stored externally and thus may vary depending on which
hardware or software they are played on.

An advantage of module files is that their content is organized in channels which can be
rendered separately using editing software like the free ModPlug Tracker2. This means that
potentially every module file can be decomposed into its component tracks and be rendered
to common WAVE or AU files thus enabling us to build reference tracks for our benchmarks.
As these tracks would not vary depending on the computer played upon, the decomposition
is repeatable and thus usable for our purposes.

Now as good as it may sound, the tracks in the module files do rather seldom represent
one instrument or a group of instruments and therefore not every module file is suitable
for benchmarking. The main problem we encoutered was that instruments often change the
tracks they are played in. On the other side if we separe an instrument with our algorithms
we usually generate a track with only that instrument playing or as for the direct template
matching algorithm, we generate a track for every separated tone. So if we select one track
as the reference we will miss parts of the instrument which changes tracks, a situation which
would inevitably lead to a high error value in both tracks although the corresponding instru-
ments may have been separated perfectly by the algorithm. A possible solution would be to
add the affected tracks together but we noticed that the instruments change tracks in such a
way that at the end all tracks would have to be added together. So our quest in building a
corpus using modules was to find files where the instruments would either not change tracks
at all or change only tracks in a way that if these tracks were added together there would still
remain a number of indepentent tracks at the end.

We found about four freely available modules fullfilling the criteria for having the possibility
to create some independent tracks out of them. We examined the independence by listening
to the tracks, no formal parser was built, so there may be some sections which slipped our
attention. Not using a formal parser which guarantees that the tracks are independent, as-
suming the saved sounds are not from the same instrument - and even in that case a heuristic
could be used to check for that condition - means that the error is limited by the missing
parts of the instruments which cause deviations from the reference even though the instru-
ment may have been separated correctly by the algorithm.

Following the module files we searched for more songs in the usual wave format with their
individual tracks available so that we have more than three songs we can objectively evaluate
our algorithms on. We looked out for songs being published under the Creative Commons
license so that others may be able to obtain them easily by being able to download them freely.
This resulted in four additional songs, all of them obtained through the Internet Archive.

2http://www.modplug.com

111

http://www.modplug.com

7. BENCHMARKING AND EVALUATION

We then also looked for music recorded in binaural mode for benchmarking the histogram
based blind source separation approach. Although binaural and stereo may be used synony-
mously for describing a two channel audio file there is usually a difference between these
recording modes. Recordings which are labelled as ”stereo´´ are usually made to be mono
downmix compatible. In that way, downmixing both channels to one single channel will not
change the tone colour of the audio signal due to phase cancellation phenomena which is
important for music in order to be receivable even by analog shortwave receivers, if broad-
casted. Additionally some analog stereo to multiple channel decoding techniques also make
use of the mono-compatibility in order to generate an additional center channel out of the
both stereophonic ones.

Now mono-compatible downmixes are not very usefull for the HSBSS as the only stereo in-
formation is given by the magnitude differences in the signal which translate to only one di-
mension in the magnitude-shift-frequency histogram thus limiting its separation capabilities
considerably. Now usually most genres of modern music are recorded in a mono-compatible
stereo except for classical music where precise localization of the instruments is desirable,
which can only be conveyed by also preserving the phase information.

So we had to choose to either search for more classical music or to search for binaural music.
The term ”binaural´´ is usually used to indicate that the recording was made to sound in the
way the listener must have perceived if he would have been there at the recording site. This
often implies using microphones modelling the human ear and head which may look strange
if used in operas for example and does not allow using separate microphones for singers and
instruments as downmixing to two channels while still pertaining the binaural cues would
not be easy. Unfortunatelly due to these facts also because they have to be listened to while
wearing headphones in order to reveal the full panorama where this circumstance is seen as
a nuissance by most listeners, such recordings are rather rare.

Still we were able to find some freely downloadable binaural demo recordings (for the links
see AppendixA). As recording quality is a major problem with these recordings we could
pick only four out of them which sounded good.

Summed up we now have 12 musical pieces for the IS corpus: 4 binaural recordings which
make a subset of the corpus called IS-B, 4 module files in the subset IS-M and 4 waveform files
in the subset IS-R. There could have been more but we were also restricted by the running
time of the algorithm implementations and by the amounts of data these algorithms gener-
ated. We worked on uncompressed music where possible and also generated uncompressed
files before measuring errors for the objective tests. As a hard disk rapidly fills up during
such a testing procedure we eventually had to compress the resulting tracks using lossy com-
pression, but we did that only after generating the error values. This way we did our tests
using the uncompressed files and then archived the resulting tracks using lossy compression.

112

Methods and Algorithms

We should mention here that the files forming the IS corpus itself are not archived using lossy
compression except for the binaural recordings which were lossy compressed from the begin-
ning.

7.3 Methods and Algorithms

Testing Conditions

The benchmarks were done on a Core 2 Duo 2.13 GHz machine with 3 GB of DDR2-667MHz
RAM - where only 1 GB could be used by the algorithm as mentioned in Chapter 6. Only one
core of the processor was used as the implementations did not support multi-threading.

For the subjective listening tests a Creative X-Fi XtremeMusic sound card was used. Playback
was done on headphones. SoundForge XP 4.0 was used as the player so that the test subjects
could also see the envelope of the signal while playing.

Baseline

In order to have some simpler algorithm which should provide the lower bound on the per-
formance measure we decided to use a baseline which makes use of the structure of the often
used multichannel to stereo encodings. The algorithm works as follows for each sample pair
(x0,j, x1,j)

T : (
x′0,j

x′1,j

)
=

1

2

(
1 1

1 −1

)(
x0,j

x1,j

)
(7.1)

Thus x′0,j represents the monaural or sum channel and x′1,j the difference channel. We note
that applying the transformation matrix once again without the 1/2 scaling coefficient results
in the original signal.

As the difference channel usually has much less energy than the sum channel we decided
to scale the difference channel by 2 for the subjective tests in order to compensate for the
reduced loudness which may have been perceived as a signal quality problem by the test
listeners. For the objective tests we used the original formula.

This baseline now is expected to work well for multichannel coded stereo recordings as it
mimics a very simple decoder. For binaural recordings there should be no perceivable sepa-
ration as the instruments spread through the magnitude-shift space instead of concentrating
around the middle point which stands for zero time shift and equal magnitude.

113

7. BENCHMARKING AND EVALUATION

Subjective Evaluation

For this benchmarking technique we need to define the criteria according to which the re-
sulted tracks should be evaluated. During preliminary listening we realized that it was not
possible to use only one quality measure. We rather needed to describe two qualities of the
separated signal:

1. the grade of separation, ”S´´. Usually the algorithms separate whole groups of instru-
ments. So this measure now should tell us about how much the instruments not be-
longing to the separated group are suppressed and at the same time how small this
group is. The range of this measure is set to be between 0 and 5 with zero meaning
that the group contains all instruments or that no instruments were suppressed which
basically means there was no separation and 5 means that all but one instrument were
suppressed and that the suppressed instruments are cannot be recognized as such but
rather as some noise. The values 2 and 3 mean that the instrument group contains
about half of the playing instruments and the others are suppressed percetibly where 2
stands for weaker suppression and 3 for a better more perceptible suppression. Now 1
means that the group contains many instruments compared to the total number of in-
struments and that the other instruments are only weakly suppressed. Finally the score
of 4 means that the group of instruments is small, tending towards one instrument and
that the other instruments are very well suppressed.

We did not split this criterion further into group size and suppression quality because
they correlate. Tracks with weakly suppressed instruments tend to be perceived as
having selected a wider group of instruments than tracks with strongly suppressed
ones. As counting the instruments in a group only by listening is usually a difficult task
as the songs in the corpora we used have plenty of them playing at the same time, we
regarded it as a better choice to tie the group size with the supression power.

2. its perceived quality, ”Q´´. Now even if one instrument was separated perfectly in a
resultant track with the other instruments being imperceptible the signal may still have
a bad quality as the algorithm may also have suppressed some parts in the frequency
range from the selected instrument. So the perceived quality of the track may be low
although the separation may be good. This subjective score can also take up values from
0 to 5 with 0 meaning the instruments in the resultant track are cannot be identified
and 5 meaning that the instrument is separated with a very good quality with maybe
some barely perceptible residual noise. 1 should mean that the selected instrument or
instrument group is barely identifiable, 2 to 3 meaning that the instrument group has
annoying degradations with 3 being less annoying. Finally 4 is thought to stand for a

114

Methods and Algorithms

track whose selected group has some perceptible degradation but the sound quality is
pleasing to the extent allowed by the content of the song.

Now there may be some extreme cases like 0/0 (grade of separation/perceived quality)
which should be interpreted that the track contains no data and 0/5 that there nothing was
separed. The combination 5/0 should not exist as it is not possible to say how well an instru-
ment was separated if the signal is degraded so much that the selected instrument or group
cannot be identified anymore. Now, finally 5/5 should stand for perfect separation and this
is what we aim for with our algorithms.

The scores discussed until now are given to each track separately, where we form a mean for
each score type over all testing subjects. Coming to the two average scores for each song we
came to the problem whether we should calculate the mean over all separated tracks with
valid data e.g., the tracks not having a 0/0 score or rather over all tracks generated. Here we
decided to build the mean over all generated tracks as we think it should not matter whether
many tracks were separated without good separation power or quality or only two tracks
with good separation power and quality even if there should be more.

We should note here that we did not use the direct template matching algorithm for subjective
evaluation as due to its lack of the tone clustering stage which should gather together all tones
corresponding to one instrument. We got about 40 resulting Tracks per song. These tracks
would have to be clustered and mixed by hand into some fewer tracks before evaluation and
it was too much effort for the restricted time frame and ressources we had at our disposal.

Objective evaluation

The objective evaluation is somehow easier to explain and perform as in this case we have the
reference tracks available and thus only need to perform a measurement of the error between
reference and result.

The error measure we chose is the signal to noise ratio (SNR) which is expressed in dB ac-
cording to Formula 2.2. Here we will use a version adapted to stereo input

SNR = 10 log10

∑
i=1,2‖xi‖2∑

i=1,2‖xi − x̂i‖2
(7.2)

where x̂i is the ith channel of the input track. The SNR is zero if the noise and signal energy
are equal and ∞ if the estimation is exact and thus there is no noise term.

Before being able to measure the difference between estimate and reference we first have
to match the output of the algorithm to the reference as the output is not generated in the

115

7. BENCHMARKING AND EVALUATION

order the references are listed. Furthermore the references may contain groups of instruments
which the algorithm may have further separated.

So in order to match the outputs to their references we coded an algorithm searching for the
best match between every output and the reference where each output may be matched only
to one reference. If more outputs match the same reference best then they are added together
and the SNR is calculated thereafter. This algorithm is applied to the HSBSS, the baseline and
to the direct template matching algorithm. Especially for the latter we have the advantage
that the 40 instrument tone tracks are grouped together and then compared to the reference
after being summed correspondigly. This way we are given a best case approximation of the
missing clustering stage. Unfortunately as this approximation uses information contained
in the references file in order to cluster the instruments we will always obtain better results
than with a real clustering stage and therefore our results for the direct template matching
algorithm can be regarded only as a guide and not as a reference when compared to other
algorithms. Using a real clustering stage with all other parts of the algorithm being the same,
can only produce lower or at best the same results.

While calculating the mean value for the SNR we saw two possibilities on how to do this

1. calculate the arithmetic mean of SNR values.

2. concatenate the references and separately concatenate their matching outputs to form
one signal for the references and one for the matching outputs. Calculate the SNR on
these two signals. The result can be considered the mean SNR over all references. Still,
due to the logarithm and the fraction this is not the same as the arithmetic mean of the
SNR values.

We finally opted for 1 as it produces more intuitive results. 2 has the problem that if there is
one well separated track and two badly separated ones then this well separated track will not
count much. It is hard to give an example here because 2 is also dependent on the energy and
the length of the signals being concatenated. So choosing 1 is expected to give more intuitive
results.

7.4 Results

For testing, we used the direct template matching approach, the HSBSS algorithm and the
baseline. The iterative self-organized template matching implementation did not to converge
in reasonable time and therefore was not included in the following tables. We decided that
stopping the algorithm before it reached convergence would produce results which would

116

Results

not be representative of its capabilities. As the results may be interesting, an evaluation for
this algorithm may be done in some future work.

We start with the objective evaluation results given in Table 7.1. The evaluated songs come
from the BASS-dB and from the parts of our corpus where we have the reference tracks or
could generate them, as it was possible with the module files.

Looking at the number of reference tracks covered by each algorithm we see that the DTM
approach clearly separated the most tracks for the module file part of the IS corpus. As this
algorithm can be thought as the inversion of a module file playback, it is very natural for it
to be able to perform better than the HSBSS. Interestingly though this is not the case for the
separation performance itself where the HSBSS is able to reach the highest signal to noise
ratios for both, the best separated track out from a song and for the mean separation quality.
On the top of that it is also faster than the DTM by a factor of two.

For the BASS-dB examples we see that the HSBSS covers most of the reference tracks with
best SN ratios as well. The exception is the reference part of the IS corpus where the DTM
has the better track coverage and SN ratios. As the songs do no differ that much from the
BASS-dB, this result is rather interesting.

Concerning the baseline, it has the lowest SNR as expected and also the lowest overall refer-
ence track coverage. The only advantage the baseline has and which is not shown in Table 7.1
is its speed. It needs only about one second to generate the two resulting tracks which is two
orders of magnitude faster than any of the two other algorithms.

A summary of the means over all three groups of songs can be seen in Table 7.2. The DTM
seems to have a little better mean performance but we must keep in mind that it has a best
case approximation of its missing clustering stage. Considering that the HSBSS needs less
computational time for achieving a separation nearly as good as the actual DTM we can say
that the HSBSS has a better performance than the DTM.

After having presented the objective evaluation we now shall come to the subjective one
which is much more interesting as it shows the performance perceived by humans.

Looking at Table 7.3 which shows the same songs as Table 7.1 for the subjective evaluation
we can truly see the performance difference between the HSBSS and the baseline which was
not so obvious during objective evaluation. It is best visible in the mean separation score ”S´´
which never goes beyound 1.

Here we should also note that we had to make the algorithms comparable. As the baseline
always creates two tracks instead of the desired number which was four or higher depend-
ing on whether we had the reference tracks or not, we considered all the tracks up to the
desired number to have a 0 separation and 0 quality score as they were never created and

117

7. BENCHMARKING AND EVALUATION

Tra
ck

s Ref
er

en
ce

Tra
ck

s DTM

Tra
ck

s HSBSS

Tra
ck

s BL

M
ax

. SNR
DTM

M
ax

. SNR
HSBSS

M
ax

. SNR
BL

M
ea

n SNR
DTM

M
ea

n SNR
HSBSS

M
ea

n SNR
BL

Tim
e DTM

Tim
e HSBSS

BASS T1 4 2 3 2 3.00dB 2.95dB 1.38dB 0.96dB 1.13dB 0.60dB 612s 180s
BASS T2 5 2 2 2 1.29dB 8.33dB 1.17dB 0.28dB 3.22dB 0.34dB 580s 257s
BASS T3 6 3 4 1 4.19dB 4.72dB 0.80dB 1.07dB 1.10dB 0.13dB 253s 159s

Mean 5.0 2.3 3.0 1.7 2.83dB 5.33dB 1.12dB 0.77dB 1.82dB 0.36dB 482s 199s

IS-R T1 7 3 3 1 3.62dB 1.39dB 0.18dB 1.00dB 0.53dB 0.03dB 474s 359s
IS-R T2 5 3 2 1 4.45dB 0.00dB 0.00dB 3.10dB -0.58dB -0.30dB 878s 152s
IS-R T3 10 4 3 1 6.22dB 5.09dB 3.00dB 0.87dB 0.51dB 0.30dB 400s 568s
IS-R T4 9 3 3 2 5.80dB 0.04dB 0.00dB 0.53dB -0.36dB -0.57dB 786s 808s

Mean 7.8 3.3 2.8 1.3 5.02dB 1.63dB 0.80dB 1.38dB 0.03dB -0.14dB 635s 472s

IS-M T1 4 3 2 2 0.92dB 4.03dB 0.67dB 0.24dB 1.31dB -0.02dB 181s 73s
IS-M T2 6 4 3 2 4.70dB 9.92dB 3.16dB 1.09dB 1.43dB 0.49dB 582s 295s
IS-M T3 5 5 4 1 1.89dB 2.90dB 0.00dB 0.31dB 0.32dB -0.75dB 218s 108s
IS-M T4 7 4 2 2 5.78dB 5.10dB 4.43dB 1.08dB 0.83dB 0.72dB 386s 256s

Mean 5.5 4.0 2.8 1.8 3.32dB 5.49dB 2.07dB 0.64dB 0.97dB 0.44dB 342s 183s

Table 7.1 BASS-dB and IS corpus. Results of the objective evaluation with reference tracks. For the
title names and their authors please see Appendix A.

Tra
ck

s Ref
er

en
ce

Tra
ck

s DTM

Tra
ck

s HSBSS

Tra
ck

s BL

M
ax

. SNR
DTM

M
ax

. SNR
HSBSS

M
ax

. SNR
BL

M
ea

n SNR
DTM

M
ea

n SNR
HSBSS

M
ea

n SNR
BL

Tim
e DTM

Tim
e HSBSS

BASS 5.0 2.3 3.0 1.7 2.83dB 5.33dB 1.12dB 0.77dB 1.82dB 0.36dB 482s 199s
IS-R 7.8 3.3 2.8 1.3 5.02dB 1.63dB 0.80dB 1.38dB 0.03dB -0.14dB 635s 472s
IS-M 5.5 4.0 2.8 1.8 3.32dB 5.49dB 2.07dB 0.64dB 0.97dB 0.44dB 342s 183s

W-Mean1) 6.6 2.9 2.9 1.5 4.08dB 3.22dB 0.94dB 1.12dB 0.80dB 0.07dB 569s 355s

W-Mean 6.2 3.3 2.9 1.6 3.80dB 4.04dB 1.35dB 0.94dB 0.86dB 0.21dB 487s 292s

Table 7.2 Summary of the objective evaluation results. The weighted means are calculated using a

weight proportional to the number of titles in each corpus. 1) Without IS-Module.

118

Results

thus could be assmuned to be zero. Therefore only if the baseline would be able to split up
the two tracks perfectly that is with half of the instruments in one and the other half in the
other part and with perfect quality, then it would be on par with the HSBSS. It now can be
argued that this comparison would be now unfair for the baseline as two tracks with perfect
separation and quality would be better than four with average separation and quality but in
practice the sum channel of the baseline did rarely separe anything. Here we should recall
the mono-compatibility, people should still be able to listen to the song on a simple monaural
player which presumes that nothing in the song is lost or hidden and thus ”separated´´ for
this channel. So the case where both channels of the baseline would show best separation
performance and quality cannot not occur in practice so the addition of zeroed tracks to the
baseline can be regarded as fair.

Back to the results we may notice in Table 7.3 as well as in Table 7.4 that the standard de-
viations are high at times. This is caused by the fact that we had only few test subjects and
thus the means do not converge as the subjects are biased on how to interpret separation and
quality despite of our efforts to clearly define it. Still even with this high standard deviation
the results are interpretable.

What we may also notice is that for the baseline quality is less of a problem that separation
performance. As the algorithm is very simple and there is no dependence between the sam-
ples in time no artefacts can be created. Only timbre and tonality of the song as a whole
can be unfavorably changed but compared to the HSBSS it cannot create musical noise for
example.

Looking for the maximum separation we will also see that the baseline is not that bad when
compared to the mean separation in Table 7.5 which summarizes the result over all corpora
and collections.

If we look at the variance of the weighted mean in the subjective evaluation summary we
will also observe that it is higher for the baseline than the HSBSS. This could be interepreted
as if the output of the baseline is in general more controversial. Especially if it is good to have
a big group of instruments with few well suppressed instruments and good remaining signal
quality or a small group of instruments, ideally only one instrument with a less than perfect
quality.

Finally we can see in Table 7.5 that the mean overall separation performance is scored a little
weaker than average while overall quality is scored average for the HSBSS. So if improve-
ments are to be thought of in some future work it would be probably best if they would
target at the separation performance.

119

7. BENCHMARKING AND EVALUATION

Tra
ck

s Ref
er

en
ce

Tra
ck

s HSBSS

M
ax

. S HSBSS

M
ax

. S BL

M
ea

n S HSBSS

M
ea

n S BL

M
ea

n Q
HSBSS

M
ea

n Q
BL

Tim
e HSBSS

BASS T1 4 3 1.5 2.0 1.1±1.6 0.5±0.7 1.6±0.5 2.5±0.0 180s
BASS T2 5 2 4.0 0.0 2.7±1.6 0.0±0.0 2.6±0.0 1.9±0.1 257s
BASS T3 6 4 2.5 1.5 2.0±1.2 0.3±0.4 2.9±0.4 1.6±0.1 159s

Mean 5.0 3.0 2.7 1.2 1.9±0.4 0.3±0.4 2.4±0.3 2.0±0.1 199s

IS-R T1 7 3 5.0 4.0 1.7±0.2 0.6±0.2 1.8±0.1 1.3±0.2 359s
IS-R T2 5 2 0.0 2.5 0.0±0.0 0.8±1.2 1.7±0.0 2.7±0.9 152s
IS-R T3 10 3 4.0 3.0 1.0±0.3 0.3±0.3 1.2±0.0 1.0±0.1 568s
IS-R T4 9 3 3.5 3.0 1.6±0.4 0.3±0.3 1.3±0.0 0.9±0.2 808s

Mean 7.8 2.8 3.1 3.1 1.1±0.0 0.5±0.5 1.5±0.0 1.5±0.4 472s

IS-M T1 4 2 5.0 1.0 3.5±0.0 0.3±0.4 3.0±0.7 2.1±0.5 73s
IS-M T2 6 3 4.0 3.5 1.6±0.1 0.7±0.0 1.3±0.2 1.2±0.7 295s
IS-M T3 5 4 3.0 0.0 2.1±0.7 0.0±0.0 2.7±0.1 1.8±0.3 108s
IS-M T4 7 2 4.5 3.0 1.6±0.5 0.5±0.1 1.5±0.5 1.1±0.4 256s

Mean 5.5 2.8 4.1 1.9 2.2±0.3 0.4±0.1 2.1±0.0 1.6±0.5 183s

Table 7.3 BASS-dB and IS corpus. Subjective evaluation with the same titles as for the objective
evaluation. ”S´´ stands for the grade of separation and ”Q´´ for the remaining signal quality. For the
title names and their authors please see Appendix A.

7.5 Discussion

The results show that the direct template matching algorithm and the histogram based blind
separation method have about equal separation strength. Now there is also another thing
of concern: the performance on the objective evaluation is very unevenly distributed among
the BASS-dB, IS-R and IS-M. The results vary widely. We think that this problem comes from
using to few songs per corpus. Unfortunately for the BASS-dB we could not do much more
and we also lacked the time to extend our IS corpus to contain more songs. So as for future
work it would be very important to create a corpus with a lot more titles so that we can rule
out coincidence while interpreting the results. So for example we cannot explain why the
HSBSS has such a bad performance on the IS-R corpus compared to the BASS-dB by other
means than with coincidence.

So we need a better corpus. The main requierements for it would be to contain as many songs

120

Discussion

Tra
ck

s Ref
er

en
ce

Tra
ck

s HSBSS

M
ax

. S HSBSS

M
ax

. S BL

M
ea

n S HSBSS

M
ea

n S BL

M
ea

n Q
HSBSS

M
ea

n Q
BL

Tim
e HSBSS

IS-B T1 4 2.5 2.0 1.5 1.0±1.1 0.5±0.0 1.6±0.2 2.0±0.7 161s
IS-B T2 4 3.5 3.5 1.0 2.1±0.5 0.3±0.0 2.9±0.2 2.3±0.4 171s
IS-B T3 4 3.5 4.5 0.0 2.0±1.1 0.0±0.0 3.3±0.4 2.1±0.5 168s
IS-B T4 4 3.5 4.0 1.0 2.4±0.2 0.3±0.4 2.6±0.5 2.4±0.2 46s

Mean 4.0 3.3 3.5 0.9 1.9±0.6 0.3±0.1 2.6±0.3 2.2±0.4 137s

ISMIR-G T1 4 3.0 5.0 0.0 2.0±0.7 0.0±0.0 2.5±0.4 2.5±0.0 150s
ISMIR-G T2 4 3.5 3.0 0.0 2.8±1.1 0.0±0.0 2.4±0.2 2.5±0.0 175s
ISMIR-G T3 4 3.0 4.0 2.0 1.8±0.4 0.5±0.4 1.9±0.2 2.3±0.4 497s
ISMIR-G T4 4 3.0 4.0 2.5 2.4±0.2 0.9±0.2 2.4±0.2 1.4±0.5 472s
ISMIR-G T5 4 2.0 2.5 1.0 1.5±2.1 0.4±0.5 1.6±0.5 1.3±0.0 179s
ISMIR-G T6 4 4.0 3.5 3.5 3.0±0.4 1.1±0.2 2.6±0.2 2.1±0.5 248s
ISMIR-G T7 4 3.5 3.5 3.0 2.4±0.2 0.9±0.5 3.0±0.4 2.0±0.7 224s
ISMIR-G T8 4 3.5 3.0 3.0 2.3±1.4 1.0±0.0 2.6±0.9 1.4±0.2 779s
ISMIR-G T9 4 3.0 4.0 3.5 2.4±0.5 0.9±0.5 2.6±0.9 2.3±0.4 399s
ISMIR-G T10 4 2.5 4.5 3.5 2.5±0.0 0.9±0.5 2.3±0.4 2.1±0.5 244s
ISMIR-G T11 4 3.5 3.5 2.0 2.9±0.2 0.6±0.2 3.0±0.4 2.0±0.4 262s
ISMIR-G T12 4 3.5 3.5 0.0 2.4±0.9 0.0±0.0 2.1±0.9 2.0±0.7 328s

Mean 4.0 3.2 3.7 2.0 2.3±0.6 0.6±0.1 2.4±0.2 2.0±0.4 330s

RWC T1 4 3.0 2.5 2.5 1.6±0.5 0.6±0.9 2.8±0.4 2.3±0.4 301s
RWC T2 4 3.0 4.0 2.5 2.3±1.1 0.6±0.9 2.8±0.4 2.5±0.0 302s
RWC T3 4 3.0 3.5 2.0 2.3±1.1 0.5±0.7 3.0±0.7 2.4±0.2 246s
RWC T4 4 3.5 4.5 3.0 2.8±0.4 0.8±0.7 3.3±0.0 2.4±0.2 336s
RWC T5 4 3.0 4.0 3.5 2.3±1.1 0.9±0.5 3.3±0.7 2.4±0.2 268s
RWC T6 4 3.0 3.5 2.5 1.5±0.0 0.6±0.5 2.5±0.4 2.3±0.4 401s
RWC T7 4 3.5 3.5 2.5 1.8±1.1 0.6±0.5 2.6±0.2 2.3±0.4 362s
RWC T8 4 2.5 3.0 3.0 2.0±0.4 0.8±0.7 2.3±0.4 2.3±0.4 264s
RWC T9 4 2.0 3.5 2.0 1.6±1.2 0.5±0.7 2.3±0.4 2.3±0.4 413s
RWC T10 4 4.0 3.5 1.5 2.8±0.7 0.4±0.5 3.1±0.2 2.5±0.0 231s

Mean 4.0 3.1 3.6 2.5 2.1±0.5 0.6±0.7 2.8±0.2 2.3±0.2 312s

Table 7.4 IS and RWC corpus, ISMIRgenre collection. Subjective evaluation of the three corpora. ”S´´
stands for the grade of separation and ”Q´´ for the remaining signal quality. For the title names and their
authors please see Appendix A.

121

7. BENCHMARKING AND EVALUATION

Tra
ck

s Ref
er

en
ce

Tra
ck

s HSBSS

M
ax

. S HSBSS

M
ax

. S BL

M
ea

n S HSBSS

M
ea

n S BL

M
ea

n Q
HSBSS

M
ea

n Q
BL

Tim
e HSBSS

BASS 5.0 3.0 2.7 1.2 1.9±0.4 0.3±0.4 2.4±0.3 2.0±0.1 199s
IS-B 4.0 3.3 3.5 0.9 1.9±0.6 0.3±0.1 2.6±0.3 2.2±0.4 137s
IS-R 7.8 2.8 3.1 3.1 1.1±0.0 0.5±0.5 1.5±0.0 1.5±0.4 472s
IS-M 5.5 2.8 4.1 1.9 2.2±0.3 0.4±0.1 2.1±0.0 1.6±0.5 183s
ISMIR-G 4.0 3.2 3.5 1.7 2.3±0.6 0.6±0.1 2.4±0.2 2.0±0.4 330s
RWC 4.0 3.1 3.7 2.0 2.1±0.5 0.6±0.7 2.8±0.2 2.3±0.2 312s

W-Mean 4.65 3.08 3.53 2.05 2.04±0.07 0.50±0.30 2.40±0.05 2.00±0.32 293s

Table 7.5 Summary of the subjective evaluation results. The weighted means are calculated using a
weight proportional to the number of titles in each corpus.

with reference tracks or binaural recorded songs as possible. It would be perfect if it could
also contain binaural recorded songs together with their reference tracks which are rather dif-
ficult to obtain because binaural mixing and at the same time preserving signal quality of the
mixdown is known not to be an easy task. On the other hand it may be argued that binaural
recorded titles are a rarity in practice and therefore an algorithm tuned to work with binaural
songs would rather be of academic interest rather than practical. Still, musical instrument
separation is a difficult task which is not satisfactorily solved by the time being and therefore
even being able to separate binaural songs might constitute an important achievement.

Regarding the subjective evaluation results we might say that the HSBSS comes out to be
very promising at the moment and deserves more attention in future as there are a vast num-
ber of improvements which could be applied to this algorithm. An interesting thought here
would be to unify the concepts of template matching and histogram based blind source sep-
aration. It should be expected to produce superior results to what we have seen so far in our
experiments.

7.6 Summary and Conclusions

At first we gave an overview over the corpora used in our benchmarking. We pointed out
that the titles from the BASS-dB are very well suited for testing instrument separation algo-
rithms as they contain their reference tracks before mixdown. The existing corpora lacked
more titles of this type or binaural recorded songs which would suit the HSBSS algorithm
best as they would also contain much phase information which mono downmix compatible

122

Summary and Conclusions

stereo recordings lack. Therefore we decided to build our own corpus called the Instrument
Separation corpus or shortly the IS corpus.

Our corpus was made to contain four binaural recorded songs and four titles having their
reference tracks available. Additionally we also included some module files which are known
by their typical .MOD extension as they proved to be easily splittable into independent tracks
if we could find a mapping of the channels in the module file to tracks with the constraint that
the instruments do not spread or wander across tracks. Furthermore as the direct template
matching method is practically the inversion of playing a module we thought they could be
well suited for objectively evaluating the DTM.

We then described the testing conditions for the evaluation as well as the criteria for sub-
jective and objective evaluation. For the subjective evaluation we indrocuded the grade of
separation score and the perceived quality score of the resultant signal after separation while
for the objective testing we elaborated on the SNR error measure for stereo audio files. Fur-
thermore we also described a simple baseline algorithm to be used as a reference point for
evaluation.

After presenting the evaluation results we discussed the outcome and how evaluation could
be improved for future work. This includes the expansion of the IS corpus to contain more
titles as well as a new kind of title which is recorded binaurally and additionaly has its ref-
erence tracks available. Furthermore the idea was presented to unify the DTM and HSBSS
concepts to create a hybrid which is expected to perform better than its base ideas separately.

Concluding this section we want to say that although the SNR figures show rather low SN
ratios with 0.94dB in average where we would expect about 8-10dB, they should not be dis-
couraging as the subjective evaluation shows that the HSBSS algorithm performs average.
Additionally it also compares favorably to the baseline. So we may conclude that the algo-
rithms which are partly new and partly improvements over existing methods, have shown
their benefits and strengths. Still the weak point of this evaluation was our inability to get
hold of some implementations of related algorithms in the field of blind audio source sepa-
ration which surely would have made the results more interesting and would have given a
better grasp of the performance of our algorithms. So we should strive harder to obtain work-
ing implementations of other algorithms for comparison purposes in some future work.

123

Chapter 8

Conclusions and Future Work

During this thesis we have presented three algorithms for separating sounds of instruments
from musical recordings.

We started with the general problem formulation in Chapter 1. Then we presented the related
work in Chapter 2 reviewing general purpose blind source separation methods using audi-
tory cues for discriminating between sources as well as more specialized algorithms using
harmonic and sinusoidal modelling in order to estimate the harminic structure of instru-
ments. We also reviewed some template based approaches which brought us to the idea of
the iterative template matching algorithm in Chapter 4. Continuing the related work chap-
ter, we reviewed the benchmarking methods found in literature together with some of their
problems as for example the artificial mixed sound titles which do not modell well reality.
This was a problem we also stumbled across in our evaluation chapter later on as we could
not find binaural files with reference tracks but only their more popular artificially mixed
counterparts.

In Chapter 3 we introduced our first template based approach. The Direct Template Matching
(DTM) algorithm is thought to separate repeating tones by averaging over their repetitions
in order to eliminate other tones potentially playing at the same time. We begin the devel-
opment of the algorithm with the introduction of the onset vector containing all onsets of a
single tone and the initialization procedure. Following the main algorithm which iterated
over all instruments we discussed the tone search procedure which searched the correlation
surface for peaks representing tone onsets which were subsequently filtered to keep only the
most plausible ones. The tone learning step then adapted the template of the tone to match
the found onsets through a form of Newton’s method. Subsequently some refinement meth-
ods were presented like shifting the template relative to its onsets in order to cover more of
the tone energy or another refinement being phase matching by subsample accurate tuning of
the onset in order to prevent phase deviations leading the destructive interference in the high

125

8. CONCLUSIONS AND FUTURE WORK

frequency waves of the tone template which then would exhibit an undesired high frequency
damping during the learning phase.

Due to some problems in the direct approach concering the ability to find plausible tone on-
sets we created a second approach called iterative template matching (ITM) in Chapter 4. The
idea for improvement was to create an self-organizing steering vector which is the continu-
ous form of the onset vector. As with the first approach we began its development with an
initialization procedure. The iterative main algorithm which followed, consisted of a syn-
thesizing step where the output signal was generated and a learning step using a gradient
descent procedure called RPROP to adapt the templates and the steering vector where the
steering vector was constrained to be kept sparse which ideally should make it approach
its discrete version, the onset vector. Some refinements were then presented with the first
being some modifications of the non-sparseness cost function used for the gradient descent
algorithm. Further proposals for refinement were a lateral inhibition technique in order to
assure minimum distance between spikes of the steering vector which did not work at first
and thus needed to be further elaborated upon. Finally phase matching by upsampling the
input signal was also discussed as an option for improvement like in the DTM algorithm.

As a third option for separation, we decided to move to the domain of blind source sepa-
ration which lead us to the histogram based blind source separation approach (HSBSS) in
Chapter 5. This algorithm works on an input feature space which can be easily visualized
as a histogram with its axes representing magnitude phase and time shift between the audio
channels while the intensities represent the average loudness of the frequencies having these
features. The first two features resemble the two cues used by the human auditory system,
the interaural intensity difference (IID) and the interaural time difference (ITD), a fact which
makes this approach more biologically plausible. A limiting problem we stumbled upon in
that chapter was now that frequencies above a given treshold have ambiguous time shifts
causing spreading of otherwise well localizable points in the histogram which limits the us-
able frequency range. In order to split the signal into components representing instruments
a RBF network was trained to approximate the intensity distribution across the histogram.
The neurons of the trained network were then used to create decision boundaries for feature
value regions in the histogram. Each region had its associated class. Splitting was done by
copying each frequency falling into one of these regions to the previously zero initialized
spectrum of the region’s class. The resulting instrument or group of instruments was the
time-transformed spectrum of each class. Following the algorithm description we then pre-
sented some improvements for suppressing artefacts through adjusting the window size of
the fourier transform to minimize the pre-echo effect and using of overlaps in order to reduce
musical noise.

In Chapter 6 we described some details of our implementations of the three algorithms. More

126

precisely we specified the libraries we used which were Marsyas, fftw and GetPot and iden-
tified Microsoft Visual Studio 2003 as our programming environment. After outlining the
code structure we then discussed the problem of 32 bit code architecture applications which
can only address 2 GB of physical memory with the solutions of swapping large arrays tem-
porarily to the hard disk or porting the code 64 bit which would break compatibility to many
actual machines and operating systems. The theoretical aspect of FFT size on speed was then
discussed showing that a convolution can be split up in some smaller convolutions needing
less operations and making better use of the processor cache thus increasing performance.

The benchmarking and evaluation of our algorithms was done in Chapter 7. Following an
overview of the existing corpora and which parts of them we used, an own corpus called
Instrument Separation (IS) corpus was introduced. We built it to contain binaural recorded
songs as well as freely available titles with reference tracks. We also included module files
which resemble the MIDI format and additionally include the instrument samples in the file,
which is not the case for MIDI where the samples are stored as a common database in the
playback device. In the following sections we then described the testing conditions and de-
fined the scoring criteria for the subjective evaluation as well as the error measure for the
objective evaluation part which was taken to be the signal to noise ratio (SNR). The results
were then presented which showed the DTM and the HSBSS to score closely in terms of dB
SNR with only the baseline being off. Due to the missing tone to instrument mapping part of
the direct template matching approach we had to use an idealized clustering using informa-
tion from the reference files and thus could not effectively compare the DTM and HSBSS. As
the DTM was expected to show higher scores due to its idealized clustering part we believe
that the HSBSS has a better performance especially as it is double as fast. The following sub-
jective evaluation showed a wide gap between the separation capability of the HSBSS and
the baseline while this gap was much narrower for the signal quality of the separated result.

The algorithms described during this thesis, left a lot of work to do. This also happened due
to tight time constraints for the thesis. Bringing the algorithms and their impelementation to
maturity would have lasted more than one semestre so something had to be kept unfinished
or not be done at all. In order to compensate for these shortcomings we have given ideas for
future work in every chapter, especially in the summary section. Here we will now give a
summary of much of these ideas.

The first algorithm has a very simple initialization procedure using randomness. As initial-
ization is very important to this algorithm a more educated guess as for example with some
frequency-domain clustering or using a repetition indicator could prove useful. Furthermore
due to high variations in the onset filtering algorithm a some more research on how to sta-
bilize it in order to generate a more predictable and stable amount of peaks might improve
results. Concerning the learning method a more precise curvature information could be used

127

8. CONCLUSIONS AND FUTURE WORK

than our implementation of Newton’s algorithm which might raise convergence speed. The
template offsetting method should be looked closer into as it does not work as desired. Still
we consider the offsetting to be a good tool for moving a template to cover a higher energy
point of a tone. Not overlooked shall be the missing part of organizing tones into instruments
as its absence proved to be a problem for evaluation and for practical use. Also worth men-
tioning is that some or most of the work could be moved into the frequency domain where
instruments should be better decorrelated from the beginning. And lastly it is always a good
idea make use of higher semantic structures of music and thus relationships between tones.

There are also plenty of improvements possible for the iterative template matching algo-
rithm. For example a better non-sparseness cost function having its minimum located at a
point nearer the real number of onsets present in the music instead of just one onset, could
improve results considerably. Then a memory problem of storing all steering vectors when
a reasonably number of them are used should also be looked at in some future work. It is
possible to swap most of the arrays to the hard disk and do some local optimizations on the
one found in memory but that could alter the convergence behaviour and the final result of
the algorithm in terms of quality. The lateral inhibition for keeping onsets from the same
tone apart should also be improved in order to work as actually there is no other method
implemented for keeping very closely spaced onsets apart. The non-sparseness cost function
could include information from inter-channel correlation. For example it could favour onsets
if they are stereo aligned or penalize them if they are misaligned. Lastly we should mention
that the template vector part could be learned exactly rather than using some kind of gradient
descent and in that way possibly speeding up convergence.

The HSBSS algorithm is also in need for some improvements. For example a time shift dis-
ambiguation heuristic which tries all possible locations of a frequency sample and chooses
the one for which that frequency seems to be a harmonic, could be implemented. Minimizing
the smearing effect is expected to improve results of the RBF clustering stage. Furthermore
we could also try to extend the histogram by adding new features and thus dimensions. As
the histogram may be viewed as an input space it does not necessarily need to be visualiz-
able if it better serves the purpose of discriminating between instruments. Another practial
improvement would be to be able to estimate the number of clusters automatically. Actually
it has to be supplied by the user which in turn usually just looks at the histogram and ten-
tatively listens to some parts of the song. Still another improvement to be considered would
be some heuristic to be able to separate harmonics sharing the same frequency bin. This is
rather complicated task but it may improve results qualitatively.

A lot of improvements can also be done at the implementation level. For example using
multiple parallel threads in order to be able to use all cores of a modern multicore machine.
Then we can also use library specific optimizations like the wisdom mechanism of the fftw in

128

order to calculate and store parameters which lead to much faster FFTs as these transforms
are used widely in all three separation algorithms.

Finally there is room for improvement even for the benchmarks. The IS corpus was rather
small and therefore some results could not be interpreted with certainity as the fluctuations
might also be caused by coincidence. It would be interesting to have some binaural files with
their reference tracks. As it seems, best chances to get some are to make them on one’s own as
for example using multiple speakers with multiple microphones and possibly doing multiple
recordings runs. Furthermore we should mention that we had no code of another program
in the field of musical instrument separation or blind audio source separation to test with
which is a great loss for the benchmarks. This should be a priority for future evaluations as
it would make the performance better comparable to other existing algorithms.

Closing this chapter we should also mention that we had the idea of unifying the concepts of
template matching and histogram base blind source separation into one algorithm. It might
result into a powerful combination.

129

Appendix A

Corpora

In the following we will give the details of the corpora and collections used. Note that the
songs we use from the BASS-dB, ISMIRgenre and RWC are only a subset of the much bigger
corpus. Our own corpus, the Instrument Separation or IS corpus was defined in Section 7.2
and is fully used in this thesis.

We should also note here that the BASS-dB seems to be no longer maintained at [37] and
therefore we give here direct links to where to find the songs belonging to this corpus.

For the module file part of the IS corpus, the mapping between channels in the module file
and reference tracks is available in Table A. This mapping was used when generating the
reference tracks in order to insure minimal instrument wandering between them. Please note
that one module file channel corresponds to a pair of audio file channels after being rendered.
Rendering was done at a sampling rate of 44.1kHz.

Abbrev. Track 1 Track 2 Track 3 Track 4 Track 5 Track 6 Track 7

IS-M T1 CH1 CH2 CH3 CH4
IS-M T2 CH1+CH2 CH3 CH4+CH5+CH6+CH7 CH8 CH9+CH10 CH11
IS-M T3 CH1+CH4 CH2 CH3 CH5+CH6 CH7+CH8
IS-M T4 CH1 CH2+CH3 CH4 CH5+CH6 CH7+CH8 CH9 CH10

Table A.1 Mappings between module file channels and reference tracks. For more details to each module
file please see the next tables.

131

A. CORPORA

A
bb

re
v.

So
ng

Ti
tl

e
C

or
pu

s
A

va
ila

bi
lit

y
R

ef
.T

ra
ck

s
Bi

na
ur

al

BA
SS

T
1

Es
pi

Tw
el

ve
-N

o
M

or
e

W
or

k
BA

SS
-d

B
w

w
w

.a
rc

hi
ve

.o
rg

4
BA

SS
T

2
Es

pi
Tw

el
ve

-S
un

U
nd

er
Sh

ad
ow

s
BA

SS
-d

B
w

w
w

.a
rc

hi
ve

.o
rg

5
BA

SS
T

3
M

is
te

r
M

ou
se

-N
at

m
in

BA
SS

-d
B

w
w

w
.a

rc
hi

ve
.o

rg
6

IS
-B

T
1

C
am

de
n

C
at

ho
lic

H
ig

h
Sc

ho
ol

Ja
zz

Ba
nd

IS
w

w
w

.s
ou

nd
pr

of
es

si
on

al
s.

co
m

3
IS

-B
T

2
Bi

ll
W

ea
ve

r
C

om
po

si
ti

on
-E

R
IN

IS
w

w
w

.s
on

ic
st

ud
io

s.
co

m
3

IS
-B

T
3

Ji
m

D
uk

ey
,R

EC
En

g.
/M

us
ic

ia
n

-H
ay

de
n

C
el

lo
#5

IS
w

w
w

.s
on

ic
st

ud
io

s.
co

m
3

IS
-B

T
4

M
ay

na
rd

Fe
rg

us
on

IS
w

w
w

.s
ou

nd
pr

of
es

si
on

al
s.

co
m

3

IS
-M

T1
he

at
be

at
of

re
be

ls
-K

ik
ka

-W
al

z
IS

m
od

ar
ch

iv
e.

or
g

4
IS

-M
T2

C
yb

el
iu

s
-R

ad
io

10
09

1
IS

am
p.

da
sc

en
e.

ne
t

6
IS

-M
T3

Pu
rp

le
M

ot
io

n
of

Fu
tu

re
C

re
w

-S
at

el
lit

e
O

ne
IS

am
p.

da
sc

en
e.

ne
t

5
IS

-M
T4

C
yb

el
iu

s
-S

m
ok

at
er

IS
am

p.
da

sc
en

e.
ne

t
7

IS
-R

T
1

ev
er

am
za

h
-L

ig
ht

ni
ng

R
oo

m
IS

w
w

w
.a

rc
hi

ve
.o

rg
7

IS
-R

T
2

ev
er

am
za

h
-T

o
M

y
Ea

r
IS

w
w

w
.a

rc
hi

ve
.o

rg
5

IS
-R

T
3

M
is

te
r

M
ou

se
-S

ev
en

Ye
ar

s
of

So
rr

ow
IS

w
w

w
.a

rc
hi

ve
.o

rg
10

IS
-R

T
4

Ps
yc

ho
Vo

ya
ge

r
-A

bo
ve

It
A

ll
IS

w
w

w
.a

rc
hi

ve
.o

rg
9

T
a
b
le
A
.2
B
A
S
S
-d
B
a
n
d
IS
co
rp
u
s.
D
et
a
ils
o
n
th
e
so
n
g
s
fr
o
m
b
o
th
co
rp
o
ra
,
o
rd
er
ed
a
cc
o
rd
in
g
to
th
e
a
b
b
re
vi
a
ti
o
n
u
se
d
in
th
is
th
es
is
.

132

http://www.archive.org/details/sp12_nowork_flac
http://www.archive.org/details/sp12_shadows_flac
http://www.archive.org/details/natmin
http://www.soundprofessionals.com/cgi-bin/gold/category/samples
http://www.sonicstudios.com/nobanjo.htm
http://www.sonicstudios.com/hayden.htm
http://www.soundprofessionals.com/cgi-bin/gold/category/samples
http://modarchive.org/view-songinfo.php?action=inst&query=1d525821feda32f55e6700051080b5f6
http://amp.dascene.net
http://amp.dascene.net
http://amp.dascene.net
http://www.archive.org/details/everamzah-lightning_room
http://www.archive.org/details/everamzah-to_my_ear
http://www.archive.org/details/7yosr
http://www.archive.org/details/PsychoVoyagerAboveItAll_1

A
bb

re
v.

So
ng

Ti
tl

e
C

or
pu

s
A

va
ila

bi
lit

y
R

ef
.T

ra
ck

s
Bi

na
ur

al

IS
M

IR
-G

T1
La

R
ic

he
an

d
C

o.
-A

lle
gr

o,
So

na
ta

fo
r

V
io

lo
nc

el
l

IS
M

IR
ge

nr
e

IS
M

IR
-G

T2
cl

as
si

ca
la

rt
is

t1
al

bu
m

2
tr

ac
k

2
IS

M
IR

ge
nr

e
IS

M
IR

-G
T3

Be
lie

fS
ys

te
m

s
-B

lu
e-

Ti
nt

ed
Su

ng
la

ss
es

IS
M

IR
ge

nr
e

IS
M

IR
-G

T4
St

ro
jo

vn
a

07
-P

al
ac

in
ka

IS
M

IR
ge

nr
e

IS
M

IR
-G

T5
Ja

g
-M

y
M

om
m

a
To

ld
M

e
IS

M
IR

ge
nr

e
IS

M
IR

-G
T6

D
ro

p
Tr

io
-I

nv
is

ib
le

Pa
nt

s
IS

M
IR

ge
nr

e
IS

M
IR

-G
T7

El
ec

tr
ic

Fr
an

ke
ns

te
in

-B
or

n
W

ild
IS

M
IR

ge
nr

e
IS

M
IR

-G
T8

Se
is

m
ic

A
na

m
ol

y
-T

en
M

ill
io

n
Te

ar
s

IS
M

IR
ge

nr
e

IS
M

IR
-G

T9
T

he
W

es
tE

xi
t-

A
rt

ifi
ci

al
IS

M
IR

ge
nr

e
IS

M
IR

-G
T1

0
N

or
in

e
Br

au
n

-H
an

na
to

H
ol

ly
w

oo
d

IS
M

IR
ge

nr
e

IS
M

IR
-G

T1
1

So
la

ce
-C

ir
cl

e
(5

-8
,6

-8
,7

-8
)

IS
M

IR
ge

nr
e

IS
M

IR
-G

T1
2

w
or

ld
ar

ti
st

11
2

al
bu

m
1

tr
ac

k
2

IS
M

IR
ge

nr
e

R
W

C
T1

01
-U

nk
no

w
n

A
rt

is
t-

Tr
ac

k0
1

R
W

C
st

af
f.a

is
t.g

o.
jp

/m
.g

ot
o/

R
W

C
-M

D
B

R
W

C
T2

02
-U

nk
no

w
n

A
rt

is
t-

Tr
ac

k0
2

R
W

C
st

af
f.a

is
t.g

o.
jp

/m
.g

ot
o/

R
W

C
-M

D
B

R
W

C
T3

08
-U

nk
no

w
n

A
rt

is
t-

Tr
ac

k0
8

R
W

C
st

af
f.a

is
t.g

o.
jp

/m
.g

ot
o/

R
W

C
-M

D
B

R
W

C
T4

09
-U

nk
no

w
n

A
rt

is
t-

Tr
ac

k0
9

R
W

C
st

af
f.a

is
t.g

o.
jp

/m
.g

ot
o/

R
W

C
-M

D
B

R
W

C
T5

12
-U

nk
no

w
n

A
rt

is
t-

Tr
ac

k1
2

R
W

C
st

af
f.a

is
t.g

o.
jp

/m
.g

ot
o/

R
W

C
-M

D
B

R
W

C
T6

19
-U

nk
no

w
n

A
rt

is
t-

Tr
ac

k0
3

R
W

C
st

af
f.a

is
t.g

o.
jp

/m
.g

ot
o/

R
W

C
-M

D
B

R
W

C
T7

21
-U

nk
no

w
n

A
rt

is
t-

Tr
ac

k0
5

R
W

C
st

af
f.a

is
t.g

o.
jp

/m
.g

ot
o/

R
W

C
-M

D
B

R
W

C
T8

30
-U

nk
no

w
n

A
rt

is
t-

Tr
ac

k1
4

R
W

C
st

af
f.a

is
t.g

o.
jp

/m
.g

ot
o/

R
W

C
-M

D
B

R
W

C
T9

33
-U

nk
no

w
n

A
rt

is
t-

Tr
ac

k0
1

R
W

C
st

af
f.a

is
t.g

o.
jp

/m
.g

ot
o/

R
W

C
-M

D
B

R
W

C
T1

0
35

-U
nk

no
w

n
A

rt
is

t-
Tr

ac
k0

3
R

W
C

st
af

f.a
is

t.g
o.

jp
/m

.g
ot

o/
R

W
C

-M
D

B

T
a
b
le
A
.3
IS
M
IR
g
en
re
co
lle
ct
io
n
a
n
d
R
W
C
co
rp
u
s.
D
et
a
ils
o
n
th
e
so
n
g
s
fr
o
m
b
o
th
co
rp
o
ra
,
o
rd
er
ed
a
cc
o
rd
in
g
to
th
e
a
b
b
re
vi
a
ti
o
n
u
se
d
in
th
is
th
es
is
.

133

http://staff.aist.go.jp/m.goto/RWC-MDB
http://staff.aist.go.jp/m.goto/RWC-MDB
http://staff.aist.go.jp/m.goto/RWC-MDB
http://staff.aist.go.jp/m.goto/RWC-MDB
http://staff.aist.go.jp/m.goto/RWC-MDB
http://staff.aist.go.jp/m.goto/RWC-MDB
http://staff.aist.go.jp/m.goto/RWC-MDB
http://staff.aist.go.jp/m.goto/RWC-MDB
http://staff.aist.go.jp/m.goto/RWC-MDB
http://staff.aist.go.jp/m.goto/RWC-MDB

Bibliography

[1] L. Benaroya, F. Bimbot, and R. Gribonval. Audio source separation with a single sensor.
IEEE Transactions on Audio, Speech and Language Processing, 14(1):191–199, 2006.

[2] P. Bofill. Underdetermined blind separation of delayed sound sources in the frequency
domain. Neurocomputing, 55(3-4):627–641, 2003.

[3] E. G. Boring. Auditory theory with special reference to intensity, volume, and localiza-
tion. American Journal of Psychology, 37(2):157–188, 1926.

[4] A. S. Bregman. Auditory Scene Analysis: Perceptual Organization of Sound. MIT Press,
Cambridge, MA, USA, 1990.

[5] G. J. Brown. Computational Auditory Scene Analysis: A Representational Approach. PhD
thesis, University of Sheffield, Sheffield, UK, 1992.

[6] M. Cooke. Modeling Auditory Processing and Organization. Cambridge University Press,
Cambridge, UK, 1993.

[7] M. R. Devos and G. A. Orban. Self learning backpropagation. In Proceedings of the Neu-
roNimes, pages 469–476, 1988.

[8] M. R. Every and J. E. Szymanski. Separation of synchronous pitched notes by spec-
tral filtering of harmonics. IEEE Transactions on Audio, Speech and Language Processing,
14(5):1845–1856, 2006.

[9] M. Frigo and S. G. Johnson. The design and implementation of fftw3. Proceedings of the
IEEE, 93(2):216–231, 2005. Invited paper, Special Issue on Program Generation, Opti-
mization, and Platform Adaptation.

[10] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L. Dahlgren, and
V. Zue. TIMIT acoustic-phonetic continuous speech corpus. Linguistic Data Consortium,
Philadelphia, 1993.

135

BIBLIOGRAPHY

[11] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka. RWC music database: Popular,
classical, and jazz music databases. In Proceedings of the 3rd International Conference on
Music Information Retrieval (ISMIR 2002), pages 287–288, 2002.

[12] R. Gribonval, L. Benaroya, E. Vincent, and C. Févotte. Proposals for performance mea-
surement in source separation. In Proceedings of the 4th International Symposium on Inde-
pendent Component Analysis and Blind Signal Separation (ICA 2003), pages 763–768, 2003.

[13] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1994.

[14] M. Helen and T. Virtanen. Separation of drums from polyphonic music using non-
negative matrix factorization and support vector machine. In Proceedings of the 13th
European Signal Processing Conference (EUSIPCO 2005), 2005.

[15] G. Hu and D. L. Wang. Monaural speech separation. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, Advances in Neural Information Processing Systems (NIPS 2002), volume 15,
pages 1221–1228, Cambridge, MA, USA, 2002. MIT Press.

[16] G. Hu and D. L. Wang. Auditory segmentation based on event detection. In Proceedings
of the ISCA Tutorial and Research Workshop on Statistical and Perceptual Audio Processing
(SAPA 2004), 2004.

[17] R. A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural
Networks, 1(4):295–307, 1988.

[18] M. Kim and S. Choi. On spectral basis selection for single channel polyphonic music
separation. In W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors, Proceedings of
the International Conference on Artificial Neural Networks (ICANN 2005), volume 3697 of
Lecture Notes in Computer Science, pages 157–162. Springer, 2005.

[19] Y. Li and D. L. Wang. Singing voice separation from monaural recordings. In Proceedings
of the 7th International Conference on Music Information Retrieval (ISMIR 2006), pages 176–
179, 2006.

[20] A. S. Master. Stereo Music Source Separation via Bayesian Modeling. PhD thesis, Stanford
University, Stanford, CA, USA, 2006.

[21] R. Meddis. Simulation of auditory–neural transduction: Further studies. The Journal of
the Acoustical Society of America, 83:1056–1063, 1988.

[22] E. H. Moore. On the reciprocal of the general algebraic matrix. Bulletin of the American
Mathematical Society, 26:394–395, 1920.

136

[23] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by V1? Vision Research, 37(23):3311–3325, 1997.

[24] R. D. Patterson. Auditory images: How complex sounds are represented in the auditory
system. Journal of Acoustical Society of Japan (E), 21(4):183–190, 2000.

[25] R. D. Patterson, J. Nimmo-Smith, J. Holdsworth, and P. Rice. An efficient auditory filter-
bank based on the gammatone function. APU Report 2341, MRC, Applied Psychology
Unit, Cambridge, UK, 1988.

[26] R. D. Patterson, K. Robinson, J. Holdsworth, D. McKeown, C. Zhang, and M. Allerhand.
Complex sounds and auditory images. In Y. Cazals, L. Demany, and K. Horner, editors,
Auditory Physiology and Perception: Proceedings of the 9th International Symposium on Hear-
ing (ISH 1991), volume 83 of Advances in the Biosciences, pages 429–446, Oxford, England,
1992. Pergamon Press.

[27] R. Penrose. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical
Society, 51:406–413, 1955.

[28] M. D. Plumbley, S. A. Abdallah, T. Blumensath, and M. E. Davies. Sparse representations
of polyphonic music. Signal Processing, 86(3):417–431, 2006.

[29] N. Qian. On the momentum term in gradient descent learning algorithms. Neural Net-
works, 12(1):145–151, 1999.

[30] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learn-
ing: the RPROP algorithm. In Proceedings of the IEEE International Conference on Neural
Networks (ICNN 1993), volume 1, pages 586–591, 1993.

[31] N. Roman, D. L. Wang, and G. J. Brown. Speech segregation based on sound localiza-
tion. In Proceedings of the International Joint Conference on Neural Networks (IJCNN 2001),
volume 4, pages 2861–2866, 2001.

[32] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by
error propagation. In D. E. Rumelhart, J. L. McClelland, et al., editors, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations, pages 318–
362. MIT Press, Cambridge, MA, USA, 1986.

[33] S. D. Teddy and E. M. K. Lai. Model-based approach to separating instrumental music
from single channel recordings. In Proceedings of the 8th International Conference on Con-
trol, Automation, Robotics and Vision (ICARCV 2004), volume 3, pages 1808–1813, 2004.

[34] T. Tollenaere. Supersab: Fast adaptive back propagation with good scaling properties.
Neural Networks, 3(5):561–573, 1990.

137

BIBLIOGRAPHY

[35] K. Turkowski. Filters for common resampling tasks. In A. Glassner, editor, Graphics
Gems I, pages 147–165. Academic Press, San Diego, CA, USA, 1990.

[36] G. Tzanetakis and P. Cook. Marsyas: A framework for audio analysis. Organized Sound,
4(3):169–175, 2000.

[37] E. Vincent, R. Gribonval, C. Févotte, and al. BASS-dB: the Blind Audio Source Separation
Evaluation Database. URL: http://www.irisa.fr/metiss/BASS-dB/.

[38] T. Virtanen. Separation of sound sources by convolutive sparse coding. In Proceedings
of the ISCA Tutorial and Research Workshop on Statistical and Perceptual Audio Processing
(SAPA 2004), 2004.

[39] T. Virtanen. Sound Source Separation in Monaural Music Signals. PhD thesis, Tampere
University of Technology, Finland, 2006.

[40] O. Yilmaz and S. Rickard. Blind separation of speech mixtures via time-frequency mask-
ing. IEEE Transactions on Signal Processing, 52(7):1830–1847, 2004.

[41] Y. G. Zhang and C. S. Zhang. Separation of music signals by harmonic structure model-
ing. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Process-
ing Systems (NIPS 2005), volume 18, pages 1619–1626, Cambridge, MA, USA, 2005. MIT
Press.

[42] F. Zheng, G. Zhang, and Z. Song. Comparison of different implementations of MFCC.
Journal of Computer Science and Technology, 16(6):582–589, 2001.

[43] A. Zils, F. Pachet, O. Delerue, and F. Gouyon. Automatic extraction of drum tracks
from polyphonic music signals. In Proceedings of the 2nd International Conference on Web
Delivering of Music (WEDELMUSIC 2002), pages 179–183, 2002.

138

http://www.irisa.fr/metiss/BASS-dB/

	Introduction
	Motivation
	Problem Formulation
	Input Restrictions
	Overview
	Notation and Conventions

	Related Work
	Introduction
	Blind Source Separation
	Harmonic and Sinusoidal Modelling
	Model and Feature-Based Approaches
	Template-Based Approaches
	Speech Separation
	Benchmarking in Literature
	Summary and Conclusions

	Direct Template Matching
	Motivation
	Problem Reformulation
	Algorithm Overview
	The Onset Vector
	Main Algorithm
	Tone Search
	Tone Learning
	Fine Tuning
	Final Algorithm
	Summary and Future Work

	Iterative Template Matching
	Introduction
	Overview
	Initialization
	Main Algorithm
	Learning Step
	Fine Tuning
	Final Algorithm
	Summary and Future Work

	Blind Source Separation Approach
	Motivation
	Overview
	Problem Reformulation
	Magnitude-Shift-Frequency Histogram
	Algorithm
	Fine Tuning
	Final Algorithm
	Summary and Future Work

	Implementation Details
	Overview
	Libraries
	Code Structure
	Performance Enhancements
	Summary and Future Work

	Benchmarking and Evaluation
	Overview
	Corpora
	Methods and Algorithms
	Results
	Discussion
	Summary and Conclusions

	Conclusions and Future Work
	Corpora
	Bibliography

