
To appear in ACM SIGMOD Record, Dec. 1996

An Orthogonally Persistent Java

Atkinson, M.P.1 , Daynès, L.1, Jordan, M.J.2 , Printezis, T.1 and Spence, S.1

Abstract
The language Java is enjoying a rapid rise in popularity as an application programming
language. For many applications an effective provision of database facilities is required.
Here we report on a particular approach to providing such facilities, called “orthogonal
persistence”. Persistence allows data to have lifetimes that vary from transient to (the best
approximation we can achieve to) indefinite. It is orthogonal persistence if the available
lifetimes are the same for all kinds of data. We aim to show that the programmer
productivity gains and possible performance gains make orthogonal persistence a valuable
augmentation of Java.

1 Introduction

The programming language Java [Gosling et al. 96] is achieving considerable prominence
[Arnold & Gosling 96, van der Linden 96, Flanagan 96]3. Its libraries and architectural
neutrality encourage the use of Java for distributed and mobile computing [Straßer et al. 96].
However, other characteristics, such as: strong typing, single-inheritance, an object-oriented
model, automatic space management, no explicit manipulation of pointers and validations to
improve security, precision and productivity, are of particular interest when provisions for
long-term data management are considered.
This paper reports on work which capitalises on those properties to provide Java with facilities
to support long-lived systems in a way that improves application-programmer productivity.
Our work is predicated on two assumptions:
• that Java will be used as the implementation language for many applications and
• that a significant proportion of these applications will require long-term data management.

The arguments for the popularity of Java have been made elsewhere, e.g. in the books cited
above. We argue that it is self evident that longevity is important for many applications.
Applications are built to service human requirements and most human activities that are worth
such investment involve prolonged use. Even for games and entertainment, people expect
their preferences to be remembered. In applications supporting planning, design or
management, the human processes are prolonged because of the difficulty of tasks, the need to
swap between activities, the need to consult and to collect information, the intrinsic pace of the
external processes, etc. Often, the computational system will remain useful for as long as the
artefact with which it was associated remains useful. Had Napoleon’s engineers used CAD
tools to design the sewers of Paris, we might assume that today’s Parisian engineers would
find access to the Napoleonic data and programs useful. Systems which require an intimate
composition of long-lived data and programs are called “persistent application systems” (PAS)
[Atkinson & Morrison 95].

1 . 1 Orthogonal Persistence
Orthogonal persistence is proposed to meet the needs of application programmers building
new systems as parts of a PAS. They will typically write code by building up definitions that
describe the form, factual data and behaviour of the system their PAS must service. Java is
well designed to support that kind of object-oriented modelling. By providing persistence we
allow components of these models to have whatever lifetime is required for an application,
from microseconds to years. By requiring orthogonality we are simply stating that all possible
components of such models should have the potential to have the same range of lifetimes.
When objects are given the state which enables them to outlive a single transaction, we say
they are promoted.

1 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland.
2 Sun Microsystems Laboratories, 2550 Garcia Avenue, Mountain View, CA 94043, USA.
3 Java is a registered trademark of Sun Microsystems Inc. in the USA and other countries.

Atkinson, Daynès, Jordan, Printezis and Spence An Orthogonally Persistent Java

2

Orthogonally persistent Java (PJava) has been designed with the goal of optimising the work
of these application programmers, both as components are constructed and during
maintenance. Therefore, in PJava we deliberately choose to invest in implicit and incremental
algorithms for data management, in order to simplify programmers’ work and to relieve them
of tasks. Over the years, such an approach has proved worthwhile for relational systems and
we believe that in this context such automation will ultimately outperform average application
programmer code and will immediately reduce production and maintenance costs. In
particular, a full implementation of orthogonal persistence according to the following
principles will facilitate class re-use significantly.

1 . 2 Three Design Principles
Orthogonal persistence is the provision of persistence for all data irrespective of their
type. In PJava we interpret orthogonal persistence as support for the full range of lifetimes for
all objects of whatever class4. All primitive data types are automatically included as they are
either specialisations of class Object 5 or only occur as values of fields in classes. Objects of
class Class can persist, either in their own right or because instances of a class they describe
persist. In consequence all the code held in the methods of the class and all the meta data
describing objects are able to persist.
Component lifetimes are constrained, so that if a component A is still required then any
components needed to interpret A correctly must also continue to exist. The PJava system
ensures this constraint. For example, it ensures that referends are retained for as long as a
reference to them is held and that Class objects are retained for as long as that class appears
in the definition of some other class or some instance of that class still exists. This leads to
our next design principle.
Transitive persistence6 requires that the lifetime of all objects is determined by their
reachability. During the normal execution of a Java program, objects continue to exist if they
are reachable from some variable. This is organised on a heap in standard Java [Gosling et al.
96] and is implemented using garbage collection. Lifetimes are terminated when objects are
no longer reachable. This usually occurs because the last reference to an object is over-
written.
In PJava, if objects are required to outlive a program execution, they can be identified as
persistent roots or be referenced from some objects that have already been made persistent.
All persistent roots are retained and every object reachable via a sequence of operations from
those roots is retained. Space is recovered later by a disk garbage collector.
An implicit reference identifies the class of each object. Consequently, when the first object of
any class is promoted, its Class object and the Class objects of all the classes used to
define it, are also promoted. These Class objects may then refer to other objects, which will
also need promoting. Of course, no object, including a Class object, is promoted if it is
already in the persistent object store, so that common substructures are properly preserved.
This preservation of the class objects with all their methods ensures that the code is available
to interpret properly all of the objects stored in the stable store7.
Persistence independence requires that it is indistinguishable whether code is operating
on long-lived data, i.e. data originating from the stable store and outliving the program, or on
data that is transient, i.e. data that is created in, and will only exist during, a conventional Java
program execution. Compliance with the principle of persistence independence is particularly
important for enabling software re-use. If code runs unchanged it is straightforward to re-use
libraries of classes previously defined for transient applications in a persistent context.
The three principles of: orthogonal persistence, transitive persistence and persistence
independence have been developed in 18 years of research into persistence [Atkinson &

4 In the present prototype certain IO classes, AWT classes and Threads cannot persist. However, consistent
treatment of these classes is planned.

5 This paper assumes knowledge of Java nomenclature; for precise definitions visit [Gosling et al. 96].
6 The original term "persistence by reachability" [Atkinson et al. 83] is superseded by this more suggestive ODMG

term.
7 In most cases, the stable store will be held on disk.

Atkinson, Daynès, Jordan, Printezis and Spence An Orthogonally Persistent Java

3

Morrison 95]. The type security of Java finally makes it possible to deploy them in a
commercially significant language.

1 . 3 Structure of the Paper
The next section illustrates, via three program fragments, the use of PJava. Section 3 briefly
discusses some implementation issues. Section 4 considers more sophisticated programming
requirements. Section 5 compares the PJava approach with other approaches to providing
persistence for Java. Section 6 presents the status of PJava and our plans for its development.

2 A Simple Example
A caricature of three PJava programs is presented to show an envisaged style of use of
orthogonal persistence. The reader is reminded that Java development proceeds by defining
each class in a separate file and that applications can be initiated by running any class that has a
main method. We enter the scene where a programmer has already defined several Java
classes and is now defining a class SaveSpag which has a main method that will create
some persistent data.

2 . 1 Creating Persistent Data
The code outlined in Figure 1 is intended to create several complex data structures and to make
the data structure referred to in the program as sp1 persist for use by future programs.

1 ...
2 public class SaveSpag {
3 public static void main (String[] args){ //start transaction
4 Spaghetti sp1 = new Spaghetti(27); //create a new object
5 Spaghetti sp2 = new Spaghetti(5); //and another
6 sp1.add(“Pesto”); //modify sp1
7 sp1.add(“Pepper”); //modify it again
8 sp2.add(“Quattro Formaggio”); //modify sp2
9 try { //catch store exceptions
10 PJavaStore pjs = PJavaStore.getStore(); //obtain a pers'nt. store
11 pjs.newPRoot(“Spag1”, sp1); //make a persistent root
12 } catch (PJSException e){ ... } //handle exceptions
13 } //end of main
14 } //end of SaveSpag

Figure 1: Creating a Persistent data structure
A commentary on this main method is presented, keyed by line number.
1 The omitted code arranges to import classes defined elsewhere, which in this case would

include classes Spaghetti 8 and PJavaStore .
3 The PJava system implicitly starts a transaction when method main is activated.
4,5 Two normal transient data structures, sp1 and sp2 are created.
6,7 The object sp1 is extended using the add method defined with the class Spaghetti .
8 Similarly, the object sp2 has extra data added.
4-8 The resulting data structures may be arbitrarily complex, and may use a variety of other

classes not directly apparent in this program.
10 PJava offers as an addition to the standard Java application programmers' interface

(API) the class PJavaStore which provides access to the persistent facilities. If the
program (in Fig. 1) is started with an existing persistent store, then the getStore
method of PJavaStore will obtain an object that represents it.

11 The newPRoot method then sets up a binding between the String “Spag1” and the
object sp1 and records that as a persistent root. The object sp1 is now identified as an
object the programmer wants to make persistent.

13 This is the end of the main method of SaveSpag . When main is executed, the
transaction implicitly associated with main will commit at this point. In consequence,

8 So named to encourage the reader to think of it as involving a spaghetti of references between objects. It will use
other classes in its definition. For example, it might specialise Pasta which itself specialises Food , and it
might use CylinderOnASpline to model entangled strands of spaghetti, etc.

Atkinson, Daynès, Jordan, Printezis and Spence An Orthogonally Persistent Java

4

the newly identified persistent objects and all objects newly reachable from persistent
objects will be promoted to the persistent state. In this case that will be the object sp1
and all objects made reachable from sp1 during its initial construction and during the
two add operations. The data structures associated with sp2 (5&8) will not be
promoted as they have not been made reachable from a persistent object. They are
therefore discarded at this point. If this is the first instance of Spaghetti to be made
persistent, then the Spaghetti Class object, all the classes used to define it and
other objects it references will also be promoted to the persistent state.

9&12 Should an error occur, e.g. no store is associated with this program, then it will be
converted into a PJSException . These two lines arrange to catch such exceptions. If
an exception occurs within main that is not caught, then the transaction associated with
main is automatically aborted and the state of the persistent store will be restored to its
original state at the start of main 's execution.

2 . 2 Re-using Persistent Data

1 ...
2 public class SpagShow {
3 public static void main (String[] args){ //start transaction
4 try { //catch store exceptions
5 PJavaStore pjs = PJavaStore.getStore(); //obtain a pers'nt. store
6 Spaghetti sp = (Spaghetti)pjs.getPRoot(“Spag1”);
7 sp.display();
8 } catch (PJSException e){ ... } //handle exceptions
9 } //end of main
10 } //end of SpagShow

Figure 2: Using Preserved Data Structures
After the program in Figure 1 has run, the program SpagShow in Figure 2 would read the
preserved data, display a representation of it, and leave the stored data unchanged. The new
features introduced by this program are:
6 Here the API associated with a PJavaStore object is used to reclaim access to an

object recorded as a root. The type of the object has to be re-established with a cast; a
check is made to verify that the class referred to by the object in the stable store is exactly
the same class as Spaghetti refers to in the program.

7 The code in the method display of class Spaghetti will traverse whatever objects it
needs that are referenced from sp . The PJava system automatically faults them in from
the stable store and arranges that they behave exactly as if they had been created with the
same values during this execution.

9 If the code executed has made no changes to any of the traversed persistent data
structures this will behave as a read only transaction.

2 . 3 Amending Persistent Data
7 In Figure 3, the operations add and stir will again cause whatever objects they need

to be faulted in. Substructures that are not needed will not be faulted in to occupy space
unnecessarily in the object cache. These operations will alter existing structures in sp
and possibly other objects reachable from sp , and may make further objects reachable
from it.

8 The method userArrangement is presumed to allow a user to make arbitrary
changes. Again this will modify values in the data structures reachable from sp and
possibly add, remove or replace objects reachable from it.

10 As this transaction commits, the changes are automatically preserved. PJavaStore
internal code atomically and recoverably writes back all persistent objects that have been
changed and then promotes all new objects that are reachable from these updated objects
to the persistent store.

Atkinson, Daynès, Jordan, Printezis and Spence An Orthogonally Persistent Java

5

1 ...
2 public class EditSpag {
3 public static void main (String[] args){ //start transaction
4 try { //catch store exceptions
5 PJavaStore pjs = PJavaStore.getStore(); //open a persistent store
6 Spaghetti sp = (Spaghetti)pjs.getPRoot(“Spag1”);
7 sp.add(“Garlic”); sp.stir(5); //modify using methods
8 sp.userArrangement(); //and input from a user
9 } catch (PJSException e){ ... } //handle exceptions
10 } //end of main
11 } //end of EditSpag

Figure 3: Updating a Persistent data structure

2 . 4 Discussion
The most important observation to make is that most programming is de-coupled from
considerations of persistence and that the programmer writing the above programs does not
have to control or modify any of the code in other classes. In the above example, the coding
of the class Spaghetti and the coding of the classes Pasta and Food it specialises, etc.
would have taken place without knowledge that that code was to be used in a PAS. Similarly,
the PAS programmer was not required to inspect or modify this code in any way in order to
use it. Indeed PJava uses unchanged class files produced by the standard Java compiler. As a
consequence, very little of the code written actually uses the persistence API explicitly. In one
recent example, there were only 18 lines of code explicitly using the PJava API in an
application using 95 classes with a total of 7690 lines of code [Jordan 96].
Another consequence of persistence independence is that the strictness of type checking
should be undiminished when long-lived data is used. This is achieved in PJava by ensuring
that the class information about an object is associated with it in the stable store. The cast, as a
binding is formed between program and an object in the stable store (line 6 in each of the last
two examples), then verifies that the type expected in the program (here Spaghetti) is
compatible with the type of the object being retrieved. Thus the type safety of Java is not
weakened at this point of binding and the standard type-checking regime applies throughout.
These properties allow Java programmers to focus on their applications, i.e. on building an
object-oriented model of some system and then to utilise persistence with virtually no
perturbation to their code and no loss of safety. That is, they use persistence without being
distracted by it and without it obscuring the application code. Further details of this
conceptual simplification may be found in [Atkinson & Morrison 95] where it is argued that a
major factor is a reduction in the number of mappings a programmer must manage.
Further details of the design of PJava are in [Atkinson et al. 96] and an initial appraisal of its
utility and performance is given in [Jordan 96].

3 Implementation Issues
PJava is implemented without any change to the Java language, the Java core classes or the
Java compiler. The mechanisms for persistence have been exposed via an additional API,
consisting predominantly of methods of the class PJavaStore . A purpose-built persistent
object store holds Java objects on disk and manages space allocation, recovery and
transactional updates. The automatic object faulting, the promotion to persistence and
recoverable, transactional operation have been achieved by modifying the Java virtual machine
(VM). The major change is to add an object cache that is made to look to the rest of the VM
very much like Java VM’s garbage collected heap.
In general, algorithms are incremental. For example, on start up, an initial region of the
persistent object store (POS) is pre-loaded into the object cache. After that, the object faulting
mechanism relies on detecting the difference between a reference to some object already in
cache, and some object in the stable store. This mechanism is invoked only when a pointer is
de-referenced for the first time. A buffer pool is used to reduce disk transfers.
Similarly, the promotion algorithms are also incremental. The candidates for promotion are
found by treating all the mutated pointers in objects in the cache as roots of the new
reachability sub-graph. Further information about the current implementation can be found in
[Atkinson et al. 96, Daynès et al. 96, Daynès 96, Printezis 96].

Atkinson, Daynès, Jordan, Printezis and Spence An Orthogonally Persistent Java

6

4 More Sophisticated Persistence
It is anticipated that many programmers will be satisfied with a very simple model of
persistence, such as that illustrated in section 2. This is analogous to experience with
relational databases, where most of the user requirements and most of the workload can be
satisfied by simple flat transactions. In the present prototype, the only additional mechanism
is a global checkpoint, stabilizeAll , that establishes intermediate recovery points.
However, some PAS programmers may require more control. For example, they may wish to
checkpoint intermediate results within a specific transaction, build long-running transactions,
utilise nested transactions, etc. Our approach to this, which is still under development, will
ensure that the simple use is not sacrificed to meet these more complex requirements. To this
end, programmers will be provided with two additional APIs corresponding to two levels of
understanding of transaction management.
The first API will provide ordinary application programmers with a functional view of
transaction management. This API consists of a hierarchy of transaction classes rooted by the
class TransactionShell . Each specialisation of TransactionShell implements a
given transaction model. Transactions are executed by creating instances of these transaction
classes and parameterising them with any object implementing a Runnable interface. These
Runnable objects constitute the body of transactions, while the instances of transaction
classes constitute a shell that enforces a transactional behaviour.
The second API will provide an implementation view of transaction management. This API
concerns the expert programmer who wishes to augment the set of available transaction
models in order to satisfy new needs. This internal API consists of building blocks which may
be used to implement specialisations of the class TransactionShell .

5 Related Work
Two other approaches to providing long-term data management for Java are currently popular:
1 interfaces to an existing data model, and
2 object serialisation.

These are familiar from previous languages and each has its strengths. They are not mutually
exclusive and many large applications may use combinations of these approaches together
with orthogonal persistence.

5 . 1 Interfaces to Standard Databases
Two themes are developing within this approach:
• connections to relational databases, and
• connections to OODB.

The former is exemplified by the JDBC interface [Hamilton & Cattel 96] which provides a
traditional, embedded SQL-like interface from Java to relational databases. It clearly has the
advantage of capitalising on established database systems and of allowing Java applications to
inter-work with other applications via a relational system. It has the drawback that there is an
extensive dissonance between Java’s object-oriented data model and the relational model.
This introduces a conceptual load on application programmers as they have to maintain a
mapping between the two models. The execution of this mapping imposes translation costs.
Managing the interface between Java code and the relational system requires explicitly
programmed operations. This obscures the application code, eliminating the possibility of
persistence independence, and militating against code re-use.
For some applications, these problems may be ameliorated by storing serialisations (see
below) of complex Java structures in relational BLObs9 provided cross-references between
these objects in different BLObs are not required [Reinwald et al. 94]. A system motivated as
a mechanism for communication between Java systems [Wollrath et al. 96] uses a similar
mechanism, as it will store data as tuples which can be transactionally added, read and
removed from a specified collection. The values may include arbitrarily complex
serialisations. The principle difference is that tuples are identified by a much simplified query
notation, presumably for efficiency reasons.

9 Binary Large Objects.

Atkinson, Daynès, Jordan, Printezis and Spence An Orthogonally Persistent Java

7

Connections between existing OODBMS and Java programs are being developed by most of
the OODB vendors, e.g. [ODI 96], and the ODMG is engaged in developing a standard for its
Java binding [Cattel 96]. Compared with the relational case, there is a closer resemblance
between Java’s type system and the data models in these systems. In consequence, they can
perform more sympathetic mappings between Java and their databases. Some mapping is still
necessary as their data models are already decided and do not necessarily match precisely the
types in Java. In most cases, Java data structures will map easily to their structures, but not
all their structures map directly to Java. In consequence, access to legacy data from Java may
be more complex than storing new Java data in the OODB. We can expect orthogonal and
transitive persistence. As in PJava, this avoids the danger of dangling persistent references
and implies that the allocation and recovery of disk space is fully automated.
It is likely that many vendors' products will deviate from the ideal of orthogonal persistence
by disallowing persistence for class objects (and hence Java programs). It also remains to be
seen the extent to which the interface between Java and the OODB requires annotation and
extra code. Many may deviate from persistence independence by requiring explicit lock and
transaction management throughout the code. A few may even require notification of updates.

5 . 2 Object Serialisation
Object serialisation [Riggs et al. 96, Sun 96a] is available for Java and is the foundation of the
Remote Method Invocation (RMI) technology [Sun 96b]. This technique was previously
called “pickling”, e.g. for Modula-3. It takes a reference to an object and provides a series of
bytes that represents that object and all objects reachable from it. This sequence of bytes can
then be transferred to another machine or stored in a conventional file or DB BLOb.
Subsequently, it can be reloaded and a new object for each object serialised is constructed.
These new objects have an equivalent type and state to the original objects that were serialised,
however, they have a different identity. The result is that successive serialisations will no
longer share common substructures. Furthermore an application programmer has to explicitly
ensure that the classes used in the original data structure are all available at the destination.
Large serialisations take a considerable time, because of the translations involved.
Consequently, application programmers have to get involved in partitioning the data structures
pertinent to their application into units. If they can’t organise such a partitioning, they suffer
from the “big inhale” problem. Even when their program only needs to load some small
subset of data to work, or at least meet an end-user’s initial needs, they have to suffer the
delay while all the data is loaded and translated.
If PAS programmers make partitioned serialisation work to avoid these problems, they still
have to program concurrency control, consistency between partitions, structure sharing,
references between partitions, atomicity, etc. These are operations that we believe the
underlying persistent technology can and should support and automate.
Serialisation is convenient to use; unless a non-standard treatment is required, it is fully
automatic — essentially it is driven from class definitions and the application only has to
request that an object be serialised, for it and all objects reachable from it, to be serialised.
Serialisation is well adapted for shipping data between processes and sites, as in RMI, and can
be used to record snapshots of data. It does not seem to be a good mechanism for persistence,
for two reasons:
1 it does not scale well, as it isn’t supported by incremental algorithms, and
2 it violates the principle of persistence independence, as the change of identity and loss of

sub-structure sharing mean that programmers have to cope with changed semantics after
serialisation.

5 . 3 Orthogonal Persistence
Moss and Hosking have provided a classification system for those designing and providing
orthogonally persistent versions of Java [Moss & Hosking 96]. Here we focus only on the
systems which we know have an operational implementation.
An orthogonally persistent Java has been produced by Garthwaite and Nettles [Garthwaite &
Nettles 96]. This work is oriented towards high-throughput transaction processing in Java,
and their implementation assumes that the whole database can be loaded into RAM at
application-boot time. It includes a modification to the language, but as all methods called
from within that transaction construct are then executed transactionally, it can call unmodified
methods. Therefore, it is able to adhere to all three of the principles we consider important.

Atkinson, Daynès, Jordan, Printezis and Spence An Orthogonally Persistent Java

8

Dearle’s group have made Java persistent by running it on top of their persistent operating
system, Grasshopper [Dearle et al. 96]. This approach immediately satisfies our principles,
and has the obvious advantage of requiring the least possible modification of application code.
Its principal drawback is that persistent operating systems are not yet widely available.
The binding between Java and relational databases, built on top of JDBC, has been announced
by O2 Tech-nology [Souza dos Santos & Theroude 96]. This removes some of the clutter
from application code and simplifies the task of automatically generating a relational database
and interface code for a package of classes selected via a configuration file that a PAS requires
persistent. The system does not appear to facilitate interfaces to existing databases. As all
classes can be mapped to the RDB, this persistent Java is orthogonally persistent. It does not,
however, support transitive persistence, and as the application programmer has to notify the
underlying program of such things as “an object has been updated”, it does not provide
persistence independence. A system announced by Baan seems to have a similar approach
[Baan 96].
Another experiment with Java also sets a high premium on adding persistence and transactions
without any changes to the application code [Wu & Schwiderski 96].

6 Summary and Future Directions
We have reported on the initial version of PJava, an orthogonally persistent version of Java.
Three principles are important in the design and implementation of PJava. These are:
orthogonal persistence every component of an application should have the same rights

to longevity;
transitive persistence all data needed to correctly interpret an object must be retained

for as long as that object exists; and
persistence independence code should operate unchanged with exactly the same

semantics whether it is operating on short-lived or long-lived data.
These three principles are motivated by the goal of maximising application programmer
productivity. If any of them are not fully met, the application programmers have to pay the
cost by writing more complex code. For example, if some class cannot be made persistent,
violating orthogonal persistence, programmers end up coding translations to and from data
structures that can be made persistent (we have had to do this with our current prototype for
AWT classes). This distracts the application programmer, clutters the code and introduces
errors associated with inconsistent translations. If persistence isn’t transitive, application
programmers get bogged down in a mire of dangling reference problems.
The principle of persistence independence is particularly important for code re-use. It ensures
that code already written does not have to be modified to work in a persistent context. It
therefore guarantees that code does not become cluttered with non-functional annotations and
that application programmers can concentrate on building a correct set of object definitions.
These principles have been used as the basis for comparing PJava’s approach with other
persistence mechanisms available for Java.

6 . 1 Future Directions
These are divided into two parts: plans for PJava and issues that need further consideration
regarding persistence and Java in general.
PJava is a vehicle for experiment and several lines of experiment and development are
expected. We expect to learn from various internal uses of PJava at Sun and in Glasgow,
including the Forest project [Jordan & Van Der Vanter 95], and from as many external uses as
possible10. We already have several sets of measurements and test loads that show reasonable
performance [Jordan 96] and have encountered several cases where using persistence has
made significant gains over non-persistent approaches, either by avoiding translation costs or
by avoiding a “big inhale”. There are, however, opportunities to improve significantly the
present implementation.
Currently, the cache management algorithms and persistent object store design are being
revised to support much larger transactions and increased object populations. The flexible
transaction model will then be investigated [Daynès 96, Daynès et al. 96]. At the same time

10 http://www.dcs.gla.ac.uk/pjava/ contains up-to-date information on PJava and how to obtain it.

Atkinson, Daynès, Jordan, Printezis and Spence An Orthogonally Persistent Java

9

we plan to develop incremental concurrent disk garbage collection [Printezis 96]. Our
approach to distribution is intended to limit commitments to those feasible in an indefinitely
distributed system [Spence & Atkinson 97, Spence 96].
Our principles led us to take the route of storing the meta-data and code in the same store as
the data it describes. It is quite feasible with Java to store methods in byte code form because
of its architectural neutrality. The co-location of code, meta data and objects in one stable
store has potential advantages, such as being able to retain code optimisations for future
execution, and being able to evolve code and data in step. However, there are several
technical challenges to be overcome before these advantages can be realised.
It is also interesting to consider the general future of orthogonally persistent Java. In addition
to its role enhancing application programming productivity, it could also fulfil another role.
Orthogonal persistence incorporates into the programming model much of the external activity
currently achieved via files and databases. This allows that activity to be described by an
abstract computational model and thus extends the language’s architectural and context
independence. This model could then be applied to mobile as well as stationary code. Code
in transit could carry with it, logically at least, a persistent context. All operations within this
context are constrained by Java’s standard safety rules. Consequently, the mobile persistent
unit might be a useful construct for organising security, sandboxing, accountability and
ownership. Security is not reduced by persistence, unless there are covert channels to access
the persistent store. These may be prevented by operating system protection regimes and
encryption. With this proviso, persistence independence guarantees that all the protection
currently afforded by Java within programs is undiminished and is now available for
everything in a stable store.
The interaction between a mobile persistent unit and the environments it visits might be
described separately. These persistent units could provide a solution to the problem of
arranging that several applets (servlets [Sun 96c] or aglets [IBM 96]) may need to work on the
same data, and that users want to own and carry their data about with them. The utility of
orthogonally persistent Java contexts in these roles is a topic ripe for exploration.

Acknowledgements
The work at Glasgow on PJava is supported by a grant from Sun Microsystems Inc. and by
grant GR/K87791 from the British Engineering and Physical Sciences Research Council.
Many offered useful comments on earlier drafts, including: Richard Connor, Alex Grathwaite,
Dag Sjøberg, Cathy Waite, and Kathy Zuckerman.

Bibliography
Arnold & Gosling 96 Arnold, K. and Gosling, J. The Java Programming

Language, Addison Wesley, 1996, ISBN 0-201-63455-4.
Atkinson, et al. 83 Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott,

W.P. and Morrison, R., An approach to Persistent Programming, Computer
Journal, 26(4), 360-365, Nov. 1983.

Atkinson et al. 96 Atkinson, M.P., Jordan, M.J., Daynès, L. and Spence, S.
Design issues for Persistent Java: a type-safe, object-oriented, orthogonally
persistent system. in Proceedings of the Seventh International Workshop on
Persistent Object Systems, Cape May, May 1996 (Connor & Nettles).
http://www.dcs.gla.ac.uk/pjava

Atkinson & Jordan 96 Atkinson, M.P. and Jordan, M.J. Proceedings of the First
International Workshop on Persistence and Java, Drymen, Scotland, Sept. 1996,
Sunlabs Tech. Report. http://www.dcs.gla.ac.uk/rapids/events/pj1

Atkinson & Morrison 95 Atkinson, M.P. and Morrison, R. Orthogonally Persistent
Object Systems. VLDB Journal, 4(3), 1995.

Baan 96 http://www.baan.com/2_News/ Press_Releases/press21.htm.
Cattel 96 Cattel, R.G.G. (editor) Object Database Standard : ODMG -

96, Release 1.2. Morgan Kaufmann, San Fransisco, 1996.
Daynès 96 Daynès, L. A Flexible Transaction Model for Persistent

Java. In [Atkinson & Jordan 96].

Atkinson, Daynès, Jordan, Printezis and Spence An Orthogonally Persistent Java

10

Daynès et al. 9 6 Daynès, L., Atkinson, M.P. and Valduriez, P. Efficient
support for customising concurrency control in Persistent Java. In Bertino, E.,
Jajodia, S. and Kerschberg, L. (editors) Proc. of the International Workshop on
Advanced Transaction Models and Architectures (ATMA), Goa, India, Sept.
1996, pages 216-233.

Dearle et al. 96 Dearle, A., Hulse, D. and Farkas, A. Operating system
support for Java. In [Atkinson & Jordan 96].

Flanagan 96 Flanagan, D. Java in a Nutshell. O'Reilly & Associates
1996, ISBN 1-56592-183-6.

Garthwaite & Nettles 96 Garthwaite, A. and Nettles, S. Transactions for Java. In
[Atkinson & Jordan 96].

Hamilton & Cattel 96 Hamilton, G. and Cattel, R. JDBC: A Java SQL API, June
1996. http://splash.javasoft.com/jdbc

IBM 96 IBM Tokyo Research Lab. Aglets Workbench: Programming Mobile Agents in
Java, http://www.trl.ibm.co.jp/aglets/, 1996.

Jordan & Van De Vanter 95 Jordan, M.J. and Van De Vanter, M. Software
Configuration Management in an Object Oriented Database, in USENIX conf. on
Object Oriented Technologies, Monterey, CA, June 1995.
http://www.sunlabs.com/research/forest/COM.Sun.Labs.Forest.doc.coots_95.abs.html

Jordan 96 Jordan, M.J. Early Experiences with Persistent Java. In
[Atkinson & Jordan 96].

Moss & Hosking 96 Moss, J.E.B. and Hosking, A.L. Approaches to adding
persistence to Java. In [Atkinson & Jordan 96].

ODI 96 http://www.odi.com/products/pse.
Printezis 96 Printezis, T. Analysing a simple disk garbage collector. In

[Atkinson & Jordan 96].
Reinwald et al. 94 Reinwald, B., Dessloch, S., Carey, M., Lehman, T. and

Pirahesh, H. Making real data Persistent: initial experiences with SMRC. in Proc.
of sixth international workshop on Persistent Object Systems (Atkinson, M.P.,
Maier, D. and Benzaken, V. eds), Springer Verlag, 1995, ISBN 3-540-19912-8.

Riggs et al. 96 Riggs, R., Waldo, J. and Wollrath, A. Pickling state in the
Java system. Proceedings of the second international conference on object-oriented
technologies (COOT'96), Toronto, Canada, June 1996.

Souza dos Santos & Theroude 96Souza dos Santos, C. and Theroude, E. Persistent
Java. In [Atkinson & Jordan 96].

Spence 96 Spence, S. Distribution strategies for Persistent Java, In
[Atkinson & Jordan 96].

Spence & Atkinson 97 Spence, S. and Atkinson, M.P. A scalable model of
distribution promoting autonomy of and co-operation between PJava object stores.
to appear in Proceedings of the thirtieth Hawaii international conference on
System Sciences, Jan. 1997. http://www.dcs.gla.ac.uk/~susan/papers.html

Straßer et al. 96 Straßer, M., Baumann, J. and Hohl, F. Mole - A Java
based Mobile Agent System. in Proceedings of ECOOP'96 Workshop on Mobile
Object Systems.

Sun 96a Sun Microsystems Inc. Java object serialisation specification, draft revision 0.9.
http://chatsubo.javasoft.com/current/doc/rmi-spec/rmiTOC.doc.html, 1996.

Sun 96b Sun Microsystems Inc. Java remote method invocation specification, draft
r ev i s i on 0 .9 . h t t p : / / cha t subo . j avaso f t . com/cu r ren t / doc / rm i -
spec/rmiTOC.doc.html, May 1996.

Sun 96c Sun Microsystems Inc. JEEVES: Java-powered Internet server and framework,
http://www.javasoft.com/products/jeeves/, 1996.

van der Linden 96 van der Linden, P. Just Java. Prentice Hall 1996, ISBN 0-
13-565839-X.

Wollrath et al. 96 Wollrath, A., Riggs, R. and Waldo, J. A distributed object
model for the Java system. In Proceedings of the second international conference
on object-oriented technologies (COOT'96), Toronto, Canada, June 1996.

Wu & Schwiderski 96 Wu, Z. and Schwiderski, S. Design of Reflective Java.
Internal Report APM.1818.00.05, APM, Poseidon House, Castle Park,
Cambridge CB3 0RD, United Kingdom, Sep. 1996.

