
Migration of processes from
shared to dedicated systems

Towards maintainable and flexible processes

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Johannes Binder
Matrikelnummer 0727990

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Mitwirkung: Dipl.-Ing. Mag. Stephan Strodl

Wien, 17.09.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Migration of processes from
shared to dedicated systems

Towards maintainable and flexible processes

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Johannes Binder
Registration Number 0727990

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Assistance: Dipl.-Ing. Mag. Stephan Strodl

Vienna, 17.09.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Johannes Binder
Donaufelder Straße 54/1401, 1210 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

Keeping multiple business processes deployed on one system poses severe threats to mainte-
nance and flexibility of individual processes as well as the hosting system itself. Shared depen-
dencies between processes limit the possibility to update the system for one process, because
of the potential side effects on the other processes. The processes are bound to a system, even
to a specific state of the system, and it is difficult to transfer them in a minimal way, so that
only resources and dependencies of the respective process are considered. If documentation ex-
ists it is frequently outdated or complex to transform to an environment that is able to execute
the process. Besides maintenance also preservation of the state of processes in a shared system
consumes more resources than necessary. This makes it difficult to archive and share processes.

The aim of this work is to provide a process migration framework (PMF) that frees processes
from the chains imposed by the shared system where they are deployed. The first step of the PMF
is to identify the process environment, so the resources that a process requires during execution,
which is done by static and dynamic observation of the process and its environment. This process
environment is stored in a model. The model can be adapted to upgrade software or migrate to
different data types or other maintenance reasons. Next, a virtual system is created where the
process environment is deployed. Finally it is verified that the target system is able to execute
the process correctly. The result of the PMF is a documentation of the process environment as
well as a virtual system that contains only resources relevant to the process.

The advantages of this approach are that processes can be redeployed independently of any
physical machine, processes are able to evolve independently of other processes, and process
environments can be shared and archived in a sustainable way, including all dependencies that
are required to execute the process.

The evaluation of the PMF on different scenarios shows its ability to create models of the
process environments at a level that is sufficient to recreate the process environment for scenarios
that use workflows or scripts, which may invoke local tools and web services. The resulting
target systems are able to execute the processes.

iii

Kurzfassung

Mehrere Prozesse auf einem System gemeinsam zu hosten ist in mehrerlei Hinsicht kritisch, da
Wartbarkeit und Flexibilität unter solch einem Setup leiden. Der Grund dafür ist, dass in solch
einer Umgebung mehrere Prozesse oft gemeinsame Abhängigkeiten haben. Solche Abhängig-
keiten können dann nicht mehr auf die Anforderungen eines Prozesses angepasst werden, son-
dern die Auswirkungen auf alle anderen Prozesse, welche diese Abhängigkeit verwenden, muss
überprüft werden. Weiters ist es schwierig, die Umgebung des Prozesses zu duplizieren, sodass
nur die Abhängigkeiten dieses Prozesses mitberücksichtigt werden. Daher ist das Archivieren
und Verteilen solcher Prozessumgebungen schwierig handzuhaben. Vorhandene Dokumentation
von Prozessen ist oft nicht aktuell oder unvollständig.

Das Framework für Prozessmigration (PMF) unterstützt die Überführung von Prozessen in
gemeinsam genutzten Systemen hin zu dedizierten virtuellen Systemen.

Der erste Schritt in diesem Framework ist die Umgebung des Prozesses zu analysieren. Das
geschieht mit einer Kombination aus statischer Analyse der Prozessumgebung und dynamischer
Analyse des Laufzeitverhaltens des Prozesses. Vom Prozess verwendete Artefakte und Einstel-
lungen werden in ein Modell abgebildet. Dieses Modell kann im nächsten Schritt angepasst
werden, um verschiedene Wartungsarbeiten, wie beispielsweise das Aktualisieren von Software,
durchzuführen. Ausgehend von diesem angepassten Modell der Umgebung des Prozesses wird
ein neues virtuelles System erstellt, welches nur die Abhängigkeiten des Prozesses beinhaltet.

Die dedizierte Prozessumgebung erleichtert die Wartbarkeit, da der Prozess unababhängig
von anderen Prozessen weiterentwickelt werden kann. Eingebettet in einer virtuellen Maschine
ist der Prozess zudem unabhabhäng von physikalischen Systemen, und kann nachhaltig aufbe-
wahrt und weitergegeben werden.

Die Evaluation des PMF anhand verschiedener Szenarien zeigt, dass die resultierenden Mo-
delle der Prozessumgebungen einen Detailgrad aufweisen, der ausreichend ist, um für Szenarien
welche Workflows oder Skripte verwenden und eventuell auf lokale Tools und Web Services
zugreifen, eine Prozessumgebung nachzubilden. Die resultierenden virtuellen Systeme sind in
der Lage, die jeweiligen Prozesse auszuführen.

v

Contents

1 Introduction 1

2 Related Work 7
2.1 Migration . 7
2.2 Process discovery . 9
2.3 Provisioning . 10
2.4 Virtualization . 12
2.5 Enterprise architecture modeling . 13
2.6 Summary . 14

3 Design 15
3.1 Process environment model . 16

3.1.1 Local artifacts . 17
3.1.2 System information . 18
3.1.3 Services . 19

3.2 Capture . 19
3.2.1 Dynamic Extractor . 20
3.2.2 Static Extractor . 23
3.2.3 Manual Extractor . 25
3.2.4 Comparison of the extractors . 25
3.2.5 Refinement . 26

3.3 Adapt . 27
3.3.1 Knowledgebase . 28
3.3.2 ManualSelection . 28
3.3.3 AutomatedSelection . 29

3.4 Build . 29
3.4.1 ConfigurationBuilder . 29
3.4.2 VirtualMachineBuilder . 29

3.5 Verification . 30
3.6 Summary . 32

4 Implementation 33
4.1 Architecture . 33

vii

4.2 Data Model . 34
4.3 Capturing . 36

4.3.1 DynamicExtractor . 37
4.3.2 StaticExtractor . 41
4.3.3 ManualExtractor . 45
4.3.4 Refiners . 45
4.3.5 Usage . 48
4.3.6 Summary . 49

4.4 Adapt . 49
4.5 Build . 50

4.5.1 ConfigBuilder . 51
4.5.2 MachineBuilder . 53
4.5.3 Usage . 54
4.5.4 Summary . 54

4.6 Verification . 55
4.7 Implementation details . 55
4.8 Summary . 56

5 Evaluation 59
5.1 Musical genre classification . 60
5.2 LNEC . 68
5.3 Summary . 74

6 Summary and future work 77
6.1 Summary . 77
6.2 Future work . 79

Bibliography 83

viii

CHAPTER 1
Introduction

Processes are commonly deployed in shared systems and therefore use common infrastructure
such as operating system libraries and installed tools of a system. If no precautions are taken
to keep processes separate from each other this causes them to fusion. It becomes difficult to
distinguish environments of individual processes, i.e. the infrastructure that a process requires
to be able to execute successfully. But process environments evolve with the process, and by
adapting one environment another one might be altered. This not only makes processes difficult
to understand, but also to monitor, maintain, and migrate. Besides not being able to support the
evolution of the process because the environment is not flexible enough also a loss of dynamism,
e.g. the possibility to migrate the process to another machine, threatens these processes.

The importance of being able to create a documentation of process environments and create
systems which satisfy such models of existing systems with all its direct as well as indirect
dependencies can be crucial, as can be seen by the example of FreeSurfer1. FreeSurfer is a
tool that supports analyzing magnetic resonance imaging (MRI) scan data. Running experiments
using the same version and the same operating system resulted in the same results, as expected
[34]. Different versions of FreeSurfer, and even just running specific versions of FreeSurfer on
different operating systems, resulted in divergent results beyond statistical significance. This
example shows the importance of carefully selecting software versions, but also the impact of
changes to the environment where a process is executed in.

A first step towards sustainable processes is done by documenting the process environment,
i.e. the dependencies of a process. This clarifies the border of the process environment. But pro-
cess environments may overlap, therefore maintenance still is limited as other processes might
be affected. So as a second step the process environment needs to be extracted and moved to
a dedicated execution environment. Such dedicated environments do not necessarily need to be
dedicated physical systems, but also could be virtual systems or execution environments like
provided by application packaging systems. Virtual systems are very suitable as target environ-
ment because they are highly portable and compatible with most scenarios.

1http://freesurfer.net/, accessed 2014-02-25

1

http://freesurfer.net/

This work focuses on the extraction of process environments from shared systems and rede-
ploying them on dedicated virtual systems. That approach poses several advantages, which are
explained in the following in conjunction with basic terminology of this document.

The term process in this work refers to a sequence of activities (e.g. tool invocations) ex-
ecuted by a system, like in the context of process mining [12], and not to the runtime instance
of an executing application as usually referred to in computer science. Process migration in
this context is used as synonym/abbreviation for process environment migration and denotes the
activity of moving a process environment to a different hosting system (target system), where
the according process can be executed as on the system it has been located originally (source
system). Process migration involves extraction of the process environment on the source sys-
tem and redeployment of the process environment on the target system. Automated processes
migration support ensures efficient and systematic migration. This is helpful e.g. in optimizing
server infrastructure (server consolidation) [19], but also in providing a common environment
for a team (e.g. a customized development environment for a team of software engineers), and
in sustainably preserving a process (e.g. a process involving legacy tools that are not compatible
to current operating systems anymore). More specific scenarios can be found in the e-Science
domain, where workflows need to be documented, shared with the scientific community, and
preserved for future reference [62]. Such shared workflows are useful to reduce the effort to
verify or build on existing experiments [63]. Thereby, trustworthiness and reusability of pub-
lished results is increased. Process migration also can be used to prepare a test environment for
testing new or modified software or a process with specific requirements. Documentation of the
process environment that is generated in the context of the migration is an important part of the
resulting artifacts as it helps comprehending and subsequently recreating systems. The informa-
tion that is extracted as part of the migration includes the dependencies that a process requires to
operate correctly, i.e. required resources, tools, and services. This information not only supports
maintenance of the process, but also redeployment on a dedicated system. The documentation
is valuable when allowing the process to evolve and to be optimized.

Virtual systems are eligible to host the target environment because of several reasons. The
additional layer of abstraction introduced by software virtualization provides various benefits,
especially in terms of flexibility, efficiency and security [32]. Migrating software to virtual
systems has gained popularity in recent times, not only because of the rise of Cloud Comput-
ing where virtualization plays a major role [87]. Virtual systems are much more portable than
those directly deployed to specific physical hosts because they can be moved easily to different
providers that support the same virtualization technique. This helps reducing costs by better
utilization of hardware, and also supports minimizing infrastructure vendor lock-in by intro-
ducing a layer between provider and the hosted system. Virtualization can be used to isolate
software from its hardware environment. Advantages that are addressed thereby are, amongst
others: availability is improved because of eased migration to different physical hosts (e.g. in
case of a hardware failure) and the resulting possibility to quickly respond to changing hardware
requirements (e.g. to scale because of an increasing user base or to mitigate access peaks).

Migration of (possibly but not necessarily physical) systems to a virtual environment can
be performed by creating a one-to-one clone of a system. While this is rather easy to execute
and a sufficient solution for systems that need to be migrated completely, there is the problem

2

that services and applications may be captured that are not used anymore e.g. because they are
part of the environment of an obsolete process. As such they are likely to not being maintained,
to waste resources of the system, and to pose security risks because of software that is not
up to date. There also are migrations where splitting multiple services that are executed on
one system to multiple systems is required because of performance or maintenance reasons.
The approach followed in this work is to perform a partial and customizable migration. Such
migrations can be executed with respect to different scopes, i.e. for specific applications, users,
or, as in this work, processes. The result is an environment that only contains resources (e.g.
tools and files) that are relevant with respect to the targeted scope. This is valuable for several
reasons, a few of them are outlined in the following. The amount of software and data that has to
be maintained is reduced. As installed software components, especially those that maintainers
are not aware of and therefore are not updated regularly, have the potential to pose security
risks, also the attack surface is minimized (c.f. [49] for a correlation of updating behavior and
security incidents). Furthermore, resource requirements like storage and processor utilization
is optimized by discarding data and services that are not required anymore. This improves the
efficiency for the remaining services. Compared to cloning systems, this is more difficult to
execute, because the required resources like software, data, configuration files, etc. have to
be determined. A main risk of partial migration is that relevant resources are not migrated.
Testing the redeployed system is an important step to ensure the completeness of the system.
As this work focuses on the migration of processes, i.e. their dependencies like tools and files
which are required for correct execution, the term migration is used as abbreviation for process
environment migration in this document.

Process migration can be combined with the generation of a process documentation. Because
the migration needs to analyze the process environment to be able to rebuild it, the findings that
have been generated in this step just need to be stored to also get a documentation of the process
environment in form of a model. Such models are used to re-create the process environment on
a new system, and therefore need information about the technical requirements of a process, so
the dependencies that are required directly or indirectly by the process. Models add value by
supporting future maintenance and enhancement of the described process, and therefore also are
vital for the long term availability of processes.

Although migration usually is not done on a regular basis, keeping the migration process
as easy to execute as possible is valuable. Besides providing a documentation to a specific
point in time as shown in this work there are also other uses for process documentation. For
example the resulting documentation from subsequent executions of the migration process can
be used to track changes of the process environment over time by observing the evolvement
of the process model. The main tasks of creating a model of the process environment and
redeploying the process in a virtual system are tedious to do manually and automation should
lower the effort and hurdles to virtualize the environment of a process. Because of this, and
the general advantages of automation (e.g. reduced effort and therefore costs, traceability) an
automated approach is proposed in this thesis. The boundaries of automation are limited by the
level of automation of the process itself and the scriptability of its required tools. Processes
that require user interaction cannot be migrated fully automatically without modification. Also
tool installation and configuration is a limiting factor if not possible in an automated way, like

3

graphical installers and configuration tools.
For the problem of extracting processes from a shared environment into new virtual systems

there are following main research questions:

• How can the environment of a process that is embedded in a shared system be identified?
It is aimed to provide an approach that allows the identification of dependencies of pro-
cesses that are implemented as scripts, using workflow engines, or other techniques. A
further goal is to show limits of such an approach, along with possible ways to overcome
such limits.

• How can the process be extracted from such a shared system?
Requirements for transferring the process environment from source to target systems need
to be determined.

• How can a process environment be documented?
An extensible model is required, which is able to represent technical and organizational
aspects of a process.

My thesis proposes a framework with the aim to support automated and documented migra-
tion of processes into virtual environments, including their software and data with its dependen-
cies. This process migration framework (PMF) also creates a documentation of the environment
of the process as process model. It is developed on the basis of current research results and
industry best practices. There will be a theoretical design of the framework, but also an imple-
mentation with a focused scope in terms of supported operating systems and applications.

In the theoretical part of the work the framework will be designed and described. The input
of the framework is the software environment of the process, i.e. the system that contains the
process. The system will be analyzed to identify the software components and data of the host
system that the process accesses. For this the process is executed and the resource access of
the process instance is observed. Multiple executions may be necessary to identify the required
resources. The model is refined to improve expressiveness, e.g. by reducing resources irrelevant
for the migration, like temporary files. This results in an information system model. The user
optionally can make changes in the created model, like using a newer software package or differ-
ent data files. This may be necessary when moving to another operating system where specific
tools are not available and need to be replaced by equivalent tools. It also is useful to support
changing requirements without the need to modify the created system or to update to new ver-
sion of tools. The resulting information system model is used to recreate a virtual machine that
corresponds to this model.

So in this thesis process migration refers to the documented migration of processes to a
virtual system. This is done by executing following steps:

1. Create a model of the process environment by identification of the software, configuration
of thereof, and the data that a process utilizes, via process execution monitoring.

2. Customize the process model by allowing exchanging software or data.

3. Build a virtual system that confirms to the customized process model.

4

The practical part of the work comprises the prototype implementation of the framework,
which is based on the results of the theoretical part of the work. The functionality of the mod-
ules of the framework is partly covered by existing tools, which are utilized and if necessary
extended. The prototype implementation builds a basic process model (supporting packages,
configuration, and files) and creates a virtual environment thereof. The time-consuming tasks of
recreating the virtual system and identification of the existing system in the migration process is
supported by the framework.

Furthermore, the prototype implementation also aims to point out issues and limitations with
respect to the possible automation of implementations of such an approach, i.e. the steps that
need to be executed manually and specific cases of the migration that may require special han-
dling, like tools that access their components or data with an encrypted or proprietary protocol
or have been installed from a non-public source. The practical applicability of such a framework
is tested on different scenarios, including processes that execute workflows or access services.
The evaluation also shows limitations of the tools the framework builds on.

This work focuses on the software related aspects of processes. The business layers of
processes are excluded from the framework, and so are modeling details about the process itself,
like process steps and how they are related to each other. The level of automation that is possible
in the migration depends on the level of automation of the process itself. This means that for a
process that includes steps that are not scriptable an automated migration cannot be expected,
because in the context of the framework the process is executed and the non scriptable tasks need
to be executed by the user manually during the execution of the framework. So for an automatic
migration the activities of the process need to be specified in one script. Activities that cannot be
automated therefore cause manual intervention during the migration process of the framework.

In the implementation of the prototype the scope for modeling and migration are processes
that run on single physical or virtual machines which run Debian or derivatives. They will be
redeployed on a virtual system with the same hardware architecture also running GNU/Linux.
Files and software packages are the main resources that are considered in this framework. Other
operating system specific information (e.g. the kernel version) or hardware information (e.g.
special graphic devices that are deployed on the system) is not considered. The target system for
the migration are virtual machines.

My contributions are the design of the process migration framework, and a prototype imple-
mentation that integrates existing tools to test and demonstrate the capabilities of the framework.

The framework is evaluated on different process scenarios, which are implemented as script
or workflow. The scenarios for the evaluation are taken from the domain of e-Science and from
the domain of civil engineering. The prototype is installed on the host system of each scenario. It
is applied on the host and should generate a virtual machines that contains the required software
components and data for the respective process. The virtual machines are verified by comparing
with a previously generated expected set of resources. From the evaluation the completeness,
the level of automation that is possible, but also potential issues are extracted.

The document is structured as follows: Chapter 2 describes existing work that are either
used within this thesis or complement the activities of the PMF. The design of the framework is
described in Chapter 3. The description of the of the modules of the prototype implementation
can be found in Chapter 4, which also contains a description of the used process model, and

5

interfaces of the framework. The framework is evaluated in Chapter 5 on real-world use cases.
A conclusion and an outlook on possible future development are given in Chapter 6.

6

CHAPTER 2
Related Work

This work touches various fields of research, from process monitoring to virtual machine provi-
sioning, process environment modeling and others. This chapter provides an overview of related
concepts, which have influenced the direction of this work, could be used to expand the scope
towards more specialization, or provide solutions for subtasks of the problem.

2.1 Migration

The overall concept of the framework can be seen as a migration problem, and issues of outsourc-
ing and migration of software infrastructure are an active area of research. A basic approach is
the system to system migration, which deals with duplicating (physical) machines. Main issues
thereof are described in [52]. As one of the migration methodologies the Butterfly methodol-
ogy is presented in [109], which describes replacing a legacy system with a target system over
time. The PMF has been developed with the focus to migrate processes at once, but it can be
used in such methodologies to migrate individual processes that are part of the overall legacy
system. Aspects that should be considered when developing a replacement for obsolete soft-
ware are described in [110]. It is shown how visualization and divide-and-conquer techniques
can support understanding the legacy system, which can be helpful when applying the PMF on
large-scale systems. Automated service migration in case of malfunctioning or attacked services
is described in [116] using a logic based framework. If specified requirements cannot be satis-
fied, the framework suspends the involved services and resumes them on another system. An
implementation of a framework that handles migration of active processes from one to another
Linux system is shown in [113]. Although such usage is beyond the scope of the PMF, it shows
areas of possible extensions as well as technology that could be utilized in future versions of the
framework.

The basic migration approach of capturing the whole system and redeploying it, e.g. on
a VM, is covered already by solutions offered by the industry. One open source tool is virt-
p2v [9], which allows cloning a complete system over a server into a VM. Proprietary solutions

7

are VMWare R© vCenterTMConverterTM1, Symantec System Recovery Server Edition2, NetIQ
PlateSpin R© Migrate3, Microsoft Virtual Machine Manager4 and others. But this approach does
not capture only relevant applications and data of a process but also unneeded software, services,
and data which may pollute the target system.

Virtual machines are a popular target for migration, also because of the usage in the hyped
Cloud Computing [87]. One of the concepts for supporting automated migration to cloud
providers that can be found in the literature is CloudMig [114]. CloudMig uses installation tem-
plates to specify software configuration (e.g. specifying installation path, prerequisites, etc.) to
assist deployment of software. Configuration policies are used to verify the migration. Cloud-
Mig is focused on the configuration of the installation and the verification of the migration,
wheres this work also covers analysis and is model-based to improve flexibility of the target
system’s configuration.

CloudMIG [28, 29], another similarly named framework, has a partly shared scope to this
work, i.e. the model-based migration of software systems. But in contrast to the framework
that is presented in this document, CloudMIG is more fine grained and operates on the level
of enterprise system internals. It performs an in-depth analysis of the system by looking at its
architecture and runtime utilization. This level of detail is necessary to allow resource-efficient
optimization of the software systems for cloud environments. The PMF does not modify system
internals in this way, and therefore follows a more generic approach which can be applied with-
out inspecting any source code. A target cloud environment model needs to be provided where
available cloud infrastructure properties are specified. This information is used to create a tar-
get architecture that can be deployed in cloud infrastructures that provide the features specified
in the cloud environment model. The basic activities of CloudMIG, i.e. extraction, selection
and generation, are used in a similar way also in the PMF. Further cloud-specific activities like
adaption, evaluation and transformation, which deal with modifying the system to better utilize
the infrastructure based on observation of the runtime behavior are not considered in the PMF.
CloudMIG uses the OMG Knowledge Discovery Meta-Model (KDM)5 [80] for representing
systems. The KDM can be used to describe the internals of enterprise software, from the level
of infrastructure to implementation details like packages, source code, data types, etc. In com-
parison the model of this work needs to be able to describe processes on the level of tools, their
interaction and optionally their relation to business activities. While CloudMIG is useful for
customizing systems itself, the PMF is useful when alternatives to tools or dependencies should
be considered. The frameworks can be used to complement each other, i.e. the PMF can be
extended to utilize CloudMIG to handle the migration of complex enterprise software, when a
black box view on such software is not sufficient.

1http://www.vmware.com/products/converter/, accessed 2013-08-22
2http://www.symantec.com/system-recovery-server-edition/, accessed 2013-08-22
3https://www.netiq.com/products/migrate/, accessed 2013-08-22
4http://www.microsoft.com/systemcenter/virtualmachinemanager/en/us/

default.aspx, accessed 2013-08-22
5http://www.omg.org/spec/KDM/, accessed 2013-10-15

8

http://www.vmware.com/products/converter/
http://www.symantec.com/system-recovery-server-edition/
https://www.netiq.com/products/migrate/
http://www.microsoft.com/systemcenter/virtualmachinemanager/en/us/default.aspx
http://www.microsoft.com/systemcenter/virtualmachinemanager/en/us/default.aspx
http://www.omg.org/spec/KDM/

2.2 Process discovery

In order to create a model of the system, the system needs to be analyzed. One of the concepts
to consider for an automated analysis, is configuration crawling. An approach for this concept
is presented in [65], which uses the API of the virtual machine provider to extract attributes,
like architecture or which operating system is installed, of the virtual system. Additionally,
configuration management agents collect meta data about the virtual appliance. The resulting
configuration data model can be used to rebuild a virtual appliance. Contrary to the PMF the
scope is on the analysis of virtual machines. Extraction of information about the hardware is
discussed in [112].

Analyzing business processes in order to extract models is referred to as process discovery
and is part of process mining [101]. An approach for process identification that uses log files
as input to analyze the process is presented in [12]. For e-processes this also is referred to as
workflow mining [36]. An approach for workflow mining, also based on event logs, is pre-
sented in [102]. Such methods focus on the process itself rather than on the dependencies of the
process. Compared to workflow mining or process discovery as discussed in the literature the
PMF focuses on identifying the process environment instead of the process itself. Nevertheless,
workflow mining can be used to extend this approach by adding information of the process to
the model that is generated in this work.

An automated extraction of information about the process environment using enterprise
topology graphs is described in [6]. A plugin based approach is suggested, where dependent
on the detected node in further iterations plugins for this node type are executed to successively
refine the graph. In this approach plugins need to be developed for individual node types, which
is avoided in the PMF.

Dynamic approaches allow monitoring process execution during runtime. If access to the
source code is available, source-to-source transformation can be applied. In [4] an approach is
shown that uses source-to-source transformation to insert test probes so that the branch coverage
of tests can be determined. Such an approach could be adapted to insert monitoring statements.
Some solutions have been developed based on AspectJ as described in [46]. Although the gen-
eral approach is language independent concrete monitoring statements are language dependent.
As such methods require access to the source code they are not applicable in this context.

Another way to monitor resource access is to execute the process inside a sandbox and
use the monitoring facilities of it (e.g. the Resource Access Monitor of Sandboxie6). For
managed languages also their virtual machine can be utilized (e.g. Java Virtual Machine) to
monitor the process. Robusta [88] modifies the virtual machine to add hooks such that system
calls can be mediated.

Furthermore the operating system functionality for debugging processes can be utilized by
allowing to control process execution (e.g. using interrupts), and to read the context of the
paused process states [86]. There are also other tools for intercepting system calls. Ultra [13]
traces system calls by replacing the dynamically-linked standard shared library that provides
the system calls. Because of this, statically linked tools would need to be recompiled to allow
observation using this tool.

6http://www.sandboxie.com/index.php?ResourceAccessMonitor, accessed 2014-02-04

9

http://www.sandboxie.com/index.php?ResourceAccessMonitor

Intercepting system calls on the operating system layer is independent of the language and
runtime of tools, and does not require modification of the system. Therefore it is used in this
implementation. For GNU/Linux there is strace [85] which allows monitoring system calls
issued by a process. This is possible because of the ptrace system call, which strace uses to
intercept the communication to the kernel. Because system calls are also used to load resources,
access files, spawn processes, and so on, this is helpful to detect dependencies. Strace is useful
for identifying which libraries and data has been accessed, but it also can be used to show socket
connections, like connections to a database and requests to a web service.

CDE [38] is based on strace and also can be used to monitor resource access in its verbose
mode. Compared to strace the output is more concise but also less complete. CDE, for instance,
omits system calls that are not vital for tracking resources (e.g. mmap), or more importantly
details of network connections (e.g. arguments of web service requests). The main purpose
of CDE is to create portable packages of applications, which is especially useful for processes
that use software which is not available as package but e.g. just has been downloaded and
extracted or installed using a custom installer. So CDE could be used in future versions to
migrate software that is not available as package but also not portable. An example is software
that loads resources like configuration files from the user’s home directory, but where this user
should not be created on the target system. If CDE would be applied to tools that are available
in package repositories, these tools could not be managed by the package manager anymore,
which makes them significantly more difficult to maintain. Therefore, CDE is only used as
complementary tool to strace for observing the process execution in the PMF.

2.3 Provisioning

Techniques that are used to configure systems in an automated manner are helpful for the setup
of the VMs. A basic step is building virtual machine images, which is also a topic of e-Science
research in terms of reproducibility of experiments. Kameleon [25] is a tool that automates
building machines. It uses imperative configuration files for specifying the target operating
system and configuration steps. Kameleon targets different virtual machine environments, e.g.
VirtualBox7, XEN8 and KVM9.

Configuration management, i.e. the setup and maintenance of (virtual) machines, can be
used to provision the target system. Because of the platform independent description that avoids
platform specific installation steps, declarative configuration is useful in this context. Further-
more, an abstract description of the system configuration is given by such a configuration file,
which could be used to import existing configurations into process models. A prominent declar-
ative configuration management tool is Puppet [8]. Supported types of resources include pack-
ages, services, and files. Resources are described by the properties of the desired state instead
of a sequence of steps that lead to the desired state (declarative). Puppet ensures that applying
resources multiple times does not cause unexpected effects, so to avoid multiple executions of
actions (idempotent). Resources that are defined multiple times with conflicting properties are

7http://www.virtualbox.org/, accessed 2013-10-17
8http://www.xen.org, accessed 2013-10-17
9http://www.linux-kvm.org, accessed 2013-10-17

10

http://www.virtualbox.org/
http://www.xen.org
http://www.linux-kvm.org

prevented (unique). Besides providing a domain specific language for configuration, Puppet is
also able to simulate changes caused by a configuration, apply the configuration, and report dif-
ferences to the desired configuration [53]. Thereby, Puppet can be used to adapt systems such
that they match a specified configuration, and preview the changes such transformation would
cause.

The declarative thought has been brought further by Nix. Nix [21] is a package manager
that uses a declarative specification to describe dependencies and preconditions besides other
information of packages. Packages are managed in a functional way, i.e. there are no destructive
updates, which also improves reproducibility. This is implemented by storing packages in im-
mutable paths, which are created using a hash value that is calculated based on the input that is
used to build the package. The input consists of sources, build instructions, dependencies of the
package, and other information that is used in the build process of the package [23]. Because of
this, different versions of packages do not interfere with each other and can coexist. The direc-
tory layout used by Puppet for storing packages might not be suitable for some legacy systems,
but especially for new projects in the e-Science domain Nix could turn out to be beneficial. Nix
runs on Linux, FreeBSD, and Mac OS X10. The Nix package manager has been integrated in
the NixOS, where the functional concept also is applied on the configuration of the system [23].
Configuration artifacts are handled similar than packages, technical details and an evaluation
can be found in [22].

NixOps (formerly called Charon) [24] provides automated provisioning for NixOS based
systems. As it also utilizes the functional language of Nix, the configuration is done declara-
tively. Besides VirtualBox it also targets cloud infrastructure (e.g. EC2 and OpenStack), for
which it is able to create new virtual machine instances. Besides the limitation that only NixOS
based systems can be managed, the functionality can be compared to those of Puppet or other
declarative configuration management tools. So in the context of the PMF NixOps can be con-
sidered to handle configuration management for NixOS based systems.

Another tool that provides virtual machine management and its configuration is Vagrant
[79]. It is able to instantiate new virtual machines using VirtualBox or other virtual machines
infrastructures and provides access like SSH or shared folders to them [40]. For provisioning
it uses configuration management tools like Chef [75] or Puppet. It is not limited to a specific
target operating system, and therefore can be used in this framework to build a virtual machine
and provision it considering resources defined in a process model.

MetaConfig [76] is an approach that aims to cover the complete lifecycle of systems, so
additionally to configuration management also virtual machine allocation and bootstrapping are
covered by MetaConfig. Because the configuration of software packages is specified by targeting
a specific package manager, it is not as platform independent as other frameworks.

Puppet was chosen for the prototype implementation because of the declarative configuration
files, the independence to specific operating systems, and its wide acceptance, i.e. the availability
in the official Debian package repository11.

10http://nixos.org/nix/, accessed 2014-07-15
11http://packages.debian.org/wheezy/puppet-common, accessed 2014-04-05

11

http://nixos.org/nix/
http://packages.debian.org/wheezy/puppet-common

2.4 Virtualization

On the application level there are several techniques proposed in the literature which could be
used to virtualize applications. One of them is sandboxing, as described, amongst others, in [81].
Sandboxing allows the interception of access to resources of the system, which can be used to
detect dependencies. Moving an application into a sandbox makes it portable, so it may also
be possible to transfer it to the target system. Sandboxing also is used to mitigate security
issues [32]. Examples for available tools are Sandboxie for Windows12 or Sandbox System Call
API13 for Linux.

Dependencies can be discovered both in a static or dynamic way. The Dependency Checker
Tool [5] can be used to statically discover library dependencies in ELF files. Static dependency
detection could be a useful addition to the PMF. One main advantage is that the process does not
need to be executed. But with static analysis it is easy to overlook resources, as not all paths to
resources are necessarily stored in the binary or in a way that is readable by static analysis only.

Apart from static analysis there also is dynamic analysis, which is focused on the analysis of
processes during execution. Linux provides an execution tracing technique that can be utilized
by using the ptrace() system call [10]. Ptrace can be used to attach to a process and intercept
its system calls. An approach using chroot is described in [55]. On a lower level tools like
QEMU can be used to trace program execution [72]. Execution tracing is also used in testing
and verification of software [58, 59]. But execution tracing is not limited to Linux, Wetrp [111]
is an example for research that targets the Windows platform.

There also have been solutions developed that target the runtime analysis of applications in
specific runtime environments. JavaSnoop14 can be used to analyze the behavior of Java appli-
cations by intercepting method calls [93]. One possible approach to allow such monitoring is to
utilize the Java Attach API for loading agents into the target virtual machine [30]. The agents
can be used to modify loaded classes, in this case to add logging statements that help monitoring
the execution of the application. Another example for tracing specific runtime environments is
the FXU Tracer [20] for C# in the context of eXecutable UML, which executes the model and
visualizes the nodes of the model as they run.

Application packaging goes a step further, and besides monitoring also copies accessed re-
sources to a single location. This allows to provide a portable application by redirecting the re-
source access to the local copy during execution. Examples for such applications are JauntePE15

for Windows, and CDE [38,39] for GNU/Linux. Because of the differences in handling software
installations of Windows and GNU/Linux, the differences of this applications are that JauntePE
is optimized to create a portable version of the application by installing it using JauntePE, so it
can intercept the installer, whereas CDE observes the actual execution of the processes. Also
commercial solutions are available, e.g. Spoon.net16 for Windows.

12http://www.sandboxie.com, accessed 2013-10-17
13http://sandbox.sourceforge.net/, accessed 2013-07-24
14https://www.aspectsecurity.com/research/appsec_tools/javasnoop/,

accessed 2013-07-23
15http://jauntepe.sourceforge.net/, accessed 2013-10-17
16http://spoon.net, accessed 2013-07-23

12

http://www.sandboxie.com
http://sandbox.sourceforge.net/
https://www.aspectsecurity.com/research/appsec_tools/javasnoop/
http://jauntepe.sourceforge.net/
http://spoon.net

The prototype implementation uses the Linux execution tracing technique and CDE, but only
for identification of the process environment. For building the virtual target system, VirtualBox
is utilized. The main reasons for this are to support maintainability. Resources that have been
packaged are decoupled from the package manager, and therefore need to be maintained (i.e.
updated, replaced) without the support of a package manager. An additional runtime also adds a
layer between the process and the operating system to be able to control resource access, which
is avoided by natively deploying the process and its dependencies on the target machine. The
packaging component of CDE can be utilized in future versions to allow packaging of appli-
cations that have not been installed using a package manager and are not available in package
repositories to be migrated.

2.5 Enterprise architecture modeling

Another important aspect of the PMF is how the process environment can be described. Using
a model as representation of the process supports tool independence and extensibility of the
process environment documentation. For the PMF the model needs to capture the installed
software, its configuration files and data. A holistic model would reflects all levels of a business
process, from the management perspective to involved physical components. This is beneficial
because the dependencies between the different components can be modeled, and therefore also
connections of the inspected system to the business process established.

Various metamodels have been developed to describe enterprise software and its environ-
ment. As mentioned above KDM is one of them, but its focus lies on the description of enterprise
applications rather than the environment and context in which they are used. The Open-system
environment reference model (OSE/RM) is a reference model developed by NIST based on the
POSIX standard [44]. It focuses on the technical model of enterprise architectures, e.g. applica-
tions, their interfaces, external dependencies, hardware and software components. TAFIM [18]
has been developed by the United States Department of Defense. It has partly been based on
concepts of the OSE/RM but adds aspects about work organization and information manage-
ment. The Open Group Architecture Framework (TOGAF) [94] focuses on four architecture
domains: business architecture, applications architecture, data architecture, and technical ar-
chitecture. It is in turn based on TAFIM. ArchiMate [95] provides a graphical language for
enterprise architecture modeling. Its main concepts are taken from TOGAF, but not all aspects
of the TOGAF framework are covered in ArchiMate, such as strategic high level aspects and
low level engineering aspects.

The TIMBUS project17 created a context model to describe business as well as technical
aspects of processes [96] using ArchiMate. It is implemented as ontology [91] in the Web On-
tology Language (OWL) [35] and has been published online18 and described in [3]. The context
model consists of a domain independent ontology (DIO) that includes the core concepts, which
can be refined and extended by domain specific ontologies (DSO’s). The DIO includes the core
concepts that are needed to describe a process. It is based on the concepts of ArchiMate. Espe-
cially the technology and application layer are utilized in the DIO. Aspects of importance to the

17http://timbusproject.net/, accessed 2013-08-22
18http://timbus.teco.edu/public/ontologies/, accessed 2013-08-22

13

http://timbusproject.net/
http://timbus.teco.edu/public/ontologies/

TIMBUS project are described in greater detail in the DSOs. Such an approach supports creating
extensible process models. For the PMF the CUDF DSO19 and the Software DSO20 are used.
CUDF (Common Upgradeability Description Format) [99] is used to model software packages
and their dependencies. As in [41], in the PMF the term ontology describes the vocabulary that
is used in knowledge bases, which themselves represent the actual process environment models.

OWL files can be edited manually, but there is also tool support for editing ontologies avail-
able. An example is Protégé21. Protégé is open-source, available for different platforms, and
allows viewing and editing ontologies, as well as performing queries [92].

2.6 Summary

For many of the research areas that are important to the PMF there is a large amount of research
already available. As described in this chapter such areas are the migration of legacy systems,
analysis of processes in live systems, provisioning of systems and virtualization on different
levels, from systems to applications. The PMF builds on existing tools and frameworks such as
Puppet, VirtualBox, and CDE to provide migration and documentation of process environments.
The PMF also can be used in the context of the Butterfly methodology and other frameworks
with a similar scope to implement or extend their process migration capabilities. The following
chapter describes the design of the PMF.

19https://timbus.teco.edu/public/ontologies/DSOs/CUDF.owl, accessed 2013-11-20
20https://timbus.teco.edu/public/ontologies/DSOs/software.owl, accessed 2013-11-20
21http://protege.stanford.edu/, accessed 2013-10-10

14

https://timbus.teco.edu/public/ontologies/DSOs/CUDF.owl
https://timbus.teco.edu/public/ontologies/DSOs/software.owl
http://protege.stanford.edu/

CHAPTER 3
Design

In this chapter the design of the process migration framework (PMF) is presented. The PMF
describes the process of documenting and migrating process environments to virtual environ-
ments. The term process environment refers to aspects of a system that a process depends on for
successful execution, e.g. the operating system and software packages that the process utilizes.
Remote dependencies of the process, like external services (i.e. web services), are not part of
the process environment. The process environment is described in a process environment model,
which is used synonymously to process model in the following. Virtual environments are pro-
vided by virtualization software and describe the container where virtual systems are executed
in.

The goals of the PMF are to create a virtual system (target system) where a specified process
that is embedded in an existing system (source system) is able to execute in, as well as creating a
documentation of the process environment. To be able to generate this output it requires access
to the source system and to a description of the process that is to be migrated, e.g. a script that
executes the process (process execution script). The process execution script is located on the
source system. The configuration that is furthermore part of the input is used by the PMF for the
optional adaptions to the system, c.f. Section 3.3. The process model serves as documentation
of the process environment. The dashed border around the target system indicates that the target
system is virtual and not a dedicated physical system.

The process described by the PMF consists of four main steps. They are executed consecu-
tively and each step returns a result which is used by the next step. The steps correlate with the
main components of the framework. The components are introduced briefly in the following,
and described in detail in the subsequent sections. Figure 3.1 shows the process including its
message flow.

Capture Identification of the process environment. The source system is analyzed and the
process environment represented as model.

15

Adapt Refinement of the model. The model created in the previous step is adapted by e.g.
replacing software. This step is optional, but adds the flexibility to handle changing re-
quirements, like in tool versions.

Build Building of the target system. A virtual machine that corresponds to the refined model
and where the process can be executed on is created.

Verification Verification of the model and the target system. It is verified that the process on
the target system shows the same behavior as the process on the source system. Also the
model is verified for correctness and completeness.

In Section 3.1 the process model is described, followed by the process steps Capture in Sec-
tion 3.2, Adapt in Section 3.3, Build in Section 3.4, and Verification in Section 3.5. A summary
of the design is given in Section 3.6. Chapter 4 and 5 subsequently provide a description of the
concrete implementation and practical usage examples.

PMF

Output

Input

Capture Adapt Build

Process
model

(refined)

Target
system
(VM)

Con-
figuration

Source
system

Process
execution

script

Process
model
(initial)

Verification

Figure 3.1: High-level representation of the PMF process

3.1 Process environment model

The purpose of the process environment model is to document process environments. It is used
both as internal format to share information about the process environment between components,
but also as result of the migration process to document the process environment for the user. It
should also be possible to generate a system that contains all dependencies and has the same
properties as specified in the model in an automated way. This section provides an overview of
what information is relevant in a process model in this context.

The process model contains information about the system that is required for successfully
executing the process. Successfully in this context means that the process produces the same

16

results as if executed on the source (reference) system. The model needs to be machine inter-
pretable to be able to generate a system from the model. It is a structured description of the
dependencies of a process. There is a distinction between resources that are used directly by
the process and resources that are used by the process without interacting directly with the pro-
cess but through other resources. Direct dependencies are e.g. tools that are invoked by the
process as well as the data these tools access or alter. Such tools in turn also may depend on
backing libraries or other tools (indirect dependencies). A process consists of a sequence of tool
invocations that manipulates data. Tools also can invoke services e.g. web services.

There are several possible ways to represent the model. A representation as ontology is
shown in Section 4.2.

The artifacts and their relationships that are relevant to describe process environments are
shown in Figure 3.2. The different types of dependencies that are used by a process are described
in the following in more detail.

Library

Artifact

System information Service

Configuration File

Application File

Data File Tool

File

Web Service

Database

Hardware Information

Operating System Information

subtype
consists of

Software Package

Figure 3.2: Elements of the process environment model

3.1.1 Local artifacts

Local artifacts in this context are software artifacts that are located on a system directly. Such
artifacts are files, tools or libraries.

A fundamental type of dependencies are files. Files serve different purposes: data files con-
tain information that a process uses or modifies, configuration files are used to specify settings
for tools that are executed as part of the process, application files are files that belong to an ap-

17

plication but are not part of software packages. An example for the latter are files that belong to
portable applications, which usually are just downloaded and extracted on the system, thereby
frequently located in a single main directory and its subdirectories (e.g. the Java-based Protégé).
Portable applications may still use configuration files that are stored in a different location, like
the home directory of the user. For data and configuration files the properties of interest for the
model include: path, user access permissions, and attributes like flags that mark if files represent
symbolic links or if files are executable. This information, together with access to the content of
the files, allows migrating the files to the new system.

Tools are software packages that consist of files, i.e. at least one executable and optionally
various bundled artifacts like libraries and resource files. But tools also use files, especially
for data in- and output, but also to manage configuration. Libraries are software packages that
provide functionalities for tools. They can be bundled with tools or installed separately to be
available for multiple tools on the system. Like tools, libraries also consist of files. In the process
model of the PMF tools and libraries are summarized to software packages. Packages may
depend on other packages. There may exist different versions of one package, which even could
be incompatible to each other. Furthermore, packages may reside in different repositories where
they can be installed from. This leads to following important properties of packages: name,
version, dependencies, and source repository. This information allows reinstalling packages that
the process depends on.

3.1.2 System information

General information about the system and its settings is important for migrating processes. To
ensure compatibility of the software packages with the operating system, in some cases even the
same operating system may be required. Therefore information about the operating system, its
architecture and version has to be contained in the model. The user account that executes the
process also needs to be available on the target system. This is important to avoid issues with
permissions (e.g. file access permissions), and absolute paths (e.g. access to the home directory
of a user by absolute name instead of using an environment variable). Environment variables
also could impact process execution and therefore have to be modeled.

System information sometimes is represented by local artifacts, like the name of the system
which is stored in a dedicated configuration file (/etc/hostname) in Debian. Other infor-
mation sources are environment variables, e.g. to determine the user that executed the process.
But there also are properties of interest where it is not that clear which information needs to be
extracted, like settings in the registry of Windows. Adding system information to the model can
be considered redundant because the information can be extracted from artifacts on the source
system also. But to keep the model self contained, and to have the extraction logic in one place,
the described relevant system information is explicitly stored in the model. In the model there is
no link to the resources where the system information is stored. As an example it is not stored if
the hostname has been determined by reading a configuration file, calling a system information
tool, or by any other means. This keeps the extraction implementation hidden from the model.

Besides software and data also hardware information can be relevant for specific processes.
An example is the processor architecture, which limits the choice when selecting suitable operat-
ing systems for the target system. This is not the focus of the initial version of the PMF but may

18

be added in future versions. Other settings of the operating system, like network settings, do not
make sense to be transferred without modifications to the target system, because the virtualized
hardware on the target system is different then the hardware on the source system. For such
settings it makes sense to keep the default values of the operating system. These are therefore
not migrated in the PMF.

3.1.3 Services

Processes may access several services during execution. The difference to tools is that services
are not instantiated by the process, but exist independently from it. Local services include ser-
vices that are provided by the local system, e.g. local databases or local web services. For local
services it can be attempted to analyze the environment of the services. External services are re-
motely accessible services that are hosted on different systems than where the process executes
on, e.g. services provided by a third party. For external services the documentation is focused
on the name and the type, no information about the service internals is tried to be determined.
The analysis of remote service internals is very limited and not part of the PMF. An example for
possible identification is fingerprinting, which can be used to determine the web server software
that hosts specific services by observing the behavior to specific requests [57]. Web services
can be realized using SOAP, REST, HTTP or other protocols. They are used to retrieve data,
perform calculations, etc. Databases can be accessed using standardized protocols, e.g. JDBC
or ODBC. Further services are referred to as general services.

It should be noted that not all of this information is relevant for each process. As an example,
it is also possible to interpret tools as collection of files and therefore get along without using
software packages. Also the model does not reflect actual behavior of the process, so it is not
a documentation of the process itself, but rather the environment where it is able to execute in.
Depending on the context of the process there are more dependencies to consider, and some
aspects can be modeled in more detail. User access permissions to files are not addressed in the
PMF, but it can easily be extended to do so. Also the information about which tool processes
which resources (i.e. files), is not yet captured by the PMF. In this section the basic elements of
the process model and their relations have been described, a concrete process model implemen-
tation is shown in Chapter 4. In the following section the design of the components of the PMF
is described.

3.2 Capture

The purpose of the capture module is to identify the environment of a specified process on a
specific source system and represent it as model. This is done by a combination of observing
the process execution, static analysis, and manual analysis of the source system. These three
approaches of process environment identification are reflected by the subcomponents Dynamic
Extractor (c.f. Section 3.2.1), Static Extractor (c.f. Section 3.2.2), and Manual
Extractor (c.f. Section 3.2.3).

19

The capture component interacts with the source system. The process execution script that
specifies the steps of the process serves as input for this component. Details about how this input
is processed can be found in the extractor sections later in this chapter.

The module creates a model of the source system which is used as input for the adapt compo-
nent that executes after the capture component. The refinement in the adapt module is optional,
so the output is already a valid process model which can be used in the build component.

The sequence of executing the subcomponents to identify the process environment is de-
scribed in the following. The dynamic extractor creates the initial model and forwards it to the
static extractor. The static extractor adds information that is statically available for the elements
in the initial model and passes the resulting model to the refinement component. The refine-
ment component removes information that is not mandatory for running the process and thereby
makes the model more readable. The model is then passed to the manual extractor. The man-
ual extractor is used to manually add information that could not be identified by the automated
extractors (static and dynamic). Because the subcomponents use information from the model
that has been added from previous subcomponents as input, the order of execution is not arbi-
trary. Using the process environment model as data structure for communication between the
subcomponents allows easy addition of new components, e.g. extractors. Each subcomponent
returns a valid (but not necessarily complete) process environment model. This process is shown
in Figure 3.3.

Compared to a parallel execution of the extractors the sequential execution has the advan-
tage that the step of merging the different models is unnecessary, and extractors can build upon
information determined by other extractors. A drawback is the lower performance that derives
from sequential execution and the interdependence of extractors.

A prerequisite for the extraction is the process execution script, which executes the process
and is used to observe its behavior (c.f. Section 3.2.1). Basics scripts may already be available
(e.g. scripts that are invoked to run the process), or are created as manual activity in the PMF.
The aim is to provide a script that executes all steps of the process, and for all steps also all
process execution paths that the target system is required to be able to execute. The process
execution path describes for each decision in the process which path is taken. The script needs
to define one or more executions as all possible process execution paths should be executed to
ensure complete migration. Only the execution paths that are covered by this script are expected
to execute successfully on the target system also. The script furthermore is important for the
verification step, as all paths that are covered in this script can be verified by rerunning the
process on the target system (c.f. Section 3.5). One possibility for covering multiple paths is
to extend the execution script to run the process multiple times with different input. If this is
not possible or further resources are anticipated to be used in the future on the target system,
the model has to be extended. This can be done manually by providing those resources in the
manual extractor, or automated by implementing a custom refiner (see Section 4.3.4).

In the following the three process environment identification methods are described.

3.2.1 Dynamic Extractor

The first process identification approach uses dynamic monitoring of the runtime behavior. The
dynamic extractor performs automated process environment identification by monitoring the

20

CaptureCapture

AdaptAdapt

BuildBuild

VerificationVerification

Dynamic ExtractorDynamic Extractor Static ExtractorStatic Extractor Manual ExtractorManual Extractor

RefinerRefiner

KnowledgebaseKnowledgebase

Manual SelectorManual Selector Automatic SelectorAutomatic Selector

Config BuilderConfig Builder VM BuilderVM Builder

Model instance

Model instance

Model instance

Tool / file alternativesTool / file alternatives

Model instance

Setup instruction

Model instance

Model instanceTarget system

Figure 3.3: The components of the virtualization framework

21

process execution to extract information about the dependencies of the process. The input of the
dynamic extractor is the source system and the process execution script. This extractor runs the
script and observes the process during execution. The gained information is stored in a model,
which is the output of the dynamic extractor and is further processed in the static extractor.

There are several requirements for the input data. The process execution script is expected
to be executable by the system, so e.g. a script which runs the individual steps of the process. If
natural language is used to describe the process or if manual intervention is needed the frame-
work is not executable in an automated manner. Because the process is executed also during the
verification (c.f. Section 3.5) manual steps should be automated and integrated in the process
execution script if possible.

Tools that are invoked independently of the process execution script are not considered by the
dynamic extractor and their process environment information has to be added using the manual
extractor if the tools are not migration separately using the PMF.

There are different approaches to monitor process execution. The first approach is to use
operating system facilities for software process tracing [86]. This approach is independent of
the execution environment of the applications but tightly coupled to the operating system.

A higher level approach is to utilize debuggers. Debuggers usually provide the possibility to
step through instructions and observe the software process state. This makes it possible to extract
information about the process requirement dependencies, like files that are accessed or tools that
are invoked during execution. Debuggers are usually limited to a specific execution environment,
which means that to debug native applications different debuggers are needed than for applica-
tions that are written in managed languages like Java or Python. Although mixed-environment
debuggers do exist, implementations like Blink [56] are limited in terms of supported execu-
tion environments.

Another possibility is to add a layer between the operating system and the process, to then
intercept the communication between process and operating system. This is sufficient because
only external dependencies like files are provided by the operating system. Sandboxing is an ex-
ample for such an approach. Furthermore, techniques to rewrite object code have been proposed,
which can be used for instance to insert statements that allow tracing the behavior of applica-
tions [115]. Also, languages and framework features that provide monitoring may be utilized,
as described in [47]. Since such methods are quite specific such approaches are not followed in
the PMF. Nevertheless, implementations of the PMF are not limited to use a specific monitoring
approach.

In the PMF operating system facilities are utilized to observe processes because of the in-
dependence to the implementing technology of the artifacts that are involved in a process. Also
no source of the tools and libraries is necessary and the execution environment of the process is
altered minimally. The resulting tight coupling to the operating system is mitigated by bundling
the analysis scripts as replaceable package, allowing it to be replaced by a package of tailored
scripts for the according operating system of the process. Scripts for Debian are described in
Chapter 4, extraction scripts for other operating systems are left for future work. A description of
a possible implementation can be found in Section 4.3.2. This approach also allows the mapping
of accessed resources to the corresponding operating system process. This information, along
with the flow graph of operating system processes is added to the model to provide information

22

about temporal aspects of the process execution.
This component extracts the following information about the process environment:

• File names, including data files, configuration files and files that tools consist of

• Service calls, including their address

• Name of the user that executed the process

• Spawned operating system processes and their relations to resources and other operating
system processes

Monitoring the execution of a process once with one input in general is not sufficient to
ensure completeness of the identified process environment. This is because depending on the
input different paths (or branches) may be executed. A possibility to mitigate this issue is to
use a test data generator and execute the process multiple times with the generated input data.
However, it is possible to execute the process in the target systems with at least that input that
has been used during the capturing. The challenge of ensuring high branch coverage is also part
of research in other areas. In [70] an approach is presented where taint analysis is performed to
monitor the execution flow. Multiple paths are explored by backtracking to decision points and
changing the decision so that another branch than in the previous step is taken. In testing branch
coverage plays an important part to determine the test coverage.

To summarize, the drawbacks of the dynamic extractor are that the process needs to be
executed and that the level of completeness depends on the coverage of executed branches during
capturing. The advantages are that this approach is easy to implement and that it allows a
generic applicability, i.e. without limitations to a specific programming language or execution
environment of components of the process that is analyzed.

The analysis of the dynamic extractor results in a list of files that are accessed by the process,
services that are accessed, and the name of the user that executed the process. This information
is added to the process model, which is passed to the static extractor. The static extractor adds
details to the findings of the dynamic extractor, like which packages the accessed files belong to.

3.2.2 Static Extractor

The static extractor is used to identify the process environment statically, i.e. without executing
the process. The input of the static extractor includes the source system and the model generated
by the dynamic extractor. The requirements to this input data are the same as for the dynamic
extractor (see Section 3.2.1). This component extracts information that is available without
executing the process, like the name of the operating system, but also adds information to the
resources identified by the dynamic extractor. The resulting model may contain information that
is not necessary to rebuild the system, like temporary files, and therefore is then passed to the
refinement component (c.f. Section 3.2.5).

This component extracts following information about the process environment:

• Software packages that are used by the process.

23

• System information like the operating system name and version, or, for future versions of
the framework, information about the hardware.

There are various sources of information for static extraction of information about the pro-
cess environment. Depending on the operating system, environment variables may provide in-
formation like the name of the active user or paths to executables and the like. System tools
can be used to retrieve information about installed software packages, like determining which
files a package belongs to. Furthermore, configuration and other files can be read to retrieve
information about tools or the system, e.g. the supported processor architecture of the operating
system.

A further possibility is to perform a static analysis of tool executables that are involved
in a process to identify their dependencies [105]. Static analysis is used especially in security
research, but can be adapted for static extraction of information about tools. Besides executables
also other file types can be checked for dependencies. This can make sense for files which
contain relevant data, like Taverna workflow files where information like path and location of
tools and web services that are used in the workflow is specified. Because the extraction of
relevant information from files cannot be done in the same way for all individual file types,
this requires customization of the extractor. This approach may improve accuracy for selected
processes but is not in the focus of this work and can be added for specific scenarios.

In the PMF operating system utilities are used to extract static information about the system.
As the dynamic extractor already identified the resources that are involved in the process, the
focus of the static extraction in the PMF does not lie on extracting further dependencies, but to
map information that is already available to higher level elements, i.e. the mapping of files that
are involved in the execution of the process to a list of software packages. For specific scenarios
it may provide useful to extend the static extractor e.g. to be able to parse data files of specific
tools and extract dependency information of thereof.

The static extractor summarizes files from the process model for which a corresponding
package could be found, and adds these packages to the process model. Libraries and other
artifacts that are part of a package are removed and the package is added. This aims to improve
the readability of the model. Files that have been modified locally are excluded from this in-
formation aggregation, so that local changes are not lost when rebuilding the system. Examples
of such files are configuration files, where the default versions of packages are modified so that
they reflect user or system specific settings. Depending on the operating system it is possible
to detect locally changed files by comparing files against the original files or their hashes (see
Section 4.3.2). No required information is lost in this step, because the contents of a package
can be looked up by package managers.

Besides adding package information also information about the operating system is added
to the process model. Depending on the implementation this may be done using identification
scripts that are backed by operating system tools. A description of an implementation can be
found in Section 4.3.1. The static extractor can be extended in future versions to extract various
other information about the artifacts of specific tools and about the source system itself. Infor-
mation about data files could include the format and permissions, information about the system
could include information about the hardware.

24

The process model is passed to the refinement component to further improve its comprehen-
sibility. By rebuilding the system on the level of packages it is ensured that the target system is
maintainable, so that updates can be performed and dependencies of the process are managed in
a standardized way using the package manager.

3.2.3 Manual Extractor

This component is used to manually analyze the source system to add information of the process
environment to the model that could not be identified by the dynamic nor the static extractor.
In the manual extractor the process of extracting information is delegated to an expert, who
uses domain knowledge to complete the process model that has been generated by the automatic
extractors. The experts are provided with a user interface that allows manipulating the model,
e.g. Protégé. The resulting extended model is passed to the next main component, the adapt
component.

Manual inspection is useful for scenarios where it is difficult to automatically identify the
process environment. An example for such is the identification of a system in production, where
running the process would cause a change of the system state. Manual inspection is also used
to provide information that is not captured by the automatic extractors. If the level of detail
does not fit the expectations for a specific scenario, the model can be revised, e.g. to remove
indirect dependencies. Additional dependencies that could be required for future application, for
example to allow usage in a different context, can be added. Organizational aspects of a process
can be added to the model also.

The quality of the manual extraction highly depends on the experts involved in manual in-
spection and how carefully and detailed the manual inspection is executed. The process of
manual extraction also does not enforce reproducibility, i.e. documenting the migration process,
which is important for future re-execution. Overcoming these issues leads to the development
of tools and workflows that support identifying process environments with minimal manual in-
tervention, which eventually can be used to extend the automatic capturing.

The result of the manual extractor is a model of the process environment which is not com-
pletely dependent of the automatic extractors, but also includes information derived from the
knowledge of experts. The main differences between the extractors are shown in the following
section.

3.2.4 Comparison of the extractors

The separation of the extractors is not strictly necessary, but it supports future refinement of
individual extractors by being able to adapt them separately. Using multiple sources of infor-
mation is useful to get information more easily or more complete than by just querying one
source. In some cases individual extractors are able to build a complete model of the process
environment. But for the manual extractor doing so would be too much effort, e.g. indirect
dependencies can easily be missed in manual extraction, so careful inspection is needed. The
dynamic extractor could take over functionality of the static extractor by adding instructions to
the process execution script that retrieve information which the static extractor usually adds. As
example a statement could be added to the process execution script that prints operating system

25

information. This information can then captured by the dynamic extractor from the execution
trace of the process. The static extractor would need to be extended to support each binary and
data format that is involved in the process and contains information about dependencies, like
libraries or tools. So a main disadvantage for a completely static approach is the lack of gen-
erality, i.e. that process specific adjustments to the extractors that are necessary to support the
involved formats or tools.

Those considerations together with aiming for a modular design have lead to the separa-
tion of the extractor components. The extractors aim to minimize the redundant extraction of
information as well as to maximize the generality of applicability of the PMF.

3.2.5 Refinement

The refinement component reduces irrelevant information and artifacts that have been added
by the automated extraction steps. By irrelevant artifacts and information are meant that are
not required to rebuild the system and execute the process successfully thereon. The refinement
component uses the model passed by the static extractor as input, refines it, and returns a cleaned
model. The resulting model is passed to the manual extractor.

This component has two responsibilities: filtering invalid and irrelevant information, and ag-
gregating information. The aim is to create a more compact and therefore better readable model.
Filtering resources not only enhances readability, but also is used to ensure that conflicting arti-
facts are not copied to the target system.

There are several types of artifacts that are not relevant for rebuilding the process environ-
ment. Temporary files (i.e. files that are recreated and overwritten by the process), system files
(e.g. information about hardware devices and swap files), and tool resources (i.e. configuration
files) that would overwrite existing system specific configuration (e.g. IP address settings) are
examples for such files. Those files can just be removed from the model for the purpose of re-
building the system. For documentation purpose it could be considered to keep all files, which
also allows easier debugging in the case of issues with the migration. For the sake of keeping the
model clean and readable such files are omitted in the PMF. A basic approach to remove irrele-
vant files from the model is using a blacklist filter, which is described in Section 4.3 including
examples of files and directories that need to be filtered for Debian based systems.

The second responsibility of the refinement module is to convert information to a more
compact representation. Like the static extractor for software packages, the refinement module
groups files that belong to one portable application and adds this portable application to the
model instead of the individual files. Another example are web requests. Multiple web requests
where the target address differs slightly, like a changed GET parameter, are likely to be handled
by a single web service only. Such and other heuristics can be used by the refinement component
to group elements of the model (c.f. Section 4.3.4).

The refinement module improves maintainability but reduces the level of detail of the model.
Knowledge about individual files of packages should not be required in common scenarios, but
can be necessary when the information about which exact files are used by a process is needed.
The tradeoff selected in the PMF, which is providing a less detailed but more maintainable
model, may not be suitable for every scenario, and therefore should be adapted if necessary.

26

Alterations to the target environment can be applied by the adapt component, which is described
in the next section.

3.3 Adapt

The adapt component supports experts in making changes to the process model that has been
created by the capture component. The aim of the module is to suggest and use alternatives
to tools that are used within the process. This is useful to be able to use the PMF not only to
migrate the process into a virtual system, but also to bring the process environment up to date or
respond to changed requirements. The module uses a knowledgebase that is described in Sec-
tion 3.3.1 to determine possible replacements. A configuration is passed to the adapt component,
where the artifacts that should be replaced are listed. This module supports experts in selecting
appropriate migrations. The techniques described in the following are not sufficient to provide
migration alternatives, but help in getting a preselection of possible options. Therefore, there are
manual steps included in this component, which are determining for which tool replacements
are necessary, and selecting one of the proposed alternatives. Also, arbitrary other changes can
be made to the process model in this step, before passing it to the build module.

The process environment model generated by the capture component is used as source model
where migration should be performed. Furthermore, a list of resources that should be replaced
is needed. This module returns a model where different aspects may have been replaced by
alternatives for which a valid migration path was detected. This process is shown in Figure 3.3.

The adapt module focuses on the replacement of tools. Tool replacement refers to replacing
existing tools with alternative tools that provide the same functionality. This also is useful to
be able to use newer versions of tools. Requirements to replacing tools are that they support
the same or more file formats in terms of reading and writing, and that they are able to execute
equivalent operations to the ones that the source tool provides. So given a unique tool identifier
an alternative list of tools is provided that can process a superset of file types of the source tool.

Another approach is to use package managers to determine alternatives. This is possible be-
cause in some systems (e.g. various Linux distributions that use Debian software packages [51])
there are relations between packages and virtual packages specified, so that it can be determined
which packages can be used for the same purpose. An example for a virtual package is www-
browser, which is provided by browsers like Chromium, Epiphany, Iceweasel, and Lynx1. In
this approach it is not ensured that the suggested tools even support the same file formats. Also,
such relations are not available for all packages nor for all package managers.

The migration options are limited in the PMF because no information about the high-level
process steps of the process is captured, so no information about the relations between different
artifacts is available. Therefore, possible conflicts have to be avoided by ensuring that compati-
bility to any other resource of the process is not broken. If the model would state dependencies
between resources, only affected resources would need to be checked for compatibility. As data
source information that is freely available on the internet (c.f. Section 3.3.1) is used. Further pos-
sible migrations that can be considered for future versions of the PMF are service replacements,
amongst others.

1https://packages.debian.org/sid/www-browser, accessed 2014-04-06

27

https://packages.debian.org/sid/www-browser

The first step of the adapt component is to determine which resources should be replaced.
This is done by consulting the list of resources to replace that is given as input to the module
and is referred to as configuration. For each resource which is stated in the configuration, and
which also is part of the extracted model, alternatives are searched. The data source that is
consulted for retrieving alternatives is provided by the Knowledgebase component, which is
described in Section 3.3.1. As the knowledgebase may return a list of alternatives it is required to
select one of the alternatives that will be incorporated in the model. This selection is done either
manually in the Manual Selector or automatically using the Automatic Selector (see
Sections 3.3.2 and 3.3.3 respectively).

The following sections describe the subcomponents of the Adapt component.

3.3.1 Knowledgebase

The knowledgebase provides reasonable alternatives to specified elements of the model, so it
stores information that is required to suggest tool replacements. This description focuses on
providing alternatives for tools, but the knowledgebase could be extended to support providing
alternatives for file formats or other aspects of the model as well.

The knowledgebase takes a model element as input, e.g. a software package name, or a file
name, and returns alternative elements of the same type, which it looks up in a local database.
This database contains details about tools, i.e. the name, version, and which file formats they
are able to read and write. To limit the effort of populating the knowledgebase, implementa-
tions can import data from online databases like Freebase2 and Pronom3. Freebase provides
information about which tools can process which file formats. Pronom provides additional meta-
data to file formats, such as MIME types. Using this information alternatives are determined as
specified previously in this chapter.

The alternatives providing approach is very basic, and can be improved in future versions of
the PMF. A main issue that needs to be considered by the knowledgebase is the compatibility
and availability of tools and its dependencies. For instance it is not useful if a tool is suggested
that is not available on the selected platform or incompatible with other tools or libraries that are
part of the system according to the model. The accuracy of this approach depends on the process
model and on the data that is available in the knowledgebase. For the former it is important that
relations between tools and files are specified, and also that the types of the files are contained
in the model. The accuracy can therefore be improved by adding such information to the model
if missing. For the latter data of additional sources could be incorporated in the knowledgebase.

The alternatives are passed to either a manual or an automatic selector, which selects the
tools that should be used on the target system in replacement for the original tools.

3.3.2 ManualSelection

The manual selection takes the artifact to replace and the list of alternatives that have been
determined by the knowledgebase as input. The alternatives are presented to an expert who

2http://www.freebase.com/, accessed 2014-01-26
3http://www.nationalarchives.gov.uk/PRONOM/, accessed 2014-01-26

28

http://www.freebase.com/
http://www.nationalarchives.gov.uk/PRONOM/

selects an alternative. The advantage is that because of the manual intervention there will be no
unexpected or unnecessary replacements. The disadvantage is that a manual step is introduced,
which harms efficiency and reproducibility of the migration process.

3.3.3 AutomatedSelection

Like the manual selection this component also gets the artifact to replace, the list of alternatives
but additionally also a configuration that contains a set of rules which specify when to select
which tool as input. It also returns one selected alternative for the provided input.

Contrary to the manual selection the automated selection evaluates the rules to select one
of the alternatives. Compared to the manual selection this provides advantages in terms of
efficiency and reproducibility.

3.4 Build

The build component is used to build the target system from the model that has been generated
in the previous components. Additionally to the model the source system needs to be available
to transfer the files. The output is a virtual system that corresponds to this model and therefore
is able to execute the process. The virtual system is embeddable in a virtualization environment
and does not require a dedicated physical host.

There are two subcomponents responsible for performing the main activities of this module,
which are preparing the install instructions (ConfigurationBuilder, see Section 3.4.1)
and setting up the system according to these instructions (VirtualMachineBuilder, see
Section 3.4.2).

3.4.1 ConfigurationBuilder

The ConfigurationBuilder is used to generate an interpretable setup instruction file from which
the target system can be built. It requires the model as input and produces a setup instruction,
which is interpreted by the VirtualMachineBuilder component to generate the virtual system.

The ConfigurationBuilder analyzes all elements in the model and depending on the types of
the elements the ConfigurationBuilder generates according instructions. For each tool it creates
an instruction to install the tool on the target system, for each file it creates an instruction to copy
the file from the source system to the target system, for each username it creates an instruction
to create the user account on the target system, including home directory and so on. The format
of the resulting instructions depends on the implementation of the ConfigurationBuilder. An
implementation that uses the Puppet language is shown in Section 4.5.1.

3.4.2 VirtualMachineBuilder

The VirtualMachineBuilder uses the setup instruction created by the ConfigurationBuilder to
build the target system. Apart from the setup instruction it also needs access to the source
system to be able to transfer data to the target system.

29

The component executes several steps. First it selects a suitable operating system based on
the setup instruction. This operating system is installed in a minimal version and configured to
match the system information specified in the process model. Tasks of the configuration include
adding the user accounts. Then the system is provisioned with tools and libraries (software pack-
ages) according to the setup instruction. Finally files (i.e. data files and configuration files) are
copied from the source system to the target system. This results in a system which corresponds
to the model and which provides an environment where the process is able to execute in.

As stated previously in this chapter the target system is virtual and meant to be executed in
a virtual environment. An alternative approach would be to use a physical host as target to build
the system. Also cloud services that provide virtual environments like Amazon EC24 could
serve as target for the system. Changing the target of the system only impacts implementation
details and may be adapted according to the requirements of scenarios. Section 4.5.2 shows an
implementation of the VirtualMachineBuilder based on VirtualBox.

3.5 Verification

Verification is necessary to be able to confirm that the process on the source system behaves
like the process on the target system. It requires access to the source system, the target system,
and the model. Using those it decides whether the model and the target system correspond to
the source system in respect to the process environment. The aim is to be able to determine
if the target system provides an environment for the process that is suitable to generate valid
results. The approach described is focused on the final result of process execution and direct
dependencies of the process. Details on verifying migrated processes can be found in [67],
where the VFramework is described. If the process is not deterministic it is not adequate to
compare the results of executing the process on the source and on the target system. In such
cases the VFramework needs to be applied.

Aspects that need to be considered when validating the result of the PMF are described in
the following.

Valid model The model needs to contain all artifacts and system settings that the process de-
pends on. Exceptions are those elements that have been modified in the adapt step of
the framework. As described in Chapter 1, where an example of the possible impact of
slight changes in the process environment is shown, it is important that all dependencies
are extracted and documented. Even if indirect dependencies may not be required to be
stated explicitly in the model to be able to rebuild the system, they are still required for a
complete documentation and to ensure that an equivalent process environment can be re-
constructed. Validity of the model can be determined by manual inspection of the process
model by an expert. Another way is to check if it is possible to run the process in a system
that only contains dependencies that are specified in the model.

Valid target system The process environment that is described in the model needs to be re-
flected by the target system. The target system should contain only those artifacts that are

4http://aws.amazon.com/ec2/, accessed 2014-01-26

30

http://aws.amazon.com/ec2/

part of the process environment or the underlying operating system. Validity of the target
system can be determined by checking if all artifacts that are described in the model are
available on the target system and that all settings that are defined in the model match
those settings on the target system. Applying the PMF to the target system and compar-
ing the resulting model with the model generated by the application on the source system
helps in determining if all resources of the latter model have been transferred to the target
system. Manual changes to the model should appear as differences. This check implies
the test if it is even possible to run the process on the target system.

Valid result of the process in the target system A simplified version of the VFramework is
used to validate the migration. The description of the original environment is captured
when applying the PMF on the source system. In the simplest case the only measurement
point is the result of the process. The results of the process executions when running the
PMF on the source system therefore need to be stored. Redeployment is again performed
by the PMF and reflected by the target system. The process is executed on the target sys-
tem with the same input data as on the source system. Finally the results of executing
the process on the source and on the target system is compared. The results should be
equal, except if the build module has been used to adapt the model, in which case it has
to be determined by an expert if the result is acceptable. Depending on the scenario, the
VFramework can be followed more strictly to improve the accuracy of the verification.

To cover those aspects the process of validating results generated by the PMF involves sev-
eral steps.

• The model is verified against the source system. This step needs to consider adaptions
that might cause deviations to the model or the result of the process.

• The target system is verified against the model.

• The process result is verified against the result determined in the first step, also considering
deviations because of adaptions to the environment.

If validation fails, this could mean that the model is incomplete. Fixing this issue does not
necessarily require complete re-execution of the capture component. It is possible to add missing
information to the process environment model manually (manual extraction) and re-execute the
build and verification components. The issue might be caused by missing one of the possible
execution paths during the execution of the process. This potentially can be fixed by adding
another run of the process with different input values to the process execution script. In this case
also the automatic extractor components need to be re-executed.

Depending on the implementation the verification is partly executed manually and therefore
tedious to run. Future versions of the framework therefore should aim to automate some of the
steps that are necessary to verify the target system and its documentation.

31

3.6 Summary

In this chapter the design of the PMF has been described. The key activities of the framework
were shown by giving a description of the corresponding components of the framework. The
process environment model is the main data exchange format used inside and between the main
components. It contains the information that is necessary to build a system where the process
is able to execute in. The first activity is capturing the process environment and representing it
as model. This is done in several subcomponents that refine and restructure the model, so that
is better comprehensible. This model serves as documentation of the process environment. The
second component allows modifying the model by replacing elements of the model for which
alternatives should be used in the target system. It allows adapting the process environment
because of changed requirements and to keep the environment up to date, which is e.g. impor-
tant to avoid security issues. The third component builds the target system using this adapted
model. For verification a simplified version of the VFramework is utilized. Figure 3.3 shows the
components of the framework and their interfaces.

The advantages of the PMF are the consideration of multiple input sources, the replaceable
components that communicate through defined interfaces as well as flexibility of the target en-
vironment which is provided by the ability to replace components. This design also shows that
a process migration framework can be kept very generic and independent of customization for
specific dependencies like tools or file formats.

Main drawbacks of the process identification approach selected in the PMF include that the
process needs to be executed, which is necessary because of the dynamic extractor as well as the
verification components. Yet, the PMF has to be executed on the source system, which usually
should not be a real issue but may entail changes in the source system. Necessary changes
include preparing the system to be able to run the PMF and depend on the implementation of the
PMF.

The design of the PMF has been kept general to be applicable for different scenarios. The
challenges for an actual implementation are shown in the following chapter, where a prototype
implementation is described. Although the prototype focuses on a restricted scenario, i.e. pro-
cesses that run on Debian, it shows the main ideas of how an implementation can look like. The
applicability of the prototype is shown in Chapter 5.

32

CHAPTER 4
Implementation

In this chapter a prototype implementation of the framework is presented, which is based on the
design introduced in Chapter 3. The implementation covers the automatic components for cap-
turing the process environment and building the target virtual machine. The other components
can be executed manually. Both the capture and the build module are independently callable and
provide a command-line interface, so they can be run separately and that automation is possible.
This allows integrating the manual components refinement and verification. The monitoring
functionality has high dependencies on the operating system, other functionality is not bound
to a specific platform. The prototype implementation is designed for Debian GNU/Linux.
GNU/Linux in general was selected because of its openness and the relevance in the evalua-
tion scenarios, Debian in particular because according to DistroWatch.com [100] it itself is
very popular, but it also is the basis of several other popular Distributions, like Ubuntu [78] and
Mint [69].

This chapter is organized as follows. First, the overview of the architecture is shown in
Section 4.1. The data model is described in Section 4.2. Then the capture, adapt, build, and
verification components are shown in Section 4.3, Section 4.4, Section 4.5, and Section 4.6
respectively. General information about used libraries and other implementation details is de-
scribed in Section 4.7. A summary is given in Section 4.8.

4.1 Architecture

The components are developed as independent Java console applications. Their structure is
based on the components presented in Chapter 3. Subcomponents correspond to Java classes, or
packages if the functionality is split in different classes. For the instantiation of subcomponents
dependency injection (DI) is used. Therefore components can easily be replaced by implement-
ing the corresponding interface and adapting the DI configuration. The operating system specific
process environment identification scripts are implemented in bash. These scripts have a main
entry point, which is referred to as capture script in the following. The capture script is invoked

33

by the dynamic extractor. A capture script for Debian is provided. As described in Section 4.2
the process model is represented as ontology.

To allow manual components to be executed as part of the process of the PMF, data is not
directly passed between components in memory but rather using the filesystem. This allows
separate execution of the components. The components can be executed consecutively, so that
if no manual extraction nor manual adaption of the model is necessary the process is executed
in batch mode.

The implementation includes the console client and communication with the data model.

4.2 Data Model

In this section the data model for the process is discussed. It is used to represent the process
environment, and contains the dependencies of the process. This includes files, tools, and other
properties that the process accesses during execution. The model is used for documentation
purpose and to be able to rebuild the process environment. The elements of the model and their
relations are described in Section 3.1.

As model that represents the process environment the ontology from the TIMBUS project,
which is described in Section 2.5, is used. A detailed description of the model can be found
in [96]. The model is available online1. It is designed modularly as ontology and subsets of
the ontology can be used to describe details of relevant aspects of the process environment. The
model is used both internally as data structure that is shared between and used by individual
components, but also serves as resulting documentation of the process. For this framework the
CUDF DSO and the Software DSO are sufficient to describe the software and data context of the
process. The Security DSO is used to describe the user that executes the process. Future versions
of the prototype could include the Hardware DSO to also document hardware configuration.

Software packages are modeled using the CUDF DSO2 which is depicted in Figure 4.1
and described in [99]. It provides the possibility to store which packages are installed on a
system, and which relations they have to other software packages. Virtual packages are used
to describe abstract functionality. This concept is used to be able to set packages that offer the
same functionality in relation. Versioned packages are used to specify version information to
packages.

Figure 4.1: Diagram of the CUDF DSO

1http://timbus.teco.edu/public/ontologies/, accessed 2013-08-22
2http://timbus.teco.edu/public/ontologies/DSOs/CUDF.owl, accessed 2014-04-15

34

http://timbus.teco.edu/public/ontologies/
http://timbus.teco.edu/public/ontologies/DSOs/CUDF.owl

Files that do not belong to a package are modeled using the Software ontology3 of the TIM-
BUS project [3] (c.f. Figure 4.2). The aim is to categorize those files according to their content
in the rough categories LogFile, ConfigurationFile, DataFile, and OperatingSystem. Because
in the PMF the files are transferred directly from source to target system, in this context it is
sufficient to model files in a very basic way by just providing the path and the filename. The re-
maining properties discussed in Section 3.1 are given implicitly by the artifacts, modeling them
is left for future development.

Figure 4.2: Diagram of the Software DSO

From the Security DSO4 only the User class is used. These self-contained ontologies are
mapped in the overall process context model, the domain independent object (DIO)5, using the
mapping models CUDFMapping.owl6, softwareMapping.owl7, and securityMapping8 respec-
tively. This is optional, and instead of aggregating the ontologies into the TIMBUS DIO also
other ontologies, such as custom ontologies entailed to a specific scenario, may be used.

A mapping or merging of the process model to context specific ontologies is possible. This is
useful e.g. for mapping technical aspects about the process to business related aspects. Because
the models are represented in OWL and data is represented as statements in OWL, models could
just be combined by building a union of the statements of which the models comprise [84].
OWL also provides support to define mappings between ontology elements. So models can be
mapped by either establishing a relation from one model to another, or by stating equal elements
of the models. Merging of ontologies is described further in [45]. To get reasonable results when

3http://timbus.teco.edu/public/ontologies/DSOs/software.owl, accessed 2014-04-15
4https://timbus.teco.edu/public/ontologies/DSOs/securityDSO.owl,

accessed 2014-08-05
5http://timbus.teco.edu/public/ontologies/DIO.owl, accessed 2014-04-15
6http://timbus.teco.edu/public/ontologies/DSOs/CUDFMapping.owl,

accessed 2014-04-15
7http://timbus.teco.edu/public/ontologies/DSOs/softwareMapping.owl,

accessed 2014-04-15
8https://timbus.teco.edu/public/ontologies/DSOs/securityMapping.owl,

accessed 2014-08-05

35

http://timbus.teco.edu/public/ontologies/DSOs/software.owl
https://timbus.teco.edu/public/ontologies/DSOs/securityDSO.owl
http://timbus.teco.edu/public/ontologies/DIO.owl
http://timbus.teco.edu/public/ontologies/DSOs/CUDFMapping.owl
http://timbus.teco.edu/public/ontologies/DSOs/softwareMapping.owl
https://timbus.teco.edu/public/ontologies/DSOs/securityMapping.owl

merging models without manual interference, the models need to be built upon the same schema.
The term schema in this context includes all but individuals and their relations, so all classes that
specify the type of the artifacts, services, and settings. Individuals represent concrete instances
of these classes, i.e. concrete tools, files, and settings. Also equal individuals in different models
(e.g. class instances of the schema) need to have the same name in order to be able to merge
them without further mapping rules or conventions. Because in general the namespace is part of
the name of entities [91], if merging ontologies it has to be agreed on one namespace, to which
the models which do not use this namespace are converted to. The approach of mapping instead
of merging models is probably better suited for independent models that are expected to evolve
separately from each other, where merging is better suited if one model solely exists to provide
input for the final model. The context model uses mapping of classes to ensure extensibility and
modularity. The process model that results from running the PMF can be integrated into other
models by either merging or mapping techniques.

Because of the focus on GNU/Linux systems the main resources that need to be considered
are software packages and files. This is reasonable because of the ’everything is a file’ philos-
ophy of Unix [61]. Software packages also can be seen as a collection of files but are used for
cleaner representation. As described in Section 3.2.2 the files of a software package are not
represented separately in the model.

The model is converted to a Puppet manifest [53] by the build module of the PMF for actually
building the virtual system. The Puppet manifest represents the process environment in a way
that is interpretable by Puppet, which is used for building and setting up the virtual system.
Puppet is described in 2.3. The process of populating the model is described in the following
chapter, utilizing the model to build the target system which is described in Section 4.5.

4.3 Capturing

This section describes the implementation of the capture component of the framework, following
the design outlined in Section 3.2. The capture component is responsible for extracting the
process environment information to a model. This component is executed on the source system
and requires access to the artifacts that are used by the process. It takes the process execution
script and its arguments as parameter. An existing ontology can optionally be passed as base
model. This allows embedding the framework in processes that generate an initial version of the
process environment.

A mapping of the design to the implementation is provided as follows. The extractor sub-
components are implemented as classes. The refiner component is implemented as package,
where each class of the package is used to define a single refinement strategy. Extractors and
refiners both implement a respective interface, so that easy extensibility is ensured. While ex-
tractors are rather generic the refiners are more likely to be extended, which is helpful to opti-
mize models for specific scenarios. Additionally there is the CaptureCLI which implements
a console client for this component. See Figure 4.3 for an overview of the implementation. The
monitoring scripts are implemented in bash and independent of the Java project, and therefore
not shown in the diagram.

36

Figure 4.3: Class diagram of the capture module

As prerequisites for running the capture component it has to be installed on the source sys-
tem. Dependencies include the JRE and CDE (c.f. 4.3.1). If not already available a process
execution script has to be created. The component then can be executed on the source system.
A prerequisite for the dynamic extractor is the process execution script, which is described in
Section 3.2. The extractors are run sequentially (DynamicExtractor (c.f. Section 4.3.1), Stat-
icExtractor (c.f. Section 4.3.2), and ManualExtractor (c.f. Section 4.3.3)). For optimization
reasons the refiners are executed during instead of after the extraction. They run sequentially,
first the BlacklistRefiner than the PortableApplicationRefiner (c.f. Section 4.3.4). Extractors
and refiners operate in memory to avoid overhead of file I/O, so the intermediate models are not
stored as file on the hard disk but passed in memory between the components.

4.3.1 DynamicExtractor

The DynamicExtractor is used to determine the artifacts that are accessed by the process, and
described in Section 3.2.1. It expects the manually created process execution script (c.f. Sec-
tion 3.2) as argument, runs the process and monitors its execution. This allows determining
dependencies of the process, like files and services. The main activities of the DynamicExtrac-
tor are to execute the process, monitor its resource access, analyze the resources and add them
to the model. This section describes the implementation of monitoring file and service access.

37

Process execution monitoring

Because monitoring in this context is tightly coupled to the operating system and makes use of
system tools, the implementation of the monitoring functionality has been decoupled from the
Java projecte and uses bash scripts. Those scripts are called from the Java project and provide
their results as files that are read by the extractors. This allows inspecting and reusing intermedi-
ate results. Also, the scripts are replaceable and can be exchanged to support different operating
systems. In this implementation CDE is used to monitor file access only, as the packaging func-
tionality of CDE would convert packages to portable applications, which is not desired because
they cannot be maintained using package managers. The results of CDE are combined with
those of strace, in case any of the tools has captured more information than the other. Strace is
used to log system calls of a process at runtime. System calls not only reflect file access but also
access to services. The log files of both tools are merged and processed by the extractor.

The process is likely to run multiple times in order to cover all relevant execution paths, so
that, when executing on the target system, no resources are missing (c.f. Section 4.3.3).

The monitoring scripts identify file accesss, local service calls and remote service calls based
on the log files of strace and CDE. From this information packages and local tools, as well as
information about the services can be extracted, which is shown in the following sections.

As strace maps each system call to the issuing process, it is possible to add information
about the relation between operating system processes and the accessed resources. The relation
between operating system processes is added in addition, which is necessary to store which
process has spawned which other processes. While this information is not necessary to rebuild
the process, it shows the chronological sequence of the resource access. An example for an
entry for the process in the model is shown in Listing 4.1. It shows that a custom class is used
as type for the process, and that besides accessing a tool also another operating system process
is spawned.

Listing 4.1: An example for a process artifact as represented in the process model

1 <owl:NamedIndividual rdf:about="http://test#31347">
2 <rdf:type rdf:resource=
3 "http://localhost/test.owl#Process"/>
4 <rdfs:label rdf:datatype=
5 "http://www.w3.org/2001/XMLSchema#string">
6 31347
7 </rdfs:label>
8 <DIO:accesses rdf:resource="http://test#%2Fhome%2Ftimbus%2

FLNEC2%2FClientAppNS%2F"/>
9 <DIO:flowTo rdf:resource="http://test#31348"/>

10 </owl:NamedIndividual>

Files

This section describes how files can be extracted from strace execution logs. Strace log files in
general contain system calls with their arguments. To get information about system calls the

38

man pages can be consulted using man 2 [system call] [106]. Because the system calls
read and write assume an opened file descriptor it is sufficient to filter for calls to open
and access. Access can be used to detect if processes check if a file is accessible [48]. The
following shows an example strace log entry for opening a file:

open("process/run.sh", O_RDONLY) = 3
The concerned file is represented as the first argument of the system call. It can easily be ex-

tracted using GNU/Linux tools like grep for searching and awk or cut for text manipulation.
There are some aspects that have to be considered when extracting files from strace logs. To

be able to copy files the build component assumes absolute paths. So relative paths, i.e. paths
that do not start with ’/’ but e.g. ’..’ or ’.’ are not allowed. In particular also the current
directory (’.’) is not allowed. Such paths are used in the process for tool execution (e.g.
’./tool arg1’) or for relative references to resources (e.g. ’../res/img.png’). As the base
directory is known from the usage of the chdir system call [48], resolving relative paths can be
done by switching to the base directory and calling readlink -e [path]. This command
also resolves symbolic links to their target. Besides the path of files also their type is of interest.
Only regular files are considered by the dynamic extractor. Checking if a file is a regular file can
be done using the user command test -f [11]. This allows avoiding that special files, i.e.
device files (/dev/*), are added to the model.

Once the files that are used in the process have been identified, they need to be analyzed
so that an accurate model of the system can be created. This is described in Section 4.3.2. A
similar approach is applied for CDE logs, which uses a slightly different output format where
information that is not relevant to the packaging context is omitted (e.g. file access modes). The
output of CDE for the above example looks like following:

[6732] BEGIN sys_open ’process/run.sh’
Files are represented in the process model as shown in Listing 4.2. The listing shows the

usage of the Software DSO, which defines basic types of artifacts.

Listing 4.2: A file artifact as represented in the process model

1 <owl:NamedIndividual
2 rdf:about="http://test#%2Fhome%2Fpmf%2Fprocess%2Frun.sh">
3 <rdf:type rdf:resource="http://timbus.teco.edu/
4 ontologies/DSOs/software.owl#DataFile"/>
5 <rdfs:label rdf:datatype="http://www.w3.org/2001/
6 XMLSchema#string">/home/pmf/process/run.sh</rdfs:label>
7 </owl:NamedIndividual>

Tools

This section describes the identification of tool executions during the process. In this context
tools are all local binaries that can be executed by the system. In GNU/Linux native executables
can be run using the system call execve and its derivatives. Executables that are started during
process execution are visible in the strace log including the arguments the executable has
been passed to:

39

execve("process/run.sh", ["process/run.sh"], [/* 50 vars */])=0
The first argument is the path to the executable, the second its arguments. The prototype

identifies executables that have been called during execution of the process, which is used for
the PortableApplicationRefiner (c.f. Section 4.3.4). Besides that, no information about tools is
stored in the model, as there is no concept for local tools in the Software DSO at the moment.
Tools are represented in the model as regular files instead.

Service calls

The strace logs not only contain file access but also other interaction of the process with systems,
like the invocation of services, which is the subject of this section. In particular both local and
remote services can be detected by examining the system calls of a process. Services can be
hosted locally or on remote machines. Access to the service is done over the same protocol in
some cases, like when accessing SOAP web services. Local services are services that are hosted
on the local machine, i.e. databases or web servers. Compared to remote services the transport
protocol of the interaction mechanism may differ. For MySQL the logs expose sockets for
connections to the local Unix systems (localhost) and TCP/IP connections for remote services
[77]. By checking the target IP address it usually is possible to make a distinction between local
and remote service calls. If the process uses external addressing to connect to the service the
prototype would not recognize whether if it is a local or a remote service.

MySQL Connections can be established using the system calls socket and connect from
which subsequent read/write are used for communication. In case of connecting to a
local MySQL database the trace looks like following:

connect(3, {sa_family=AF_FILE, path="/var/run/mysqld/mysqld.
sock"}, 110) = 0}.

So it is possible to filter for the system call connect in addition to a specific path that is
used by mysql to identify the usage of local MySQL databases.

SOAP The connect system call for SOAP requests contains the IP address and port where
the service is hosted. The service request (sendto) also contains host and port, but
additionally gives a hint about the service type, as application
soap+xml is one of the accepted content types. Furthermore an ’wsdl’ POST parameter
or the accepted type ’application/soap+xml’ in the request gives a hint that the remote
service is provided as SOAP service. Such a trace could look like follows:

sendto(547, "POST /fexWS/featureExtractor HTTP/1.0\r\n\
Content-Type: text/xml; charset=utf-8\r\n
Accept: application/soap+xml, ...

HTTP Another service type for HTTP requests is REST, but REST is a design style and there-
fore difficult to detect. The accepted type of XML or JSON gives a hint, but this is a
rather weak heuristic and therefore is not considered in this prototype. This means that for
endpoints of HTTP requests that are not SOAP requests, corresponding HTTP services
are added to the model.

40

Local services that are of a different type than the ones described can be identified by in-
specting their executable. As a first step, the service port can be used to determine the process
id (pid) of the process that listens on the specific port. This can be done using lsof [1]. Having
the pid, the executable can be determined by a lookup in the /proc file system [60]. The ex-
ecutable is added to the model, and as for all other files tried to be resolved to a package in the
StaticExtractor. Another possibility would be to guess the service type by means of checking
the standard port mappings [16]. The advantage is that this heuristic is easier to implement. The
disadvantage is that services could use alternative ports which are not described by standard port
mappings. Furthermore, the executables of local services are not added to the model when only
checking the port mappings. The port mappings can be used in the future as complementary
approach, but has not been missed during evaluation of the PMF and therefore has not yet been
implemented.

Because the prototype only monitors the process and no services that run in independent of
the process, it is not able to detect dependencies of the services that the process uses. It would
be possible to monitor services by determining the process that listens to a specific port and
attaching to it [1]. But because such services may already have been started before executing
the process doing so could lead to missed resources. The service would need to be started using
strace from the beginning. While this is not in the scope of the PMF, it can be done manually. It
is planned to generate a recommendation for complementary migration actions, which includes
a list of services that should be migrated separately.

For the case that accessed services are hosted remotely and accessing the hosting system is
not possible, techniques like using the port to predict the service or analyzing the requests and
responses can be used to identify the services in future versions of the prototype.

Services are represented in the ontology as shown in Listing 4.3. For the distinction of
services custom classes have been introduced, that are not part of the TIMBUS context model,
SOAP in this example.

Listing 4.3: A service artifact as represented in the process model

1 <owl:NamedIndividual rdf:about="http://test#kronos.ifs.
2 tuwien.ac.at%3A8080%2FfexWS%2FfeatureExtraction">
3 <rdf:type
4 rdf:resource="http://localhost/RemoteServices.owl#SOAP"/>
5 <rdfs:label
6 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
7 kronos.ifs.tuwien.ac.at:8080/fexWS/featureExtraction
8 </rdfs:label>
9 </owl:NamedIndividual>

4.3.2 StaticExtractor

The StaticExtractor uses information of the system that is available independently of the ex-
ecution state of the process. Tasks of the StaticExtractor are, using the model created by the
DynamicExtractor, to determine which packages are involved in executing the process. Also,

41

information about the system is extracted by this component, i.e. information about the oper-
ating system. Compared to the DynamicExtractor it does not execute the process or use the
process execution script as starting point for analysis but rather the model created by the Dy-
namicExtractor.

Packages

There are several ways to determine which package a specific file belongs to. Because of the
fixed directory structure of packages in Unix, it is easy to perform a reverse lookup to resolve
a file on the system to a package, if available. Package manager that are used in GNU/Linux
for setting up software packages usually also can be used to perform queries about installed
packages and information concerning packages. As described in [90] for Debian there are e.g.
apt-file9 for a lookup in all packages that are known to the system, dpkg which just con-
siders installed packages and dlocate10 which also considers installed packages but is faster
than dpkg, as it uses a cache [51]. To be sure that also recently installed software is available
in the cache of tooldlocate, an update of the cache can manually initiated by using update-d/
locatedb.

Package managers also can be used to get an overview of the complete system. Retrieving a
list of installed packages can be done with dpkg11. Detailed information can be retrieved using
apt-cache12. In the context of the TIMBUS project13 a tool has been developed that extracts
the packages of a system in a CUDF compliant format.

The prototype does not inspect the whole system, as this would lead to a cloning approach
which is not desired in the context of the PMF. Instead, it checks all files using dlocate that
have been identified as resources of the process for packages where they are contained. Thereby
found packages are added to the model instead of the corresponding files. A representation in
the process model is shown in Listing 4.4. The listing shows that the type of packages is taken
from the CUDF DSO of the TIMBUS context model.

Listing 4.4: A package artifact as represented in the process model

1 <owl:NamedIndividual
2 rdf:about="http://test#openjdk-7-jre-lib">
3 <rdf:type rdf:resource=
4 "http://timbus.teco.edu/ontologies/DSOs/CUDF.owl#Package"
5 />
6 <rdfs:label
7 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
8 openjdk-7-jre-lib
9 </rdfs:label>

10 </owl:NamedIndividual>

9http://packages.debian.org/sid/apt-file, accessed 2013-07-16
10http://packages.debian.org/sid/dlocate, accessed 2013-07-16
11http://packages.debian.org/sid/dpkg, accessed 2013-07-16
12http://linux.die.net/man/8/apt-cache, accessed 2013-09-16
13https://opensourceprojects.eu/p/timbus/, accessed 2014-03-08

42

http://packages.debian.org/sid/apt-file
http://packages.debian.org/sid/dlocate
http://packages.debian.org/sid/dpkg
http://linux.die.net/man/8/apt-cache
https://opensourceprojects.eu/p/timbus/

There are several aspects about packages that are not covered in the prototype yet. One is that
the model does not state the source of the package. Without the source only packages available
in the package repositories of both the source and the target operating system are considered.
For packages from custom added repositories it would be necessary to state the source (i.e.
repository) where packages can be installed from. If a package could not be found in public
repositories, the files should be copied and a warning generated to raise awareness about this
problem. At least for applications that are just unpacked and in principle portable such attempts
could be successful. If not it can be tried to apply application packaging tools like CDE to
generate a portable package that can be migrated between different systems.

Future refinements should cope with files that are part of a software package, but which is
not recognized by dlocate and similar tools, e.g. configuration files in subdirectories of the
application directory in the home directory of the user. In several cases a lookup of the parent
directory is likely to be sufficient to identify the package of the file. In general, files can be
considered as part of the package when it is located inside a directory of a package. But if the
owning package of a directory is not unambiguous, i.e. if there are more than one packages
where the directory is part of the content, this assumption does not hold anymore.

System information

Also information that is independent of the process execution instances is of relevance. The user-
name should be included in the model because of path and permission issues. This is important
because files are transferred to the exact same path in the prototype implementation. Therefore
if a file has been located in the user’s home directory on the source system, tools may use the
home directory to resolve such files. So the home directory on the target system needs to match
the one on the source system. This also avoids mismatches of file access permissions between
the source and target system. The permissions do not need to be changed on the target system,
and therefore also do not need to be stored in the model in the context of the PMF. Furthermore,
files may be restricted to specific users, and if the username on the target system differs, access
to resources may be restricted. The username can be read without invoking external tools in Java
by calling System.getProperty("user.name"). Other users on the local system can
be retrieved by analyzing /etc/passwd, but are not considered in the current version of the
prototype, as usually they do not influence the process execution. If the user would be switched
during process execution, migrating those users would be necessary, but this has not been the
case in any process that was used for evaluating and testing the PMF. Files that are located in
any other users directory and accessed by the process are still transferred. Listing 4.5 shows
how users are represented in the process model. The class is taken from the Security DSO of the
TIMBUS context model.

Listing 4.5: A system information representation in the process model (user)

1 <owl:NamedIndividual rdf:about="http://test#pmf">
2 <rdf:type rdf:resource=
3 "http://timbus.teco.edu/ontologies/DSOs/
4 security.owl#Username"/>
5 <rdfs:label rdf:datatype="http://www.w3.org/2001/

43

6 XMLSchema#string">
7 pmf
8 </rdfs:label>
9 </owl:NamedIndividual>

Information about the operating system is important to be able to select a target operating
system that provides all the required packages, has a matching architecture and is able to run
the process. Finding out the distribution name and version can be done using lsb_release
-a. This information aims to support experts in selecting a suitable target operating system. An
example entry of an operating system in the process model is shown in Listing 4.6, which shows
the usage of the Software DSO for providing a suitable class.

Listing 4.6: A system information representation in the process model (operating system)
1 <owl:NamedIndividual
2 rdf:about="http://test#Linux+Mint+15+Olivia">
3 <rdf:type rdf:resource=
4 "http://timbus.teco.edu/ontologies/DSOs/
5 software.owl#OperatingSystem"
6 />
7 <rdfs:label rdf:datatype="http://www.w3.org/
8 2001/XMLSchema#string">
9 Linux Mint 15 Olivia

10 </rdfs:label>
11 </owl:NamedIndividual>

Future versions of the prototype also should model environment variables. A reason for this
is that if the $HOME environment variable has been changed and points to a different directory
than the default one, the process on the target system cannot resolve files that are addressed
using this variable, because it maps to a different location than on the source system. Therefore,
changed environment variables need to be migrated or manually embedded in the beginning
of the process execution script as workaround. As not all environment variables should be
migrated, because not all of them refer to software that is of interest for the target system, this is
not a trivial task. In the evaluation no custom environment variables have been used. Therefore
handling environment variables has not yet been implemented.

Files

As stated before it is not necessary to add each file to the model. If the file is part of a package,
it can be skipped, except if it has been modified. In this case even if it is part of a package it is
added to the model. This is because it is likely that it is used as configuration file, which is part
of the package initially but allows modification to reflect configuration specific to the system or
user. Although not every configuration file should be migrated to the target system, such files
are captured by the StaticExtractor. Examples for configuration files that should not be migrated
can be found in Table 4.1. Because most package managers of GNU/Linux maintain a record
of hashes of the files in its packages it is possible to determine which files have been modified

44

by querying the package manager. For performance reasons information about modified files
is generated by the capture script. It uses debsums to check which files have been changed
locally [73], which internally recalculates a checksum and compares it to the initial value to
determine local modifications.

Another type of files are log files, which are not essential to be available on the target system,
but contain information to trace the behavior of the process. The prototype assumes that all files
located in a subdirectory of /var/log are log files, which is the typical directory for log files
in GNU/Linux [74]. Log files are nevertheless included in the model by the prototype as their
inclusion causes no harm.

4.3.3 ManualExtractor

The ManualExtractor is used to provide dependencies of the process that are not detected by the
dynamic nor the static extractor. The refined model from the dynamic extractors is manually
extended by missing dependencies and system information. In the prototype this component
is represented by Protégé [92] which provides a GUI where the expert updates the process
environment model. Of course also any other Ontology modeling tool can be used. Figure 4.4
shows the packages of a process model loaded in Protégé.

The manually altered model needs to conform to the ontology as described in Section 4.2.
Manual extraction is necessary to overcome limitations of the automatic extractors, and to be
able to migrate processes independent from the completeness of the automatic extractors. Man-
ual extraction is also required when it is not possible to execute the process arbitrary times as
required by the dynamic extractor. This could be the case for processes in production environ-
ments.

The resulting model is the model that is used to build the target system.

4.3.4 Refiners

To improve the conciseness of the model several strategies are implemented, which are described
in the following sections. Refiners are used to remove information that is not needed for the pro-
cess to execute and irrelevant for describing the process environment, but also for restructuring
the model so that readability is improved.

BlacklistRefiner

Some files are specific to a certain system or system state and should not be migrated. If such
files are e.g. part of the respective GNU/Linux distribution this is no issue because they are
recreated when building the target system. Examples of such files/directories are shown in Ta-
ble 4.1. This list represents the default of files and directories for the blacklist. All of those files
have been found in an strace log file during evaluation. Depending on the scenario this list
will need some adaptations, which is possible by creating and populating a blacklist.txt
file one entry per line, which is loaded if available instead of the default blacklist.

45

Figure 4.4: A screenshot of a process model loaded in Protégé

PortableApplicationRefiner

Another refinement is to detect portable applications and only add their root directories, omitting
all files in their (sub)directories in the model. Applications are considered portable if their data
files are placed in one directory and its subdirectories of the filesystem. They are assumed to
have been installed manually i.e. by downloading and extracting a compressed file. Portable
applications may place configuration files outside the applications root directory, but in general
will run on different systems by just copying the root directory. Examples are the Taverna
workflow software, the IntelliJ IDEA IDE14, and CDE amongst many others. As name for the
portable application the applications root directory is used.

There is no popular common way of detecting portable applications by just analyzing a file
system. A simple approach is to check for executable files and consider the path where those
are found as root directories of portable application installations. Only executables that are not
part of any package qualify to define a portable application. This method is reflected by the
PortableApplicationRefiner. Another possibility would be to compare lookup files

14http://www.jetbrains.com/idea/, accessed 2014-03-08

46

http://www.jetbrains.com/idea/

file/directory description
/etc/passwd Contains details of user accounts [42]. Migrating this file would

overwrite user account information. Because user accounts are
coupled to a home directory they are created using system tools
and not by copying configuration files.

/etc/resolv.conf Contains DNS specific settings, may be managed by the Net/
workManager and therefore should not be edited [74].

/etc/hosts Contains network settings, i.e. the identification of the local sys-
tem in the network [74], which differs in the target system and
should not be edited.

/proc/ This directory contains information about running processes [74].
/sys/ This directory contains information about devices etc. [42].
/etc/timezone,
/etc/localtime

These files are generated automatically and do not need to be mi-
grated [42].

/etc/ld.so.cache Caches the location of shared libraries of a system [106].
/etc/
nsswitch.conf

Contains information about sources for name resolution [42].

Table 4.1: Examples for files and directories that should not be migrated.

of potential portable applications in a software database, like the NSRL [64]. Because this adds
further dependencies it is not implemented in the prototype.

Besides causing better readability of the model, this refinement has the advantage that some
files that are part of the application, but have not been used during the reference execution(s) of
the process, are not omitted. So it reduces the likelihood that future adaption of the process on
the target system fails because of missing resources.

Nevertheless such refinements are not always desired. The listing of files that a portable
application consists of is lost, which affects the level of detail of the model and thereby also
future maintenance of the process. A compromise would be to add both portable application
and its files and also state the relation between those in the model. To be consistent then also
packages and its files should be described this way. But the immense count of individual files in
this case would affect the readability of the model.

Because information about the software is not available in a standard way for software in-
stalled without using the package manager, the model does not contain the exact name and
version of the portable application, but rather the name of the directory. Special care has to be
taken for directories like /usr/bin/ which holds multiple binaries and cannot be resolved to
one specific portable application. Because of this in the prototype only portable applications in-
stalled in the /home/ directory are taken into account. Besides handling portable applications
outside the /home/ directory, in future versions it should also be considered that the executable
of a portable application is not necessarily in the root directory but may also reside in a subdi-
rectory of the application.

47

Further refinement

Packages that other packages depend on could be omitted as they would be resolved by the
package manager. This has not been implemented because the package manager could resolve a
different version of the package than the one installed on the source system. Indirect dependen-
cies also are kept in the model to preserve traceability, i.e. depending on which set of indirect
dependencies are used, the behavior of the process could change.

As services may get called multiple times during process execution, not each request should
be mapped to the model, but only one for each service. As web services may provide different
URIs for their services it is not easy to determine externally which web service handles the
individual requests. In this prototype the idea that child URIs are likely to be part of one service
is utilized. The implementation sorts service requests, and only adds those where the path is not
contained in the path of an already added service.

4.3.5 Usage

Listing 4.7 shows the usage of the capture component. The capture script (-s) refers to the
replaceable operating system specific extraction script (c.f. Section 4.1). A capture script for
Debian is used by default, but can easily be replaced by passing the path to a custom script. The
capture script is executed and runs and monitors the process execution script (-a). The capture
script creates text files for the extracted information, separated in files, packages, services, and
system settings. The filenames are passed to the capture component using the -f, -p, -r, and -y
arguments respectively. The default values for those arguments can be taken when using the
default capture script. Existing ontologies can be used as base model (-i). Finally, the path to
the resulting ontology can be passed using the -o argument.

Listing 4.7: Usage instructions for the Capture component

1 usage: CaptureCLI
2 -a <arg> capture script arguments (mandatory), defaults to:
3 ’’
4 -i <arg> input ontology path, defaults to: ’’
5 -o <arg> resulting ontology path, defaults to:
6 ’data/process.owl’
7 -s <arg> capture script path, defaults to:
8 ’scripts/main.sh’
9 -f <arg> files file path, defaults to:

10 ’data/files.txt’
11 -p <arg> packages file path, defaults to:
12 ’data/packages.txt’
13 -r <arg> services file path, defaults to:
14 ’data/services.txt’
15 -y <arg> system settings file path, defaults to:
16 ’data/system_settings.txt’

48

4.3.6 Summary

This section showed details about the prototype implementation of the Capture component.
While in Linux package manager tools provide valuable information about files and packages
there are several limitations in detecting services. For remote services this is because access is
limited and only the public interface can be queried. The communication can be observed and
thereby a reasonable assumption about the content can be made, e.g. SOAP in the prototype.
In future work additional information can be detected. As an example the migration options
of web services are limited. Possible approaches could be to record request/replay pairs and
setup a mock-up web service that uses the recorded data to replay for known requests [66]. But
such issues are not the focus of this work. This also is not necessary for some scenarios that
just want to reuse these existing web services. But what can be done is documenting the web
service requests, and adding them to the model. To get a precise model also various refinements
can be made that strip irrelevant and restructure existing information. The goal of the model is
not only to provide a template for rebuilding the environment for a process, but also to serve as
documentation.

4.4 Adapt

The Adapt module has not been implemented in the context of the PMF, but a service with
a similar scope (preservation identifier15) has been implemented within the TIMBUS project.
The preservation identifier helps to identify alternative implementations for components that are
at risk. It provides a web service, which takes a TIMBUS compliant context model [96] of a
process and a list of components at risk that should be replaced by alternative implementations as
input. The preservation identifier implements a knowledgebase that specifies artifacts and their
relations. This database is used to identify alternatives for original process artifacts. The services
returns a list of potential replacements for each risk. Types of artifacts that are processed are
packages, file formats, and software tools. In the context of the PMF this service can manually
be invoked. Demo instances can be found for both the preservation identifier service16 as well
as for a web client17. An exemplary Java client is available in the corresponding repository of
the TIMBUS project18. The service returns a list of potential alternatives, the selection of the
most suitable solution needs to be done manually by experts.

The knowledgebase of the preservation identifier is populated with data from Freebase and
Pronom (c.f. Section 3.3.1). It can directly be queried using the web interface19 that is available
online for demonstration purpose. The capabilities of the preservation identifier can quickly be
evaluated this way.

15https://opensourceprojects.eu/p/timbus/dpes/preservation-identifier/,
accessed 2014-07-23

16http://kronos.ifs.tuwien.ac.at:8080/pi/preservationIdentifier,
accessed 2014-07-23

17http://kronos.ifs.tuwien.ac.at:8080/pi-client/, accessed 2014-07-23
18https://opensourceprojects.eu/p/timbus/dpes/preservation-identifier/

client/, accessed 2014-07-23
19http://kronos.ifs.tuwien.ac.at:8080/kbserver/, accessed 2014-07-23

49

https://opensourceprojects.eu/p/timbus/dpes/preservation-identifier/
http://kronos.ifs.tuwien.ac.at:8080/pi/preservationIdentifier
http://kronos.ifs.tuwien.ac.at:8080/pi-client/
https://opensourceprojects.eu/p/timbus/dpes/preservation-identifier/client/
https://opensourceprojects.eu/p/timbus/dpes/preservation-identifier/client/
http://kronos.ifs.tuwien.ac.at:8080/kbserver/

Other manual steps of the Adapt module are to adapt the process model to remove or add
artifacts, so that the process environment can be described in a more suitable way. An example
for such modification is shown in Section 5.2, where individual files are removed and the parent
directory is added instead.

In future versions of the PMF a connector to the preservation identifier can be implemented
to mitigate the manual steps in the adapt module. Such a connector could handle the connection
to the preservation identifier in a way so that it allows future extension to support alternative
services. It could use expert input or a rule set for batch changes to specify resources at risk.
The connector would forward the input data, and present the alternatives to the expert, which
can select a suitable alternative.

4.5 Build

This section shows how the Build component of the PMF is implemented. The Build module is
used to create a virtual machine from the specification given by a process model instance (c.f.
Section 3.4). The implemented is structured in two packages that conform to the subcomponents
ConfigBuilder and MachineBuilder.

One possibility to implement this module would be to issue commands to install packages
and transfer files directly. But it would be better to have a platform independent description that
can be passed to a tool which handles the provisioning. Platform independence is supported
by a declarative description of the configuration, where no system specific instructions need
to be specified. An open-source configuration management software tool that supports setup
and configuration of systems (provisioning) using declarative configuration is Puppet20. The
advantages of using Puppet are that the format of the configuration file is used in the industry and
well understood. It also serves as documentation for a closer look at the system configuration.
For creating the virtual machine Vagrant is used in the prototype. It serves as wrapper for
VirtualBox and supports provisioning of the virtual machine.

Following these considerations the effort to implement this module is reduced to extract
the configuration file from the model and use Vagrant to create and provision the virtual ma-
chine. Those steps are implemented in the submodules ConfigBuilder and MachineBuilder
subsequently. See Figure 4.5 for an overview of the implementation. The BuildCLI is the
main entry point of the module, which forwards the arguments to the App. The submodules
ConfigBuilder and MachineBuilder are invoked by the App. The result of the Config-
Builder describes the system state, and is used by the MachineBuilder for provisioning the target
system. The result of the MachineBuilder is a configuration for the virtual machine itself, e.g.
amount of memory, and the created virtual machine.

The build component needs to be started with at minimum the same access rights as the
process that has been identified by the capture module. This is needed e.g. to ensure that all
necessary files can be read and transferred to the target system.

20https://puppetlabs.com/, accessed 2013-10-04

50

https://puppetlabs.com/

Figure 4.5: Class diagram of the build module

4.5.1 ConfigBuilder

From the process environment model the ConfigBuilder creates a configuration file for Puppet.
This configuration file is used by the MachineBuilder to provision the system.

The ConfigBuilder is implemented for Puppet. It uses a configuration file template (Puppet
manifest template) which is populated using Apache Velocity21 [2] with packages, files and
user accounts. A custom template can be passed to the build component. This allows additional
provisioning that is independent from the model, e.g. to satisfy organizational guidelines. Web
applications can support creating Puppet manifests, e.g. PuPHPet22.

Because directories are not automatically created in Puppet [82] a custom script creates
directories. This is not platform independent and should be replaced in future versions of Puppet
that might allow to create the parent directory automatically. Users and their home directories
are also added in the Puppet configuration file. Apt-update is called to ensure the latest
information about packages of the repositories is available on the target system. Puppet allows
to influence the order of execution of the provisioning. This is used to execute the script that
creates directories before copying the files inside those directories. It also is used to execute
apt-update before installing any package.

As permissions are not stored in the process model by the prototype for the time being, the
user that executes the process is assigned as owner of all migrated files. This means that this

21http://velocity.apache.org/, accessed 2013-10-07
22https://puphpet.com/, accessed 2014-7-24

51

http://velocity.apache.org/
https://puphpet.com/

user is able to execute the process on the target system. Other users that might be able to execute
the process are not considered.

The following list shows the tasks that are specified in the Puppet script and its order of
execution:

1. Update package information for the configured repositories, i.e. the standard repositories
of the distribution. This is done before installing any package to ensure that the latest
packages are known to the package manager. This is done by executing a command:

exec { ’apt-update’:
command => ’apt-get update’

}

2. Create the users, including their home directories. This is done before copying data files,
to ensure that the home directory does exist before files are copied into it. The following
snippet is used to create a user:

user { ’pmf’:
ensure => ’present’,
groups => [’sudo’],
managehome => true,
home => ’/home/pmf’,
shell => ’/bin/bash’,
password => ’6Dvq08/xE6.5Op$Ad/SGpPMv8erTA.CmyYyB7/...’

}

3. Install the packages. This is done before transferring data files, to ensure that files that are
part of packages but have been modified locally are not overwritten during installing the
packages. An example to install multiple files using variables is shown in the following:

$pkgs = [’coreutils’, ’libc6’,’openjdk-7-jre-headless’]
package { $pkgs: ensure => present }

4. Transfer the data files from the source system to the target system. Both files and directo-
ries can be transferred as shown in the following:

file { ’/home/pmf/process/run.sh’:
source => ’file:///tmp/host/home/pmf/process/run.sh’,
force => true,
recurse => true,
owner => ’pmf’

}

52

4.5.2 MachineBuilder

The MachineBuilder is used to create and configure the virtual machine using the configura-
tion file created by the ConfigBuilder. The MachineBuilder has been implemented for Vagrant,
a tool for managing virtual machines (c.f. Section 2.4). This has been done by utilizing the
Vagrant-Binding API23 that has been slightly customized24 to support the package com-
mand of Vagrant that is used to export the virtual machine, and also allowing setting additional
configuration for Vagrant that is not supported by the API natively. PostSetupHandlers
can be registered on the MachineBuilder to allow executing commands on the new created and
already provisioned machine using SSH. This is useful to execute tasks that are not specified
in the Puppet configuration file. It can be used to extend the PMF on the level of source code,
but is a step in the direction of passing scripts to the PMF that are executed automatically after
provisioning. Vagrant uses base boxes as starting point for virtual machines. Using base boxes
removes the necessity to setup and configure the basic installation of the operating system. Cus-
tom base boxes can be generated from existing virtual machines [79]. There are several base
boxes publicly available e.g. from Vagrantbox.es25. The prototype uses Debian 7 as default, but
can be provided with a specific base box. Boxes are tar files that include the hard disk image
in the VMDK format, the system configuration of the virtual machine as OVF file, and some
Vagrant specific settings [40]. Therefore boxes can also be extracted and used with VirtualBox
directly. The MachineBuilder generates the resulting virtual machine as Vagrant box, and also
provides the Vagrant configuration file as output. By applying the Puppet manifest which has
been created by the ConfigBuilder on the base box, the process environment is built. An exem-
plary Vagrant configuration file is shown in Listing 4.8. It shows how base boxes are specified,
that shared folders are created to be able to transfer files from the source system, and how it is
possible to customize the target virtual machine. This example also specifies the usage of Puppet
for provisioning, and refers to the manifest created by the ConfigBuilder.

Listing 4.8: A Vagrant configuration file

1 Vagrant::Config.run do |config|
2 config.vm.define :vm do |vm_config|
3 vm_config.vm.box = "hashicorp/precise64"
4 vm_config.vm.box_url = "https://vagrantcloud.com/hashicorp/
5 precise64/version/2/provider/virtualbox.box"
6 vm_config.vm.provision :puppet do |puppet|
7 puppet.manifests_path = "puppet/manifests"
8 puppet.manifest_file = "puppet.cnf"
9 end

10 vm_config.vm.share_folder "host", "/tmp/host", "/",
11 :create => true
12 vm_config.customize ["modifyvm", :id, "--memory", 1024]
13 end

23https://github.com/guigarage/vagrant-binding/, accessed 2013-10-08
24https://github.com/jbinder/vagrant-binding, accessed 2013-10-08
25http://www.vagrantbox.es/, accessed 2013-10-28

53

 https://github.com/guigarage/vagrant-binding/
https://github.com/jbinder/vagrant-binding
http://www.vagrantbox.es/

14 end

4.5.3 Usage

The usage of the build component is shown in Listing 4.9. As mandatory argument it requires
the process model (-i) as input, which provides all information to build the virtual system. To
customize the virtual machine provisioning, optionally an adjusted Puppet manifest template
can be passed (-t). This could be used i.e. to include steps during provisioning of the virtual
system that are not part of the model. The location and name of the virtual machine can be
customized with the -o and -n arguments respectively. Because the output of the build component
not only includes the created virtual machine as Vagrant box, but also the Puppet and Vagrant
configuration files, a directory needs to be provided as output path. The base box of the new
virtual machine is specified using -b.

Listing 4.9: Usage instructions for the Build component

1 usage: BuildCLI
2 -b <arg> base machine URL, see http://www.vagrantbox.es/,
3 defaults to:
4 ’http://puppet-vagrant-boxes.puppetlabs.com/ubuntu

-1310-x64-virtualbox-puppet.box’
5 -i <arg> ontology path (mandatory), defaults to: ’’
6 -n <arg> virtual machine name, defaults to: ’vm’
7 -o <arg> output path, for configuration data etc.,
8 defaults to: ’vbox’
9 -t <arg> Puppet manifest template path,

10 usually not required, defaults to: ’’

4.5.4 Summary

In this section the implementation of the build component has been described. It was discussed
that using platform independent and declarative tools for provisioning and virtual machine cre-
ation and configuration an implementation is possible that in general is platform independent
and is not limited to a specific virtual machine provider. But to be able to migrate all aspects
of the model that are considered relevant for the process execution the introduction of operating
specific tasks has been necessary.

For this component there also are some aspects that have been left for future development.
One is the detection of suitable target base boxes. By analyzing the process environment model,
conditions for potential target operating systems need to be established. Examples are that the
supported processor architecture matches, and that all packages in the model are available. Based
on this conditions target operating systems need to be suggested or one target system automat-
ically selected. Because there are many different distributions of GNU/Linux, a mapping to
compatible base boxes that are available online needs to be defined.

54

For applications that are not part of any package it may be possible to create a portable
version of the package that can be migrated to different systems using application packaging
tools like CDE. CDE has following requirements [37]:

• The kernel version should have the same major number because of system call interface
changes which CDE might not be able to handle.

• Dynamic linked libraries compiled for newer kernel version because the usage of new
features that are not available on the older kernel.

• A compatible architecture is required, otherwise the binaries will not be able to execute
on the target platform.

• CDE does not capture processes that communicate using IPC, e.g. databases, so such
processes need to be captured independently.

But as application packaging is used as fallback (c.f. Section 2.2) only this is acceptable.

4.6 Verification

Verification ensures that the target system is capable of successfully running the process. In
doing so it also is checked that the process model accurately describes the process environment.
Verification is executed manually in the current version of the PMF. There are several funda-
mental steps that are applied for a basic verification.

• The generated process model is inspected by an expert. The expert investigates the model
with a focus on missing direct dependencies.

• The capture module is executed on the target system. The resulting process model is
compared to the process model derived from the target system.

• The process is executed on the target system and on the source system. It is checked if the
behavior and the results of the process match.

As described in Section 3.5, refinement of those fundamental steps is possible. If the verification
fails, either the process model can be fixed manually, or the process execution script can be
extended, i.e. to execute the process with different input, so that more paths are executed. In the
latter case both the capture and the build module need to be executed again. When fixing the
process model only the build module needs to be executed again.

4.7 Implementation details

This section addresses general information about the implementation and explains the reasoning
for decisions regarding the technical stack and the architecture that is used in the prototype.

As the components operate with the ontology as data structure, as specified in Chapter 3,
a library that provides common functionality for interacting with a process model has been

55

developed. Out of a variety of frameworks for OWL [43] this library utilizes the Java Ontology
API The OWL API26, an open source Java API for OWL licensed under the LGPL. The OWL
API is used in Protégé (c.f. Section 2.5) which ensures compatibility of the models generated
in this prototype and Protégé. This allows manual editing (e.g. adapt step of the PMF) of the
model. There also are several different reasoners for the OWL API [43]. For querying the model
Apache Jena27 is used, which supports SPARQL queries. Although there are others, Jena
has been selected because it supports executing SPARQL queries without invoking a reasoner.
This is important because of performance reasons. The common library has been developed as
a wrapper on top of the OWL API and Jena. It eases the usage of the OWL API by providing a
slightly higher level for interacting with the model.

Java is selected as main language in this prototype, not only because of the OWL API but
also because of its platform independence and wide acceptance [7]. Exceptions are platform
specific parts of the extractors. According to [15] bash is the ’de facto standard for shell script-
ing’, and as such is used for the implementation of the operating system dependent parts of the
extractors. Those extractors are meant to be platform specific but are replaceable by extractors
suitable for another platform. Extractors are organized as functions which solve elemental tasks.
This conforms to the UNIX philosophy [31] and provides advantages like improved reuse- and
maintainability. The extractors are also used to encapsulate operating system specific functional-
ity, and called as simple command in a higher level language, such that the extractors can easily
be replaced by other scripts or tools.

The implementation is developed following the modular programming principle, supporting
libraries are implemented independent from the framework modules. Google Guice [103] is used
to assemble (sub)modules using dependency injection [27]. This supports the maintainability of
the framework, by allowing to specify alternative implementations.

4.8 Summary

This chapter showed challenges when creating an implementation for the PMF. For Debian it is
possible to retrieve the information about the process environment that is necessary to rebuild
the system in general. Exceptions are local services which already may load data before the
prototype has been executed and therefore are not identified completely. Main features are:

• The prototype uses both static and dynamic analysis to capture the process environment.

• The capture component supports creating a model of the process environment, which uses
an open format so that it can be modified and read with third party tools.

• The operating system specific capture script can be replaced without changes to the pro-
totype.

• The process is migrated into a dedicated system where only dependencies are deployed
that are required to execute the process.

26http://owlapi.sourceforge.net/, accessed 2013-10-10
27http://jena.apache.org/, accessed 2013-10-10

56

http://owlapi.sourceforge.net/
http://jena.apache.org/

• The prototype can be embedded in third-party scripts using the non-interactive comman-
dline interface.

Except the implementation of the monitoring scripts and partly the Puppet configuration files
the prototype is platform independent. The default implementation for Debian GNU/Linux of
the monitoring scripts can be replaced by custom scripts for other operating systems.

There are also various limitations, some of them addressed and suggested for improvement
of the prototype in future versions, others only affect specific scenarios. Main limitations are:

• Local services are detected but not migrated automatically. They can be migrated sepa-
rately at the current state of the prototype. Services that can be started within the process
execution script also can be included therein, so that separate migration is not necessary.

• The monitoring scripts have been implemented specifically for Debian.

• The operating system needs to be selected manually when building the target system.

• Building the target system is only possible from the source system as no resources are
stored temporarily by the prototype.

• The adapt and verification components provide no automated usage.

The usage of the OWL API has introduced some overhead because the API is on a quite low
level of abstraction. OWL as format for the model is useful, because there is tool support to view
and modify OWL models and the format is suitable for documentation. The model can directly
be stored as file, so the export from a database can be omitted.

Future versions could improve some of the mentioned limitations. As described it is possible
to implement monitoring scripts for other operating systems. Also, detection of a compatible op-
erating system could be done, e.g. by creating a knowledge base. The capture component could
copy all required resources to a data store, so that rebuilding the target system is possible without
having access to the source system. Although a complete migration of external dependencies
may not be possible without access to the hosting system there exists research about providing
a capture/replay mock to partly substitute remote web services [66].

The tool is available online28, where also usage information for the components and infor-
mation about necessary dependencies to run the PMF is provided.

The next chapter shows that the prototype eases the migration of processes in shared systems
to dedicated virtual systems in various scenarios.

28http://www.ifs.tuwien.ac.at/dp/process/projects/pmf.html, accessed 2014-09-17

57

http://www.ifs.tuwien.ac.at/dp/process/projects/pmf.html

CHAPTER 5
Evaluation

In this chapter the PMF is evaluated based on the prototype implementation described in Chap-
ter 4. The framework is applied on two different use cases in order to check the accuracy and
drawbacks of the tool.

By applying the prototype on an existing system and providing it with a command to execute
the process, the expected outcome is a description of the environment and a virtual system that
satisfies this description. The description contains the packages, files, and web services the
process depends on, as well as other information about the environment that is relevant for
successful process execution, i.e. the name of the operating system that is used, and the name of
the user that executes the process. It is represented as OWL ontology as described in Section 4.2.

To address different challenges, different scenarios are used. The first is a music classifi-
cation workflow, which is used to check the applicability of the framework to workflow engine
based processes (c.f. Section 5.1). The second is a document generation workflow that is based
on batch scripts and invokes a Windows tool for fetching data from a remote server (c.f. Sec-
tion 5.2). For both scenarios local tools as well as web services are accessed.

In the focus of the PMF are processes that are deployed non-exclusively in a system together
with other tools and services. The process execution is described in a machine interpretable
format, e.g. in a script or as workflow. Possible formats are, for example, bash [15] for scripts
and Taverna for workflows [68, 108]. Taverna is an open source workflow management system
that is written in Java and licensed under the Lesser General Public License (LGPL) Version
2.11. The two scenarios covered in this evaluation are fully scriptable and deterministic, so
fulfill the requirements of the PMF (c.f. Chapter 3).

To be able to run the prototype the source system has to meet several requirements. Virtual-
Box 4.3 and JRE 1.7 or newer have to be installed. For the Oracle JRE it is sufficient to download
the tar.gz package2 extract it and refer to the java executable in the bin directory when
executing the prototype. CDE should be available and executable (e.g. by downloading the

1http://www.taverna.org.uk/, accessed 2014-02-13
2http://www.oracle.com/technetwork/java/javase/downloads/, accessed 2014-01-08

59

http://www.taverna.org.uk/
http://www.oracle.com/technetwork/java/javase/downloads/

standalone binary and adding its containing directory to the $PATH environment variable), but
this is optional. The binaries of the prototype need to be available. Internet access is required to
be able to resolve all ontologies that are referenced by the model and to fetch the base box for
the build module. The amount of required available disk space depends on the size of the base
image and the number and size of files that are involved in executing the process.

Both the source system of the music genre classification and the LNEC (Laboratório Na-
cional de Engenharia Civil) scenario satisfy these constraints.

5.1 Musical genre classification

The musical genre classification process represents an e-Science experiment, that is performed
by researchers locally on their computers. The aim of the experiment is to validate a music clas-
sification method. The process is set in the information retrieval and machine learning domain,
where experiments are difficult to re-evaluate and repeat, for reasons that include incomplete
documentation and complex setups. In this setting the aim of the PMF is to document the soft-
ware environment of the experiment, and to create a snapshot of the environment, so that the
process can easily be re-evaluated and validated. More details about the scenario can be found
in [97].

The musical genre classification process [63] describes the process of validating a method
for automated music objects classification. The steps in the musical genre classification process
are the following. First, the test data, i.e. MP3 files, is fetched from a web server. The MP3
files are converted to Base64 and passed to a REST service, which performs feature extraction.
In the following step the ground truth is fetched, which is a mapping of the music objects to
a category label like genre. The features of the music object are combined with the ground
truth to WEKA ARFF files using the SOMToolbox3. The WEKA ARFF files and a set of
learning parameters are finally passed to Weka4 which determines the classification accuracy.
Further information about the process can be found in [97] and [63]. Figure 5.1 shows the music
workflow in Taverna.

The motivation for the migration is to extract the classification process from the source
system and deploy it in a virtual system that runs Debian, so it can be shared with stakeholders
that want to execute the process on their own machines.

The process has already been modeled as ontology5 in the context of the TIMBUS project
with the scope of performing a holistic preservation of the process, including the documentation
of the highlevel steps. The technical layer of this ontology misses information that is necessary
to be able to recreate the environment, i.e. the source for libraries and tools that have not been
fetched from standard package repositories, and therefore could not be reused in this context.

The process is implemented as Taverna workflow [63]. It is executed using the Taverna Com-

3http://www.ifs.tuwien.ac.at/dm/somtoolbox/, accessed 2013-12-03
4http://www.cs.waikato.ac.nz/ml/weka/, accessed 2013-12-03
5http://timbus.teco.edu/ontologies/Scenarios/MusicClassificationDSOs.owl,

accessed 2014-04-08

60

http://www.ifs.tuwien.ac.at/dm/somtoolbox/
http://www.cs.waikato.ac.nz/ml/weka/
http://timbus.teco.edu/ontologies/Scenarios/MusicClassificationDSOs.owl

Figure 5.1: The music workflow in Taverna

mand Line Tool6. For GNU/Linux Taverna is available as zip package, which requires at least the
JRE 1.6 to be installed on the system. The logic of the workflow is implemented in Java, which
is embedded in the Taverna workflow description file (MusicClassification_WSDL.
t2flow). It makes use of SOMToolbox (somtoolbox_full.jar) and Weka (weka-
3.6.6.jar) libraries for format conversion and classification. For the REST web services
that is used for audio feature extraction no source is available. Furthermore, the MP3 files and
the ground truth document that are used by default are stored on web servers. A custom location
for the MP3 files and the ground truth can be specified if required. The source system is Linux
Mint 15 (Olivia), which is based on Ubuntu 13.04 (Raring Ringtail), which can be found out by
checking the /etc/*-release files. Ubuntu 13.03 in turn is based on Debian 7 (wheezy).

As a first step, the expert analyses the target system, to be able to verify the process model,
but also to create a suitable process execution script. The minimal, i.e. without any indirect
dependencies, expected content of the model generated by the capture module is shown in Ta-
ble 5.1. All of those dependencies should be documented in the model, not all of them can be
migrated to the target system, in this case because they are not located on the system that is
migrated (e.g. external services). The process execution script makes Taverna available in the
$PATH environment variable, so that executing the workflow can be done without absolute path
to the Taverna executable. Several arguments are passed to the workflow, which is executed
using the command-line tool of Taverna. The script is shown in Listing 5.1.

To be able to run the PMF, it needs to be deployed on the source system. This requires the
PMF to be copied on the target system, and packages like openjdk-7-jre, cde, strace, dlocate,

6http://www.taverna.org.uk/documentation/taverna-2-x/command-line-tool/,
accessed 2013-10-28

61

http://www.taverna.org.uk/documentation/taverna-2-x/command-line-tool/

resource name resource type migration to
target

openjdk-7-jre Package yes
Taverna Package yes
somtoolbox_full.jar DataFile yes
weka-3.6.6.jar DataFile yes
MusicClassification_WSDL.t2flow DataFile yes
/usr/bin/executeworkflow.sh DataFile yes
mp3 provider HTTP no
ground truth provider HTTP no
feature extraction SOAP no
mcuser Username yes
Linux Mint 15 OperatingSystem -

Table 5.1: The minimal expected results of the prototype.

apt-file, and debsums to be installed.
Invoking the capture module using the capture script argument with the process execution

script produces the ontology that is shown in Table 5.2.

Listing 5.1: The script to start the music genre classification process)

1 #!/bin/bash
2

3 PATH=$PATH:/home/pmf/apps/taverna-workbench-2.4.0
4

5 executeworkflow.sh MusicClassification_WSDL.t2flow
6 -inputvalue MP3URL "http://kronos.ifs.tuwien.ac.at/
7 timbus/musicProcess/music-10songs/"
8 -inputvalue GroundTruthURL "http://kronos.ifs.tuwien.ac.at/
9 timbus/musicProcess/genres.txt"

10 -inputvalue WebServiceAuthenticationVoucher "timbusVoucher"

An excerpt of the generated ontolgoy is shown in Listing 5.2. Line 10 to 16 show, how other
ontologies can be referenced. Line 19/20 shows the definition of a relation between individuals
that is imported from an imported ontology. In line 22/23 a new class is defined. Finally, in line
25 to 33 an example of the individuals is shown. Other types of individuals have been described
in Section 4.3.1. This ontology serves as documentation of the process environment, the actual
list of artifacts and system settings can be found in Table 5.2.

Listing 5.2: An excerpt of the resulting process model

1 <?xml version="1.0"?>
2 <rdf:RDF xmlns="http://test#"
3 xml:base="http://test"
4 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

62

5 xmlns:owl="http://www.w3.org/2002/07/owl#"
6 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
7 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
8 xmlns:DIO="http://timbus.teco.edu/ontologies/DIO.owl#">
9 <owl:Ontology rdf:about="http://test">

10 <owl:imports rdf:resource=
11 "http://timbus.teco.edu/ontologies/DIO.owl"/>
12 <owl:imports rdf:resource=
13 "http://timbus.teco.edu/ontologies/DSOs/CUDF.owl"/>
14 <owl:imports rdf:resource=
15 "http://timbus.teco.edu/ontologies/DSOs/software.owl"
16 />
17 ...
18 </owl:Ontology>
19 ...
20 <owl:ObjectProperty rdf:about=
21 "http://timbus.teco.edu/ontologies/DIO.owl#association"/>
22 ...
23 <owl:Class rdf:about=
24 "http://localhost/RemoteServices.owl#HTTP"/>
25 ...
26 <owl:NamedIndividual rdf:about="http://test#zlib1g">
27 <rdf:type rdf:resource=
28 "http://timbus.teco.edu/ontologies/DSOs/
29 CUDF.owl#Package"/>
30 <rdfs:label rdf:datatype=
31 "http://www.w3.org/2001/XMLSchema#string">
32 zlib1g
33 </rdfs:label>
34 </owl:NamedIndividual>
35 </rdf:RDF>

By manually analyzing the generated ontology it can be seen that the remote services have
been detected, as well as more than expected packages, data and configuration files. This is
because the generated ontology also contains indirect dependencies.

There have been about 30 packages detected, which mostly are generic libraries that have
been involved in the execution of the process because they are used by tools of the process or by
other libraries (indirect dependencies), i.e. libc6, base-files, libglib2.0-0, and the like. Indirect
dependencies would not be needed to be stated explicitly in the model, as they can be resolved
by the package manager of the target system. Most of them should be available for different
distributions, but such indirect dependencies might be a limiting factor for cross distribution
compatibility. For example, it might be the case that packages on one distribution use differ-
ent dependencies than in another distributions, and indirect dependencies of the source system
are not available on the target system. On the other hand, changes in indirect dependencies

63

resource name resource type expected
in model

migrated
to target

kronos.ifs.tuwien.ac.at/timbus/
musicProcess/genres.txt

HTTP yes no

kronos.ifs.tuwien.ac.at/
timbus/musicProcess/music-
10songs/

HTTP yes no

kronos.ifs.tuwien.ac.at:8080/
fexWS/featureExtraction

SOAP yes no

base-files Package no yes
libc6 Package no yes
libffi6 Package no no
29 more lib* packages . . . Package no yes
openjdk-7-jre-headless Package yes yes
openjdk-7-jre-lib Package no yes
tzdata-java Package no yes
zlib1g Package no yes
mcuser Username yes yes
/etc/issue ConfigurationFile no yes
/etc/issue.net ConfigurationFile no yes
/etc/lsb-release ConfigurationFile no yes
/etc/update-motd.d/10-help-text ConfigurationFile no yes
/home/mcuser/.taverna-
2.4.0/lib/somtoolbox_full.jar

DataFile yes yes

/home/mcuser/.taverna-
2.4.0/lib/weka-3.6.6.jar

DataFile yes yes

/home/mcuser/.taverna-
2.4.0/logs/derby.log

DataFile no yes

7 more files in /home/mcuser/
.taverna-2.4.0/...

DataFile no yes

/home/mcuser/apps/taverna-
workbench-2.4.0/

DataFile yes yes

/home/mcuser/work/
eval_taverna_mc/

DataFile yes yes

/usr/bin/executeworkflow.sh DataFile yes yes
/usr/lib/jvm/java-7-openjdk-
amd64/jre/lib/ext/h2-1.3.170.jar

DataFile no yes

/usr/lib/jvm/java-7-openjdk-
amd64/jre/lib/jaxp.properties

DataFile no yes

Linux Mint 15 Olivia OperatingSystem yes -

Table 5.2: The actual results of the process virtualization tool.

64

also could cause a change in the behavior of the process. To exclude incompatible indirect de-
pendencies as potential source of migration issues, indirect dependencies are kept in the model
generated by the PMF.

As Java runtime environment openjdk-7-jre-headless has been identified, which is reason-
able as there was no GUI involved in the execution of the process.

What has not been detected as package is Taverna, which is because it is not available in
Debians package repositories and has been downloaded and extracted manually without involv-
ing the package manager. The individual files have been detected though. By applying the
PortableApplicationRefiner only the root directory of Taverna has been added to the model.
This replacement of the individual Taverna files by its root directory reduced the model by about
1000 individuals.

As for data files, all of the expected files have been detected. Some unexpected files that
could not be mapped to a package have been added to the model. Examples for such are files
in the $HOME/.taverna directory, which is created by Taverna and includes i.e. configu-
ration files, log files, and additional dependencies (JAR files). Because also the configuration
files of Taverna are not known to the package manager those have been identified as plain data
files instead of configuration files in the model. Like Taverna, also the directory containing the
workflow file and the process execution script has been added as portable application because
of the PortableApplicationRefiner. This was not necessary and somewhat obfuscates the data
files that are read directly by the process, but did not add much of an overhead in terms of addi-
tionally migrated data files. On the other hand the files that are located in the same directory as
the execution script probably also might be relevant to the process. In future versions the usage
information of artifacts should be identified, i.e. the dependencies between resources, which
would improve the expressiveness of the model.

It was not expected that any configuration files are to be migrated, yet the capture module
detected four files, as can be seen in Table 5.2. None of them contains information that is relevant
to the process though, so these files could have been omitted. An example for such is /etc/
issue which contains description about the distribution. Furthermore two files in the /usr/
lib/ directory have been detected, h2-1.3.170.jar a library of the H2 database7 [26]
and jaxp.properties, a configuration file of the JAXP API [17]. Table 5.2 also shows that
the user and the operating system have successfully been detected.

The process model reveals that several operating system processes have been spawned during
execution of the music genre classification process. Some of them perform the communication
with web services, for example there are processes that retrieve the individual MP3 files. This
can be seen in Figure 5.2, where the relations of a process have been expanded.

The build module was instructed to use Debian 78 as base system. It was able to transfer all
packages except libffi6 [54], which could not be installed because it is not available for Debian 7
in the official repository, as can be seen e.g. in the database of Debian packages9. Libffi is
used by the OpenJDK [33], and is not available in this version in the official repositories until
Debian 8 (jessie). In earlier versions of Debian earlier versions of libffi are used. As libffi is an

7http://mvnrepository.com/artifact/com.h2database/h2/1.3.170, accessed 2013-12-17
8https://www.dropbox.com/s/23gupgb0xompvkm/Wheezy64.box?dl=1, accessed 2014-08-01
9http://packages.debian.org/, accessed 2013-12-11

65

http://mvnrepository.com/artifact/com.h2database/h2/1.3.170
https://www.dropbox.com/s/23gupgb0xompvkm/Wheezy64.box?dl=1
http://packages.debian.org/

Figure 5.2: An excerpt of the spawned operating system processes and their dependencies

indirect dependency, it does not need to explicitly be installed, but is installed as dependency of
another package in the version that is available on the system in any case. To avoid problems
with missing packages it would be better to also store the source repository of the packages in
the model, and to check during the build step of the target system if these packages are available
in the stored source repository or the repositories of the target system. If not, suitable alternatives
should be suggested. The other packages could be installed. The user was created and logging
in on the target system was possible. Also the files have been transferred to the target system.

As a first step of the verification the process model was analyzed. Although the type of
Taverna that was expected by the expert (package) did not match the actual result of the PMF
(portable application), this difference was caused by an inaccurate manual inspection of the
process environment and not an issue with the capture model. Then the PMF was executed on
the target system. For this it was necessary to deploy the capture component of the PMF on the
target system. By comparing the resulting process model with the initial process model, it was
shown that the target system contains all mandatory elements of the process model. There were
operating system specific files missing in the model of the target process environment, namely
/etc/lsb-release and /etc/update-motd.d/10-help-text. As stated above,
libffi5 has been installed on the target system instead of libffi6, and this difference is also shown
when comparing the process models. Those minor differences did not effect the behavior of the
process, and all other elements where the same in both models. As a last step, the process was
executed an the target system, and the result compared to the result when running the process
on the source system. Running the process on the target system resulted in the same output as
running the process on the source system. There were no issues found during process execution
on the target system because of the mismatch of libffi versions.

The duration of migrations depends on various parameters, like:

• the familiarity of the expert that performs the manual analyis with the process, i.e. for
verifying the process and creating the process execution script

• the technical requirements of the process, the amount of used resources increases the
duration of the manual analysis

66

• the performance of the source system which influences the runtime of the capture and
the build module, the latter especially if a large amount of files or large files need to be
transferred

• the speed of the Internet connection for downloading packages and the base box

• if the base box already is cached locally and does not need to be downloaded anymore

The time required for the described manual tasks, i.e. manual analysis of the direct depen-
dencies for the verification, creation of the process execution script, and deploying the prototype
on the source system, can be expected to take one to two hours, depending on the experience and
familiarity of the expert to the process. Running the capture component took about 12 minutes,
running the build component took about 13 minutes. The evaluation was performed on a system
with an Intel(R) Core(TM) i5-2500 CPU @ 3.30 GHz, 8 GB memory, and a download speed of
about 2 Mbit/s. The base box of the target system was already available locally. The size of the
hard disk of the target system is about 2.3 GB. The source system had various other processes
and data deployed and used about 575 GB. The number of files on the target system is 68756,
compared to 3073130 on the source system. On the source system there are 2501 packages
installed, while on the target system there are only 483.

It can be seen that cloning approaches would lead to a significant overhead in storage and
complexity of the system. Advantages of cloning the system are the easier migration process,
and that no resources can be overlooked. For file-based migration this overhead is not given, but
for the file-based migration process more manual work is necessary. It is needed to manually
determine which packages are involved for executing the process, and which user executes the
process. The user has to be created on the target system, and the packages need to be installed
thereon. Creating a portable package of a process is very simple with CDE:

cde process/run.sh

The resulting cde-package needs to be copied manually to a new target virtual machine.
For executing the process it is necessary to change to the process directory and call the process
execution script using CDE:

cd cde-package/cde-root/home/pmf/work/eval_taverna_mc

../../../../../cde-exec process/run.sh

The CDE package only contains 1203 files in 291 MB. The drawback of CDE is that the
packages that have been included in the portable application cannot be maintained by operating
system tools. The package manager is not aware of any packages inside the CDE package. The
deployment of a CDE package is a matter of copying the package to the target system. Running
the process on the target system was successful when executing the process as the same user as
on the source system. When using a different user the execution failed, because Taverna had
issues locating the home directory of the user, and therefore also the additional libraries that are
necessary to successfully run the process. Changing the user in the included list of environment
variables of the package (cde-package/cde.full-environment) and in the filesystem
of CDE (cde-package/cde-root) to match the user on the target system resolved this
issue.

67

Future versions of the PMF could aim to migrate remote dependencies to the target system.
This would be possible for the MP3 files and ground truth that are hosted on a remote web server
in this case, because this data is not generated dynamically and is reflected by static files only.

5.2 LNEC

The second scenario is set in a civil engineering business process of LNEC10, the National Lab-
oratory for Civil Engineering (Laboratório Nacional de Engenharia Civil). LNEC monitors large
civil constructions, like dams, for their structural safety [98]. Any failure could have fatal con-
sequences, i.e. by threatening the environment and human life. The monitoring process, which
this scenario is concerned with, has been simplified for this evaluation and is about fetching
sensor data, performing transformations on the data, and visualizing the data, thereby producing
a report as file. An excerpt of such a report is shown in Figure 5.3.

Figura 1: IQ: FP1, Desl. radial (mm)

4

Figure 5.3: An excerpt of the report of the LNEC process

10http://www.lnec.pt/, accessed 2014-03-09

68

http://www.lnec.pt/

The LNEC process creates a PDF document that includes graphics generated from dynamic
data at compile time (the report). The raw data is fetched from a web service. For getting
the raw data a client is provided (LNEC client), which has been developed for the Windows
platform only but can be called using Wine11. Wine can be used to run Windows applications
in GNU/Linux [89]. The data is extracted with unzip. To avoid encoding issues iconv of the
libc6 package is used to encode the raw data to UTF8. From this data graphics are generated
using R, a tool for statistical calculations and visualizations [50]. Finally, pdflatex is invoked
(twice to ensure valid references in the document), which generates the PDF file. All tools except
the LNEC client are available in Debian repositories.

Like in the previous scenario, a manual analysis of the process environment is described in
the following. The execution is specified in a bash script (run script), from which the direct
dependencies can be determined by considering the tool invocations. An exception is the web
service that provides the raw input, for which no information except the used client can be
inferred from the run script. The run script is used as process execution script, as no additional
steps are necessary for running the process. It is shown in Listing 5.3.

Listing 5.3: The script that runs the LNEC process (lnec.sh)

1 #!/bin/bash
2 # lnec.sh
3

4 # fetch data
5 wine ClientAppNS/timbusClientNS.exe AP
6 mv ClientAppNS/data .
7 cd data
8 unzip data.zip
9

10 # fix encoding
11 iconv -f LATIN1 -t UTF-8 iq.r > iq_utf8.r
12

13 # generate references
14 R --vanilla < iq_utf8.r > IQout.txt
15

16 # create pdf
17 pdflatex iq.tex
18 pdflatex iq.tex

The service address of the web service can be found by analyzing the configuration file of
the LNEC client, which uses Windows Communication Foundation (WCF) of the .NET Frame-
work to access the service [14]. The result of the process can be determined by analyzing the
last commands of the execution script, which call pdflatex on iq.tex. By consulting man
pdflatex it can be seen that the process results in producing an iq.pdf file. Other data
files that are accessed by the process are data.zip and iqAll.zip, which are downloaded

11https://www.winehq.org, accessed 2014-04-10

69

https://www.winehq.org

from the web service, iq.r which is contained in data.zip, as well as the intermediate
results iq_utf8.r and IQout.txt. So other than the execution script (lnec.sh) no ad-
ditional data files seem to be required by the process and are generated as part of the process.
Both the iq.r and the iq.tex can include other resources, the r-file by stating require or
library to include libraries, the tex file by stating documentclass or usepackage to
include classes and packages respectively [83]. Such packages may be bundled with the tool,
but also could be installed by users, in which case it would need to be considered also. In this
case the article.cls is contained in the data directory of the process, which may be a cus-
tomized version of the article class provided by the official tex packages and therefore needs to
be migrated too. This information results in an minimal expected content of the model which is
shown in Table 5.3.

resource name resource type migration to
target

wine Package yes
unzip Package yes
libc6 Package yes
R Package yes
texlive-latex Package yes
ClientAppNS PortableApplication yes
article.cls DataFile yes
lnec.sh DataFile yes
http://lacerta.lnec.pt/gestBarragens/
GBServices/timbusService.svc

SOAP no

timbus Username yes
Ubuntu 11.10 OperatingSystem -

Table 5.3: The minimal expected results of the prototype.

The PMF was deployed on the source system manually preliminary to the migration of the
process. Applying the capture module on the system results in a large number of packages
and files. As in the previous scenario a lot of packages are indirect dependencies of invoked
tools, i.e. there are 54 lib* libraries detected that have been involved in executing the process,
including the expected libc6 package. Some other involved general packages are base-/
files, coreutils, cups, font and language related packages. Unzip has been detected,
also wine, texlive-latex-base, and R. For latex several additional dependencies have
been detected, which provide tools and libraries. The list of found packages is shown in Ta-
ble 5.4.

As for portable applications, i.e. applications that have not been installed using the package
manager but e.g. just downloaded and extracted, both the client (/home/timbus/LNEC2/
ClientAppNS) and the execution script (/home/timbus/LNEC2/) have been detected.
When considering data files, especially a lot of font files have been detected, like truetype fonts.
Also, some tools place files that are not known to the package manager into the file system,
especially tex (e.g. /var/lib/texmf/*), wine (e.g. /home/timbus/.wine/*) and

70

R (e.g. /etc/R/*). Another example is the directory /home/timbus/.local/share/,
which mostly concerns icons for wine. Even though such files are not necessarily user generated
and logically belong to certain packages, they are not detected as part of any package. One
explanation for this is that files may have been downloaded after installation on demand during
usage or initialization of the package, and are not part of the initial set of resources that is
packaged and provided by the package repositories. The prototype is able to determine if files
have been modified only for files that are tracked by the package manager. All files that are not
tracked could have been modified by the user locally, and need to be transferred to the target
system. The environment information has been extracted correctly (i.e. user and operating
system). Details about the detected configuration and data files can be found in Table 5.5.

resource name resource type expected
in model

migrated
to target

base-files Package no yes
coreutils Package no yes
cups Package no yes
fontconfig Package no yes
fontconfig-config Package no yes
fonts-horai-umefont Package no yes
gsfonts Package no yes
language-pack-de-base Package no yes
language-pack-gnome-de-base Package no yes
54 lib* packages . . . Package no yes
locales Package no yes
r-base-core Package yes yes
tex-common Package no yes
texlive-base Package yes yes
texlive-binaries Package yes yes
texlive-common Package yes yes
texlive-generic-recommended Package no yes
texlive-latex-base Package no yes
16 ttf-* packages . . . Package no yes
unzip Package yes yes
wine1.5 Package yes yes
xfonts-mathml Package no yes
zlib1g Package no yes

Table 5.4: The actual results of the prototype (packages).

For redeploying the process environment Ubuntu 13.0412 is used as base system. So instead
of using a different distribution, in this scenario only a newer release of the same distribution
has been used.

12https://dl.dropboxusercontent.com/u/4387941/vagrant-boxes/ubuntu-13.
04-mini-i386.box, accessed 2014-08-01

71

https://dl.dropboxusercontent.com/u/4387941/vagrant-boxes/ubuntu-13.04-mini-i386.box
https://dl.dropboxusercontent.com/u/4387941/vagrant-boxes/ubuntu-13.04-mini-i386.box

resource name resource type expected
in model

migrated
to target

/etc/group DataFile yes yes
/etc/R/Renviron DataFile yes yes
/etc/texmf/texmf.cnf DataFile yes yes
26 files in /home/tim-
bus/.local/share/*

DataFile yes yes

/home/timbus/.wine/.* DataFile no yes
/home/timbus/.Xauthority DataFile no yes
/home/timbus/LNEC2/ DataFile yes yes
/home/timbus/LNEC2/ Clien-
tAppNS/

DataFile yes yes

/home/timbus/R/i686-pc-linux-
gnu-library/2.13/xtable/.*

DataFile no yes

/usr/bin/../lib/libwine.so.1 DataFile no yes
/usr/lib/libblas.so.3gf DataFile no yes
/usr/lib/liblapack.so.3gf DataFile no yes
/usr/lib/locale/locale-archive DataFile no yes
/usr/lib/R/etc//Renviron DataFile no yes
/usr/local/share/texmf/ls-R DataFile no yes
56 ttf-files in /usr/share/-
fonts/truetype/

DataFile no yes

/usr/share/mime/globs DataFile no yes
33 files in /var/cache/fontconfig DataFile no yes
/var/lib/defoma/fontconfig.d/
fonts.conf

DataFile yes yes

/var/lib/texmf/fonts/map/pdftex/
updmap/pdftex.map

DataFile yes yes

/var/lib/texmf/fonts/map/pdftex/
updmap/pdftex_dl14.map

DataFile yes yes

/var/lib/texmf/ls-R DataFile yes yes
/var/lib/texmf/ls-R-TEXLIVE DataFile yes yes
/var/lib/texmf/ls-R-
TEXMFMAIN

DataFile yes yes

/var/lib/texmf/web2c/pdftex/
pdflatex.fmt

DataFile yes yes

Ubuntu 11.10 OperatingSystem yes yes
timbus Username yes yes

Table 5.5: The actual results of the prototype (data files, configuration).

The validation showed that the LNEC client initially was not able to execute on the target
system, because of missing libraries of wine. Therefore, a manual adaption step of the model

72

had been necessary. Observing the behavior of accessing dependencies on the source system
revealed that in consecutive executions fewer dependencies are accessed then in the initial run
(i.e. wineboot.exe). Those dependencies are located in the /home/timbus/.wine/
directory, so to be sure to include all dependencies for wine this directory has been added man-
ually to the process model, while omitting the individual files inside this directory for improved
readability. These changes can be performed using Protégé. The model in Protégé before these
changes is shown in Figure 5.4. Figure 5.5 shows the model after the changes have been per-
formed. The changes also could have been made using any other editor that supports OWL files
or even using standard text editors.

Figure 5.4: The .wine directory shown in Protégé before manual adaption

Running the build module again and verifying the target system showed that the issue has
been resolved by this measure, and the rebuilt system was now able to execute the process.
The verification of the process model and the target system has been executed analogous to the
verification of the music classification process. The execution of the process also produced the
same result as when running on the source system. The model of the LNEC process that has
been generated contained all expected direct dependencies.

The runtime behavior of the migration is comparable to the one of the music workflow. The
capture component took about 12 minutes for execution, while running the build component
took about 38 minutes. The longer execution time of the build component compared to the

73

Figure 5.5: The .wine directory shown in Protégé after manual adaption

music classification scenario can be explained by the larger amount of packages in the LNEC
scenario. The size of the consumed hard disk storage on the target system is about 2.2 GB, while
on the source system about 7.2 GB are consumed. The number of files on the source system is
245256, on the target system there are 116479 files. 1865 packages are installed on the source
system and only 1037 on the target system. The evaluation was performed on a system with an
Intel(R) Core(TM) i5-2500 CPU @ 3.30 GHz, 8 GB memory, and a download speed of about 2
Mbit/s. The base box of the target system was already available locally.

The reflections of the comparison with other migration approaches from the previous chapter
are also valid for this scenario.

5.3 Summary

The evaluation showed how the framework is able to support the migration of processes in
shared environments to new dedicated environments. Compared to manual migration it helps
improving the completeness of the model and the efficiency of the migration process. Especially
indirect dependencies are tedious to detect manually. The limitation to the validation of direct
dependencies turned out to be a reasonable trade-off between completeness of the verification
and effort of the manual inspection of the source system.

74

The generalization of the model that results from applying the refiners improves the read-
ability of the model, which eases especially the manual verification. The refiners also have a
positive effect on the completeness of the migration, in terms that the portable applications are
usable without noticeable restriction, compared to potentially missing libraries when using other
functionality than stated in the process execution script on the target system.

For validation of the results of process migrations a feasible way is to run the process in the
target system and compare the results.

The prototype can be applied to different scenarios, as long as the requirements stated in
the beginning of this chapter are met. Some of the requirements can be relaxed by additional
development effort of the prototype, i.e. the limitation of Debian as required platform of the
source system. For this only the extraction scripts would need to be replaced, the Java part of
the prototype implementation is not affected.

Intermediate and final results are represented using open formats. They can be viewed and
adapted with arbitrary tools, but the formats also are human interpretable. The logs of the
monitoring scripts are plain text files, the model is provided as OWL document, and the machine
provisioning instructions are generated as Puppet manifests. This allows manual customization
of the data between the execution of the main components of the PMF.

In the evaluation indirect packages happened to be missing in the official repositories of the
target GNU/Linux system. For the current version of the prototype using a derivative or the same
target operating system as the source therefore is recommended to avoid such issues.

Although packages and resources are sufficiently detected, there are some aspects that could
be improved. For instance the mapping of filenames to packages could be more accurate. Several
files that are logically part of some package, but cannot be resolved by the prototype, because
they are not part of the initial installation of the package, clutter the model. An example for this
is wine, which on demand installs additional files on the system. An additional refiner could
try to resolve packages for instance by considering the parent directory or other files that are
located in the same directory. The possibility to mark indirect dependencies could improve the
readability of the model and help determining the hierarchy of packages. So if a package on a
lower level is not available on the target system the package may be skipped, produce a warning,
and suggest alternatives. Alternatives could be determined by querying the package manager
of the target system. In case that direct dependencies are not available for the target system
the source of the package should be added as part of the model, so that the package still might
be resolved by adding those additional package sources to the package manager of the target
system. This for example is useful if additional package repositories have been added to the
source system.

75

CHAPTER 6
Summary and future work

This chapter describes benefits and drawbacks of the framework and the prototype. Migrating
processes using the PMF is compared to migration using other approaches. Furthermore, ways
for future extensions of the framework are shown.

6.1 Summary

The evaluation of the framework has shown that using the PMF migrating processes can be sim-
plified significantly in different scenarios. Reasons for this are mainly the reduction of manual
operations and the generation of the process environment model. The inclusion of a manual ex-
traction step in the migration process of the PMF ensures that the framework is flexible enough
for different kinds of scenarios. The migration can be performed in a way that makes the tar-
get system maintainable by using packages instead of individual files only. The refiners help
keeping the model readable, and improve the completeness of the migration by including files
that are not actively accessed during the process execution that has been observed during the
dynamic analysis, but might be required in other process execution paths of the process.

The evaluation of the prototype has shown that processes can be observed at a very detailed
level with standard GNU/Linux tools. The information that is extracted can easily be refined by
extending the extractors. The model uses OWL, an XML-based and open format, which allows
manual interception and comfortable editing using existing tools. Because the prototype has few
requirements it is easy to deploy on the source system. VirtualBox is the only requirement that
needs to be installed, the other required software can be run portable, i.e. from external devices.
Using Puppet for provisioning provides a concrete setup instruction for systems, which can also
be used independently from the PMF.

The PMF not only can be applied to extract and relocate a process from a shared existing
system, but also to share a specific system environment for teams that need to execute the same
process, or to copy the environment e.g. to establish a test setting that allows the execution of
the process. The PMF can be used for archiving processes by creating a self contained virtual

77

system and the according documentation. Because the virtual system only contains necessary
resources it is more suitable for preservation than systems that result from a clone approach.

Compared to existing solutions especially the scope of the migration, so which parts of the
source system should be migrated, but also the thorough inspection of the source system and
the resulting open documentation are major differences. For exemplary tools which represent
different types of migration strategies, a short comparison is given in the following.

Rsync is an example for file-based migration tools, i.e. backup tools that operate on the file
system level. Rsync and similar tools are able to migrate processes that rely on data files and
portable applications only. This is very flexible but offers no capture support, so determining
which files are relevant to the process needs to be done manually. Documentation is implicit
available in the optional configuration file of rsync, but also just on the filesystem level, and
has to be created manually. Further information to the files could be added as comments. Like
the PMF, rsync needs to operate directly in the source system and is able to transfer files to
both local and remote locations. Application packaging tools could be combined with file-based
migration tools so that the process is converted to a portable application and than transferred,
though maintenance is reduced compared to native packages. Rsync is available for different
platforms, i.e. GNU/Linux and Windows.

VMware vCenter Converter is used to convert physical systems into virtual systems
(P2V converter) [104]. It is able to perform hot and cold cloning of the system, so it operates
either on a running or a shut down system. Cold cloning is executed by starting the source
system from a CD and cloning it without any analysis or documentation. This is useful to
migrate systems that are not supported by other tools or the source system should not be altered.
Compared to the PMF it has the disadvantages of not creating a model, the missing possibility
to adapt the process environment, and the inclusion of more resources than probably would
be required. An example for an adaption that is possible when migrating using the PMF has
been showed in Section 5.2. Other use cases are the exchange of tools or libraries (e.g. using
OpenJDK instead of the Oracle JDK). Hot cloning is done by installing agents on the source
system, and the main application on any machine that can access the source system (remotely or
locally). Changes to disk partitions, MAC addresses and other hardware properties are possible.
But identification of the process environment also is missing, and adaption is limited. Both
variants are not focused on processes but rather complete systems. Also, they are not as flexible
in respect to making changes to the target system, i.e. allowing to replace software on the target
system, and also do not provide a model as documentation. On the other hand migration using
the vCenter Converter is not expected to miss any resources, and provides more possibilities on
how to extract data from the source system (e.g. locally or remotely).

CDE can be used for application packaging. Because the CDE runtime needs to adapt re-
quests to files, which have been relocated into the CDE package, the CDE runtime is required
for running executables. So application packaging tools alter the runtime environment of the
system, which might be undesired in several scenarios. Also, the target system is not created by
such tools, they can be used to provision existing systems instead. So compared to the PMF ap-
plication packaging software lacks documentation, adaption, and the creation of the initial target
system. For packaged tools maintenance is reduced because it is difficult to exchange indirect
dependencies, as they are woven into the portable package. For sharing and archiving individual

78

applications this nevertheless is a good solution if documentation is not crucial and the resulting
package is not supposed to be adapted.

From this overview of other migration approaches the main advantages of the PMF can be
derived.

• The migration scope is on individual processes, not the source system as a whole.

• Documentation of the process environment is generated by the framework.

• The framework operates on high level concepts, which improves the maintainability of
both model and target system (i.e. packages vs. bitlevel).

• The resulting target system can be adapted to custom requirements.

6.2 Future work

There is room for improvement in various aspects of the PMF. Some of them are shown in the
following. For the framework especially the level of detail in the documentation can be im-
proved, but also the necessary manual intervention should further be minimized. This especially
concerns the adapt and verification steps. Another improvement would be the separation of the
build module from the source system by storing the artifacts of the process environment in a
portable repository. These topics are explained further in this section. Furthermore, the proto-
type implementation can be extended by providing extraction scripts for more platforms.

There are several ways to improve the level of completeness of the model. Further types
of dependencies can be considered in the migration, and for already considered dependencies
the level of detail can be improved. Possible methods for both are described in the following.
Besides the artifacts that are absolutely necessary to successfully migrate a process (i.e. files,
packages), there are many other aspects of a process environment that are relevant to a process
and should be contained in a complete model of a business process. A few of them already have
been partially implemented, like web service detection, or the name of the user that executes the
process. Others are left open, like local database, or local service migration in general. Also,
environment variables and additional package repository sources should be transferred to the
target system in future versions. Environment variables are important e.g. because there may be
additional paths defined in the $PATH environment variable that makes executables available to
other applications without having to know its absolute path. Executables that have been installed
without using a package manager would need to be searched by name, which is slow and not
unambiguously. Therefore, the $PATH variable needs to be transferred to the source system
if it has been modified by a user and there are scripts or tools in the process that rely on this
modified data. In respect to the level of detail there are especially the source repositories of
packages that should be added to the model in further versions. Missing packages in the official
repositories have been an issue in the evaluation of the PMF. The support for handling additional
package repository sources is required to be able to install packages that are not available in the
default repositories of the distribution. Further information about packages that could be added
includes dependencies and other relations to other packages. Security related aspects should

79

also be stated in the process model. Examples include stating read/write/execute permissions
for owner, group, and others like in GNU/Linux file systems [85], as well as the owner of files.
Furthermore, for users the mapping to user groups should be documented.

For remote services the identification could be improved to retrieve more details about the
services. Future work towards including remote services in the migration could go in the direc-
tion of recording and playing back web service requests, as shown in [66].

To be able to map organizational aspects of business processes to the technical aspects that
is identified by the PMF, some kind of mapping functionality is required. This mapping is a
further step towards a maintainable model. Mappings can be done in the lower technical levels
by, for instance, mapping resources to their owning software, modeling the flow of the process,
i.e. the individual steps of the process, their interaction and so on. On the higher levels it would
be beneficial to automate the mapping of technical items to steps and artifacts of the business
process. All of the technical information that is extracted should be mapped to a higher level
description of the business process in future versions. Process mining frameworks could process
the data generated by the PMF further to archive such a mapping.

As for the extractors, static and dynamic extraction can be extended to capture further details.
For the static extractor, tailored analysis of binaries or data files of specific tools (e.g. Taverna
workflow files), can be applied. This helps in keeping the required executions of the process to a
minimum. Information that can be extracted includes dependencies, e.g. libraries and resources
for binaries in general, but also dependencies of specific file formats like image resources from
HTML files. Like described in [107], also the sources of software contain information about
runtime dependencies. An extension of the framework could analyze source code if available
and use them as further source of information. One of the challenges of such an approach is the
identification of software itself based on their source files only. For software that is not released
to the public, like in-house developed software, identification might not be possible.

There also are limitations to the current approach of analyzing the process execution trace.
Especially activities that rely on tools or services that are not spawned in the context of the
process are difficult to capture. An example of such would be a local database server, which
loads settings or data during startup. During process execution such settings may be read from
memory, and therefore are not captured by the prototype. A mitigation strategy could be to
schedule observation of this services and perform a restart of the system before performing the
process environment identification. Also, the incompleteness that arises from hardly being able
to cover all paths of possible process executions is an important issue. Resolving files to portable
packages helps mitigating this issue. For packages the implementation does not rely on the exact
list of detected files, the completeness of the installation of the software is ensured by package
managers. Also, extensions of the static extractor help in mitigating this issue. Techniques like
automated test data generation [71] can support generating a process execution script for the
dynamic extractor with a sufficient high level of branch coverage.

The detection of software that has not been installed using a package manager also is a
challenge. Although the prototype uses a simple heuristic to try to detect such software, it does
not represent them as software in the model, neither does it know which software this is. It just
represents the bunch of files that are supposed to belong to one application as one single directory
instead of a large amount of files. This is a very rough information, as it does not include real

80

name or version of the software, and also the source of such software, i.e. a link to a download
location or something similar is not provided. Further work could try to identify software by
a lookup of its files in a database like the National Software Reference Library (NSRL) [64],
which contains software and files that belong to this software, including hash values thereof.
Such lookup could be based on either the hash value of the content, or part of the file name.

To reduce the tradeoff between a concise model and an accurate description of resources the
refiners could be used to extend the model by e.g. adding additional information, but without
removing elements from the model. Instead relations between the new and the original elements
could be established. An example would be to add all files of portable applications, but also add
an portable application element which has a relation to all of its file elements. Such an approach
would be useful to keep the main artifacts of the process visible and still keep all details.

The adapt component is specific to concrete requirements, and many different implementa-
tions are possible. Some examples are provided in the following. In one scenario the purpose
of the migration of the process is to mitigate risks that arise from using obsolete software. In
such a scenario an adapt module can be implemented so that it is configurable with a list of soft-
ware tools or data formats and a rating of the risk they pose. Using this data the adapt module
could try to replace artifacts at risk with other artifacts that are more stable. In another scenario
cleanup and reestablishing understandability for a business process is the main purpose of mi-
grating the process. In such a case the adapt module can be used to merge the technical model
with a business view, thereby providing a holistic documentation of the business process.

Another aspect that can be optimized in future versions of the PMF is the dependence on
the source system. At the current state of the framework it is necessary to execute both the
capture and the build module on the source system. This is required because artifacts are di-
rectly transferred from source to target system. But this means that for executing the capture
and the build module always a snapshot of the source system needs to be available. This is a
limitation that can be mitigated by introducing a repository that acts as storage for all artifacts
that are required to redeploy the process without having access to the source system. To create
a repository, the capture module has to be adapted to place a copy of identified resources in a
directory. The build module needs to fetch the artifacts from this repository instead of the source
system. Besides data files also packages could be stored in this repository. This can be used if
packages are cached locally, can be downloaded from repositories, or if it is possible to create
redeployable packages of installed sources on the source system. Depending on the source and
the target operating system a conversion of the package might be necessary.

To support unattended automation of the migration process a validation module that executes
after the build module could be implemented. The VFramework [67] describes such an approach
for verification and validation of preserved business processes.

81

Bibliography

[1] Victor A. Abell. lsof(8): open files - Linux man page. http://linux.die.net/
man/8/lsof. [Online; accessed 9-September-2013].

[2] Jeroen Arnoldus, Mark van den Brand, A. Serebrenik, and J.J. Brunekreef. Code Gener-
ation with Templates. Atlantis studies in computing. Atlantis Press, 2012.

[3] Marzieh Bakhshandeh, Gonçalo Antunes, Rudolf Mayer, José Borbinha, and Artur Cae-
tano. A modular ontology for the enterprise architecture domain. In Proceedings of the
8th International Workshop on Vocabularies, Ontologies and Rules for the Enterprise and
Beyond (VORTE 2013), in conjunction with the 17th IEEE International EDOC Confer-
ence (EDOC 2013), Vancouver, British Columbia, Canada, September 9-13 2013.

[4] Ira D. Baxter. Branch coverage for arbitrary languages made easy. http://
www.semdesigns.com/Company/Publications/, 2002. [Online; accessed 3-
February-2014].

[5] Stew Benedict and Jeff Licquia. Dependency Checker Tool - Overview and Dis-
cussion. White Paper, http://www.linuxfoundation.org/publications/
compliance. [Online; accessed 16-October-2013].

[6] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. Automated Dis-
covery and Maintenance of Enterprise Topology Graphs. In Proceedings of the 6th
IEEE International Conference on Service Oriented Computing & Applications (SOCA
2013), pages 126–134. IEEE Computer Society Conference Publishing Services, Dezem-
ber 2013.

[7] Tegawendé F. Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and Laurent Réveil-
lère. Popularity, interoperability, and impact of programming languages in 100,000 open
source projects. In Proceedings of the IEEE 37th Annual Computer Software and Appli-
cations Conference (COMPSAC 2013), pages 303–312, July 2013.

[8] Dan Bode and Nan Liu. Puppet Types and Providers. O’Reilly & Associates, Inc., 2012.

[9] Matthew Booth. virt-p2v and virt-v2v. http://libguestfs.org/virt-v2v/.
[Online; accessed 20-June-2013].

83

http://linux.die.net/man/8/lsof
http://linux.die.net/man/8/lsof
http://www.semdesigns.com/Company/Publications/
http://www.semdesigns.com/Company/Publications/
http://www.linuxfoundation.org/publications/compliance
http://www.linuxfoundation.org/publications/compliance
http://libguestfs.org/virt-v2v/

[10] Daniel Pierre Bovet and Marco Cesati. Understanding the Linux Kernel. O’Reilly &
Associates, Inc., second edition, 2003.

[11] Kevin Braunsdorf and Matthew Bradburn. test(1): check file types/compare values -
Linux man page. http://linux.die.net/man/1/test. [Online; accessed 09-
March-2014].

[12] Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. Mining
configurable process models from collections of event logs. In Business Process Man-
agement, volume 8094 of Lecture Notes in Computer Science, pages 33–48. Springer
Berlin Heidelberg, 2013.

[13] Ariel N. Burton and Paul H. J. Kelly. Workload characterization using lightweight sys-
tem call tracing and reexecution. In Proceedings of the IEEE International Performance
Computing and Communications Conference (IPCCC ’98), pages 260–266, Feb 1998.

[14] Michele Bustamante. Learning WCF: A Hands-on Guide. X Windows Series. O’Reilly
Media, 2007.

[15] Mendel Cooper. Advanced bash-scripting guide 6.6 - an in-depth exploration of the art of
shell scripting. http://www.tldp.org/LDP/abs/abs-guide.pdf. [Online;
accessed 22-July-2013].

[16] Michelle Cotton, Lars Eggert, Joe Touch, Magnus Westerlund, and Stuart Cheshire. Inter-
net Assigned Numbers Authority (IANA) Procedures for the Management of the Service
Name and Transport Protocol Port Number Registry. RFC 6335, RFC Editor, August
2011.

[17] William Crawford, Jim Farley, and Prakash Malani. Java Enterprise in a Nutshell. In a
Nutshell (o’Reilly) Series. O’Reilly, 2005.

[18] Defense Information Systems Agency. Department of Defense Technical Architecture
Framework for Information Management. Volume 2. Technical Reference Model. Version
3.0., April 1996.

[19] Wei Deng, Fangming Liu, Hai Jin, Xiaofei Liao, Haikun Liu, and Li Chen. Lifetime or
energy: Consolidating servers with reliability control in virtualized cloud datacenters. In
Proceedings of the IEEE 4th International Conference on Cloud Computing Technology
and Science (CloudCom 2012), pages 18–25, Dec 2012.

[20] Anna Derezinska and Marian Szczykulski. Tracing of state machine execution in the
model-driven development framework. In Proceedings of the 2nd International Confer-
ence on Information Technology (ICIT 2010), pages 109–112, 2010.

[21] Eelco Dolstra, Merijn de Jonge, and Eelco Visser. Nix: A safe and policy-free system for
software deployment. In Proceedings of the 18th Conference on Systems Administration
(LISA ’04), Atlanta, USA, November 14-19, 2004, pages 79–92, Berkeley, CA, USA,
2004. USENIX Association.

84

http://linux.die.net/man/1/test
http://www.tldp.org/LDP/abs/abs-guide.pdf

[22] Eelco Dolstra and Armijn Hemel. Purely functional system configuration management.
In Proceedings of the 11th USENIX workshop on Hot topics in operating systems (HO-
TOS’07), pages 13:1–13:6, Berkeley, CA, USA, 2007. USENIX Association.

[23] Eelco Dolstra, Andres Löh, and Nicolas Pierron. Nixos: A purely functional linux distri-
bution. Journal of Functional Programming, 20(5-6):577–615, November 2010.

[24] Eelco Dolstra, Rob Vermaas, and Shea Levy. Charon: Declarative provisioning and de-
ployment. 1st International Workshop on Release Engineering (RELENG 2013), May
2013.

[25] Joseph Emeras, Bruno Bzeznik, Olivier Richard, Yiannis Georgiou, and Cristian Ruiz.
Reconstructing the software environment of an experiment with kameleon. In Proceed-
ings of the 5th ACM COMPUTE Conference: Intelligent & scalable system technologies
(COMPUTE ’12), pages 16:1–16:8, New York, NY, USA, 2012. ACM.

[26] Paul Tepper Fisher and Brian D. Murphy. Spring Persistence with Hibernate. Apresspod
Series. Apress, 2010.

[27] Martin Fowler. Inversion of control containers and the dependency injection pat-
tern. http://www.martinfowler.com/articles/injection.html, Jan-
uary 2004. [Online; accessed 11-December-2013].

[28] Sören Frey and Wilhelm Hasselbring. Model-based migration of legacy software systems
into the cloud: The cloudMIG approach. Softwaretechnik-Trends, 30(2), 2010.

[29] Sören Frey and Wilhelm Hasselbring. Model-based migration of legacy software systems
to scalable and resource-efficient cloud-based applications: The cloudmig approach. In
Proceedings of the First International Conference on Cloud Computing, GRIDs, and Vir-
tualization (Cloud Computing 2010), pages 155–158, Lisbon, Portugal, November 2010.

[30] Jeff Friesen. Beginning Java SE 6 Platform: From Novice to Professional. Empowering
productivity for the Java developer. Apress, 2007.

[31] Mike Gancarz. The UNIX philosophy. Digital Press, 1995.

[32] Chris Greamo and Anup Ghosh. Sandboxing and virtualization: Modern tools for com-
bating malware. Security Privacy, IEEE, 9(2):79–82, 2011.

[33] Anthony Green. libffi - A Portable Foreign Function Interface Library. https://
sourceware.org/libffi/. [Online; accessed 11-March-2014].

[34] Ed H. B. M. Gronenschild, Petra Habets, Heidi I. L. Jacobs, Ron Mengelers, Nico Rozen-
daal, Jim van Os, and Machteld Marcelis. The effects of freesurfer version, workstation
type, and macintosh operating system version on anatomical volume and cortical thick-
ness measurements. PLoS ONE, 7(6):e38234, 06 2012.

85

http://www.martinfowler.com/articles/injection.html
https://sourceware.org/libffi/
https://sourceware.org/libffi/

[35] W3C OWL Working Group. OWL 2 web ontology language document overview. Tech-
nical report, W3C, October 2009. http://www.w3.org/TR/2009/REC-owl2-overview-
20091027/.

[36] Chunqin Gu, Hui you Chang, and Yang Yi. Overview of workflow mining technology. In
Proceedings of the IEEE International Conference on Granular Computing, 2007. (GRC
2007), pages 347–347, 2007.

[37] Philip J. Guo. Frequently asked questions - CDE v1.0 documentation. http://www.
pgbovine.net/cde/manual/faq.html. [Online; accessed 24-June-2013].

[38] Philip J. Guo. CDE: Run any Linux application on-demand without installation. In Pro-
ceedings of the 25th international conference on Large Installation System Administration
(LISA’11), pages 2–2, Berkeley, CA, USA, 2011. USENIX Association.

[39] Philip J. Guo and Dawson Engler. CDE: Using system call interposition to automati-
cally create portable software packages. In Proceedings of the 2011 USENIX conference
on USENIX annual technical conference (USENIXATC’11), pages 21–21, Berkeley, CA,
USA, 2011. USENIX Association.

[40] Mitchell Hashimoto. Vagrant: Up and Running. O’Reilly Media, 2013.

[41] Martin Hepp, Pieter De Leenheer, Aldo de Moor, and York Sure, editors. Ontology Man-
agement, Semantic Web, Semantic Web Services, and Business Applications, volume 7 of
Semantic Web And Beyond Computing for Human Experience. Springer, 2008.

[42] Raphaël Hertzog and Roland Mas. The Debian Administrator’s Handbook: Debian
Squeeze from Discovery to Mastery. 2012.

[43] Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for OWL ontologies.
Semantic Web, 2(1):11–21, January 2011.

[44] IEEE. 003.0-1995 IEEE Guide to the POSIX R© Open System Environment (OSE) (Iden-
tical to ISO/IEC TR 14252). 1995.

[45] Yannis Kalfoglou, Bo Hu, Dave Reynolds, and Nigel Shadbolt. Capturing, representing
and operationalising semantic integration (CROSI) project - final report. Technical report,
October 2005.

[46] Shmuel Katz, Mira Mezini, Christine Schwanninger, and Wouter Joosen. Transactions
on Aspect-Oriented Software Development VIII. Lecture Notes in Computer Science /
Transactions on Aspect-Oriented Software Development. Springer, 2011.

[47] Wu Kehe, Wang Zhuo, Zhao Xing, and Ma Gang. Design and implementation of the
monitoring system for EJB applications based on interceptors. In Proceedings of the
3rd International Conference on Advanced Computer Theory and Engineering (ICACTE
2010), volume 4, pages V4–5–V4–9, Aug 2010.

86

http://www.pgbovine.net/cde/manual/faq.html
http://www.pgbovine.net/cde/manual/faq.html

[48] Michael Kerrisk. The Linux programming interface: A Linux and UNIX system program-
ming handbook. No Starch Press, 2010.

[49] Moazzam Khan, Zehui Bi, and John A. Copeland. Software updates as a security metric:
Passive identification of update trends and effect on machine infection. In Proceedings of
the Military Communications Conference 2012 (MILCOM 2012), pages 1–6, 2012.

[50] Robert J Knell. Introductory R: A Beginner’s Guide to Data Visualisation and Analysis
using R. March 2013. [Online; http://www.introductoryr.co.uk/; accessed
03-March-2014].

[51] Martin F. Krafft. The Debian System: Concepts and Techniques. No Starch Press Series.
No Starch Press, 2005.

[52] Henryk Krawczyk and Anna Mizgier. System to system migration for improving interop-
erability. In Proceedings of the 2nd International Conference on Information Technology
(ICIT 2010), pages 125–128, 2010.

[53] Spencer Krum, William Van Hevelingen, Ben Kero, James Turnbull, and Jeffrey McCune.
Pro Puppet. Apress, 2013.

[54] Jian Kuang, Jie Liu, and Jiali Bian. Implementing java programming language on RTEMS
operating system. In Proceedings of the IEEE Symposium on Electrical Electronics En-
gineering (EEESYM 2012), pages 90–93, 2012.

[55] Björn Könning, Christian Engelmann, Stephen L. Scott, and Al Geist. Virtualized en-
vironments for the harness high performance computing workbench. In Proceedings of
the 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing
(PDP 2008), pages 133–140, 2008.

[56] Byeongcheol Lee, Martin Hirzel, Robert Grimm, and Kathryn S. McKinley. Debug all
your code: Portable mixed-environment debugging. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages and Appli-
cations (OOPSLA ’09), pages 207–226, New York, NY, USA, 2009. ACM.

[57] Dustin Lee, Jeff Rowe, Calvin Ko, and Karl Levitt. Detecting and defending against web-
server fingerprinting. In Proceedings of the 18th Annual Computer Security Applications
Conference (ACSAC’02), pages 321–330, 2002.

[58] Raimondas Lencevicius, Edu Metz, and Alexander Ran. Tracing execution of software
for design coverage. In Proceedings of the 16th Annual International Conference on
Automated Software Engineering (ASE 2001), pages 328–332, 2001.

[59] Raimondas Lencevicius, Alexander Ran, and Rahav Yairi. Third eye - specification-
based analysis of software execution traces. In Proceedings of the 22nd International
Conference on on Software Engineering, (ICSE 2000), Limerick Ireland, June 4-11, 2000,
page 772, 2000.

87

http://www.introductoryr.co.uk/

[60] CodeSourcery LLC, Mark L. Mitchell, Alex Samuel, and Jeffrey Oldham. Advanced
Linux Programming. Landmark Series. Pearson Education, 2001.

[61] Robert Love. Linux System Programming: Talking Directly to the Kernel and C Library.
O’Reilly Media, 2013.

[62] Rudolf Mayer, Stefan Proell, and Andreas Rauber. On the applicability of workflow
management systems for the preservation of business processes. In Proceedings of the
9th International Conference on Digital Preservation (iPres 2012), 10 2012.

[63] Rudolf Mayer and Andreas Rauber. Towards time-resilient MIR processes. In Proceed-
ings of the 13th International Society for Music Information Retrieval Conference (ISMIR
2012), Porto, Portugal, October 8-12, 2012, pages 337–342. FEUP Edições, 2012.

[64] Steve Mead. Unique file identification in the national software reference library. Digital
Investigation, 3(3):138–150, 2006.

[65] Michael Menzel, Markus Klems, Hoang Anh Le, and Stefan Tai. A configuration crawler
for virtual appliances in compute clouds. In Proceedings of the IEEE International Con-
ference on Cloud Engineering (IC2E 2013), pages 201–209, 2013.

[66] Tomasz Miksa, Rudolf Mayer, and Andreas Rauber. Ensuring sustainability of web ser-
vices dependent processes. International Journal of Computational Science and Engi-
neering (IJCSE), 2013. Accepted for publication.

[67] Tomasz Miksa, Stefan Proell, Rudolf Mayer, Stephan Strodl, Ricardo Vieira, José
Barateiro, and Andreas Rauber. Framework for verification of preserved and redeployed
processes. In Proceedings of the 10th International Conference on Preservation of Digital
Objects (IPRES2013), Lisbon, Portugal, September 2–6 2013.

[68] Paolo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan, Aleksandra Nenadic, Ian
Dunlop, Alan Williams, Thomas Oinn, and Carole Goble. Taverna, reloaded. In Proceed-
ings of the 22nd International Conference on Scientific and Statistical Database Manage-
ment (SSDBM 2010), Heidelberg, Germany, June 30 - July 2, 2010, Heidelberg, Germany,
June 2010.

[69] Arturo Fernandez Montoro. Linux Mint System Administrator’s Beginner’s Guide. Packt
Publishing, Limited, 2012.

[70] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple execution
paths for malware analysis. In Proceedings of the IEEE Symposium on Security and
Privacy (SP ’07), pages 231–245, 2007.

[71] Tafline Murnane and Karl Reed. On the effectiveness of mutation analysis as a black box
testing technique. In Proceedings of the Australian Software Engineering Conference
(ASWEC 2001), pages 12–20, 2001.

88

[72] Yukikazu Nakamoto, Tatsunori Osaki, and Issei Abe. Proposing universal execution trace
framework for embedded software using QEMU. In Software Technologies for Future
Dependable Distributed Systems 2009, pages 173–178, 2009.

[73] Christopher Negus. Ubuntu Linux Toolbox: 1000+ Commands for Power Users. Wiley,
2013.

[74] Christopher Negus and Christine Bresnahan. Linux Bible. Bible. Wiley, 2012.

[75] Stephen Nelson-Smith. Test-Driven Infrastructure with Chef. O’Reilly Media, 2011.

[76] Thomas Damgaard Nielsen, Christian Iversen, and Philippe Bonnet. Private cloud config-
uration with MetaConfig. In Proceedings of the IEEE International Conference on Cloud
Computing (CLOUD 2011), pages 508–515, 2011.

[77] Oracle Corporation. MySQL 5.0 Reference Manual. http://dev.mysql.com/
doc/refman/5.0/en/. [Online; accessed 5-February-2014].

[78] Jonathan Oxer, Kyle Rankin, and Bill Childers. Ubuntu Hacks: Tips & Tools for Explor-
ing, Using, and Tuning Linux. O’Reilly Media, 2009.

[79] Jay Palat. Introducing Vagrant. Linux Journal, 2012(220):76–85, August 2012.

[80] Ricardo Pérez-Castillo, Ignacio García Rodríguez de Guzmán, and Mario Piattini. Knowl-
edge discovery metamodel-ISO/IEC 19506: A standard to modernize legacy systems.
Computer Standards & Interfaces, 33(6):519–532, 2011.

[81] David S. Peterson, Matt Bishop, and Raju Pandey. A flexible containment mechanism
for executing untrusted code. In Proceedings of the 11th USENIX Security Symposium,
pages 207–225, San Francisco, CA, USA, August 2002. The USENIX Association.

[82] Puppet Labs. Directory creation fails if parent directory does not exist. http:
//projects.puppetlabs.com/issues/86. [Online; accessed 9-March-2014].

[83] R Core Team. Writing R Extensions, Version 3.0.3 (2014-03-06). http://cran.
r-project.org/doc/manuals/r-release/R-exts.pdf. [Online; accessed
9-March-2014].

[84] Dave Reynolds, Carol Thompson, Jishnu Mukerji, and Derek Coleman. An assessment of
RDF/OWL modelling. Technical Report HPL-2005-189, Hewlett Packard Laboratories,
October 10 2005.

[85] Arnold Robbins. Unix in a Nutshell. In a Nutshell. O’Reilly Media, 2008.

[86] Jonathan B. Rosenberg. How Debuggers Work: Algorithms, Data Structure, and Archi-
tecture. Wiley computer publishing. John Wiley, 1996.

89

http://dev.mysql.com/doc/refman/5.0/en/
http://dev.mysql.com/doc/refman/5.0/en/
http://projects.puppetlabs.com/issues/86
http://projects.puppetlabs.com/issues/86
http://cran.r-project.org/doc/manuals/r-release/R-exts.pdf
http://cran.r-project.org/doc/manuals/r-release/R-exts.pdf

[87] Valentina Salapura. Cloud computing: Virtualization and resiliency for data center com-
puting. In Proceedings of the IEEE 30th International Conference on Computer Design
(ICCD 2012), pages 1–2, 2012.

[88] Joseph Siefers, Gang Tan, and Greg Morrisett. Robusta: taming the native beast of the
JVM. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, Proceed-
ings of the ACM Conference on Computer and Communications Security 2010, pages
201–211. ACM, 2010.

[89] Aleksandar Skendzic, Bozidar Kovacic, and Igor Jugo. Decreasing information technol-
ogy expenses by using emulators on windows and linux platforms. In Proceedings of the
34th International Convention of Information Communication Technology, Electronics
and Microelectronics (MIPRO 2011), pages 1387–1390, 2011.

[90] Software in the Public Interest, Inc. The Debian GNU/Linux FAQ. http://www.
debian.org/doc/manuals/debian-faq/. [Online; accessed 16-July-2013].

[91] Steffen Staab and Rudi Studer. Handbook on Ontologies. Springer Publishing Company,
Incorporated, 2nd edition, 2009.

[92] Stanford Center for Biomedical Informatics Research (BMIR). Protégé. http://
protege.stanford.edu/. [Online; accessed 11-July-2013].

[93] Dafydd Stuttard and Marcus Pinto. The Web Application Hacker’s Handbook: Finding
and Exploiting Security Flaws. 2011.

[94] The Open Group. TOGAF Version 9: A Pocket Guide. TOGAF Series. Van Haren Pub-
lishing, 2009.

[95] The Open Group. ArchiMate 2. 0 Specification. The Open Group. Van Haren Publishing,
2012.

[96] TIMBUS Consortium. D4.3: Dependency Models Iter. 2, WP 4 – Processes and Meth-
ods for Digitally Preserving Business Processes. http://timbusproject.net/
resources/publications/public-project-deliverables. [Online; ac-
cessed 01-August-2013].

[97] TIMBUS Consortium. D4.5: Business Process Contexts, WP 4 – Processes and Meth-
ods for Digitally Preserving Business Processes. http://timbusproject.net/
resources/publications/public-project-deliverables. [Online; ac-
cessed 8-April-2014].

[98] TIMBUS Consortium. D8.1: Use Case Definition and Digital Preserva-
tion Requirements, WP 8 – Industrial Project 2: Civil Engineering Infras-
tructure. http://timbusproject.net/resources/publications/
public-project-deliverables. [Online; accessed 09-March-2014].

90

http://www.debian.org/doc/manuals/debian-faq/
http://www.debian.org/doc/manuals/debian-faq/
http://protege.stanford.edu/
http://protege.stanford.edu/
http://timbusproject.net/resources/publications/public-project-deliverables
http://timbusproject.net/resources/publications/public-project-deliverables
http://timbusproject.net/resources/publications/public-project-deliverables
http://timbusproject.net/resources/publications/public-project-deliverables
http://timbusproject.net/resources/publications/public-project-deliverables
http://timbusproject.net/resources/publications/public-project-deliverables

[99] Ralf Treinen and Stefano Zacchiroli. Description of the CUDF Format. CoRR,
abs/0811.3621, 2008.

[100] Unsigned Integer Limited. Distrowatch.com. http://distrowatch.com/. [On-
line; accessed 3-September-2013].

[101] Wil M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement of
Business Processes. Springer, 2011.

[102] Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: Dis-
covering process models from event logs. IEEE Transactions on Knowledge and Data
Engineering, 16(9):1128–1142, 2004.

[103] Robbie Vanbrabant. Google Guice: Agile Lightweight Dependency Injection Framework
(Firstpress). APress, 2008.

[104] VMware, Inc. VMware vCenter Converter Standalone User’s Guide. http://www.
vmware.com/pdf/convsa_50_guide.pdf. [Online; accessed 25-February-
2014].

[105] Tzu-Yen Wang, Chin-Hsiung Wu, and Chu-Cheng Hsieh. A virus prevention model based
on static analysis and data mining methods. In Proceedings of the IEEE 8th International
Conference on Computer and Information Technology Workshops (CIT Workshops 2008),
pages 288–293, July 2008.

[106] Brian Ward. How Linux Works: What Every Superuser Should Know. No Starch Press
Series. No Starch Press, 2004.

[107] Elisabeth Weigl, Johannes Binder, Stephan Strodl, Daniel Draws, and Andreas Rauber.
A framework for automated verification in software escrow. In Proceedings of the 10th
International Conference on Preservation of Digital Objects (IPRES 2013), pages 95–
103, 2013.

[108] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David Withers,
Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic, Paul Fisher, Jiten
Bhagat, Khalid Belhajjame, Finn Bacall, Alex Hardisty, Abraham Nieva de la Hidalga,
Maria P. Balcazar Vargas, Shoaib Sufi, and Carole Goble. The taverna workflow suite:
designing and executing workflows of web services on the desktop, web or in the cloud.
Nucleic Acids Research, 2013.

[109] Bing Wu, Deirdre Lawless, Jesus Bisbal, Jane Grimson, Vincent Wade, D O’Sullivan,
and Ray Richardson. Legacy systems migration - a method and its tool-kit framework. In
Proceedings of the joint Asia Pacific Software Engineering Conference (APSEC ’97) and
International Computer Science Conference (ICSC ’97), pages 312–320, 1997.

[110] Lei Wu, Houari Sahraoui, and Petko Valtchev. Coping with legacy system migration
complexity. In Proceedings of the 10th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS 2005), pages 600–609, 2005.

91

http://distrowatch.com/
http://www.vmware.com/pdf/convsa_50_guide.pdf
http://www.vmware.com/pdf/convsa_50_guide.pdf

[111] Xiong Xiaobing, Shu Hui, Chen Jianmin, and He Yongjun. Wetrp: A platform for record-
ing of windows program execution traces. In Proceedings of the International Symposium
on Computer Science and Computational Technology (ISCSCT ’08), volume 1, pages
621–625, 2008.

[112] Li Yuanyuan, Xiao Peng, and Deng Wu. The method to test linux software performance.
In Proceedings of the International Conference on Computer and Communication Tech-
nologies in Agriculture Engineering (CCTAE 2010), volume 1, pages 420–423, 2010.

[113] Amirreza Zarrabi, Khairulmizam Samsudin, and Amin Ziaei. Dynamic process migration
framework. In Proceedings of the International Conference of Information and Commu-
nication Technology (ICoICT 2013), pages 410–415, 2013.

[114] Gong Zhang and Ling Liu. Why do migrations fail and what can we do about it? In
Proceedings of the 25th international conference on Large Installation System Adminis-
tration (LISA’11), pages 25–25, Berkeley, CA, USA, 2011. USENIX Association.

[115] Hongyu Zhang, Jeremy S. Bradbury, James R. Cordy, and Juergen Dingel. Using source
transformation to test and model check implicit-invocation systems. Science of Computer
Programming, 62(3):209 – 227, 2006.

[116] Yanjun Zuo. Moving and relocating: A logical framework of service migration for soft-
ware system survivability. In Proceedings of the IEEE 7th International Conference on
Software Security and Reliability (SERE 2013), pages 139–148, 2013.

92

	Introduction
	Related Work
	Migration
	Process discovery
	Provisioning
	Virtualization
	Enterprise architecture modeling
	Summary

	Design
	Process environment model
	Local artifacts
	System information
	Services

	Capture
	Dynamic Extractor
	Static Extractor
	Manual Extractor
	Comparison of the extractors
	Refinement

	Adapt
	Knowledgebase
	ManualSelection
	AutomatedSelection

	Build
	ConfigurationBuilder
	VirtualMachineBuilder

	Verification
	Summary

	Implementation
	Architecture
	Data Model
	Capturing
	DynamicExtractor
	StaticExtractor
	ManualExtractor
	Refiners
	Usage
	Summary

	Adapt
	Build
	ConfigBuilder
	MachineBuilder
	Usage
	Summary

	Verification
	Implementation details
	Summary

	Evaluation
	Musical genre classification
	LNEC
	Summary

	Summary and future work
	Summary
	Future work

	Bibliography

