

Selecting Preservation Strategies for Web Archives

Stephan Strodl, Andreas Rauber

Department of Software Technology and Interactive Systems
Vienna University of Technology

Motivation

- web archive systems store enormous amount of data
- no guarantee to reopen in 5, 10 or 20 years
- useless, waste of time & money?
- digital preservation
- special challenges of web archives
 - amount of data
 - heterogeneity of file formats
 - quality of data (wrong mime type)
 - crawler specific characteristics of data collection

Motivation

- different strategies for preservation of web archives
 - original
 - migration (ASCII, picture, video clip)
 - standardization (minimal HTML)
- how do you know what is most suitable for your needs?
- what are your requirements?
- how do you measure and evaluate the results of the preservation strategies?

Goals

- motivate and allow operators of web archives to precisely specify their preservation requirements (future usage of web archive)
- provide structured model to describe and document these
- create defined setting to evaluate preservation strategies
- document outcome of evaluations to allow informed, accountable decision

Utility Analysis

- cost-benefit analysis model
- used in the infrastructure sector
- adapted for digital preservation needs
- 14 steps grouped into 3 phases
- framework in cooperation of Vienna University of Technology and National Archive Netherlands

Process Overview

Define basis

- types of records (e.g. Java applets, audio streams, Flash, ..)
- what are the essential characteristics?
 - content, context(!), structure, form and behaviour
- specific task of web archives (e.g. e-gov vs. historic websites)
- requirements
 - metadata
 - authenticity, reliability, integrity, usability

FACILITY OF INCORNATION

Choose objects/records

- choose sample records
 - a test-bed repository
 - from own collection
- choice of records affects the evaluation

FACULTY OF !NFORMATICS

Identify objectives (1)

- list all requirements and goals in tree structure
- start from high-level goals
- break down to fine-granular, specific criteria

Identify objectives (2)

- usually 4 top-level branches:
 - object characteristics (content, metadata ...)
 - record characteristics (context, relations, ...)
 - process characteristics (scalability, error detection, ...)
 - costs (set-up, per object, HW/SW, personnel, ...)
- define requirements for web archives
 - preserve picture, video clip, text content, interactivity
 - search, links, metadata

Identify objectives (3)

- objective tree with several hundred leaves
- usually created in workshops, brainstorming sessions
- re-using branches from similar institutions, collection holdings, ...

Assign measurable units

- ensure that leaf criteria are objectively (and automatically) measurable
 - seconds/Euro per object
 - bits color depth
 - **—** ...
- subjective scales where necessary
 - diffusion of file format
 - amount of (expected) support
 - ...

Set importance factors

- set importance factors
- not all leaf criteria are equally important
- set relative importance of all siblings in a branch
- weights are propagated down the tree to the leaves

Choose alternatives

- list and formally describe the preservation action possibilities to be evaluated
 - tool, version
 - operating system
 - parameters
- alternatives for web archives
 - original
 - migration (ASCII, picture, video clip)
 - standardization (minimal HTML)

Go/No-Go

- deliberate step for taking a decision whether it will be useful and cost-effective to continue the procedure, given
 - the resources to be spent (people, money)
 - the expected result(s).
- review of the experiment/ evaluation process design so far
 - e.g. is the design correct and optimal?
 - is the design complete (given the objectives).

Specify resources

- detailed design and overview of the resources
 - human resources (qualification, roles, responsibility, ...)
 - technical requirements (hardware and software components)
 - time (time to run experiment,...)
 - cost (costs of the experiments,...)

Develop experiment

- formulate for each experiment a detailed plan
 - includes build and test software components
 - mechanism to capture the result
 - workflow/sequence of activities

Run experiment

- run experiment with the previously defined sample records
- the whole process need to be documented
- e.g. convert html file to pdf

FACULTY OF INCODARATION

Evaluate experiment

- evaluate how successfully the requirements are met
- measure performance with respect to leaf criteria in the objective tree
- document the results

Transform measured values

- measures come in seconds, euro, bits, goodness values,...
- need to make them comparable
- transform measured values to uniform scale
- transformation tables for each leaf criterion
- linear transformation, logarithmic, special scale
- scale 1-5 plus "not-acceptable"

Aggregate values

- multiply the transformed measured values in the leaf nodes with the leaf weights
- sum up the transformed weighted values over all branches of the tree
- creates performance values for each alternative on each of the sub-criteria identified

Consider results

- rank alternatives according to overall utility value at root
- performance of each alternative
 - overall
 - for each sub-criterion (branch)
- allows performance measurement of combinations of strategies
- final sensitivity analysis against minor fluctuations in
 - measured values
 - importance factors

Digital Pres. Utility Analysis Tool

Utility Analysis

VII. Aggreate Alternatives Navigation • 1.) Create new Project 3.10 ■ MPEG . 2.) Define Objective Tree 3.17 DPS • 3.) Weight Criteria File Char. 1.70 . 4.) Define Alternatives • 5.) Evaluate Alternatives 1.77 • 6.) Transformation Table 0.98 ■ Appearance · 7.) Aggregate Alternatives • 8.) Final Ranking 1.05 ■ Structure 0.67 References Audio Data 0.67 show download ■ Behaviour 0.05 Video Data show download 0.05 Documents Process Char. 0.76 show download 0.76 Help ■ Integrity 0.26 • The GO tree 0.26 • The Utility Analysis · The Sensitivity Analysis ■ Stability 0.32 0.32 0.08 ■ Scalability 0.08 ■ Usability 0.10 0.10 □ Cost 0.64 0.64 0.26 TT 1 1 1 1 1 1

Step6

Step8

alternative

aggregation

depth 2 💌

vertical

join

show

horizontal

U-Matic

MPEG

DPS

sum

Benefits

- a simple, methodologically sound model to specify and document requirements
- repeatable and documented evaluation for informed and accountable decisions
- set of templates to assist institutions
- generic workflow that can easily be integrated in different institutional settings

Conclusion

- important to consider preservation for web archives
- web archive suitable for combination of strategies
- need a profound knowledge of future use of web archives

Questions?

FACULTY OF !NFORMATICS