
  
 

Policy-Driven Repository Interoperability: 
Enabling Integration Patterns for iRODS and Fedora

David Pcolar 
Carolina Digital Repository (CDR) 

UNC Chapel Hill 
david_pcolar@unc.edu 

Daniel W. Davis 
Cornell Information Sciences (CIS) 

DuraSpace Affiliate 
dwdavis@cs.cornell.edu 

Bing Zhu 
Data Intensive Cyber Environments (DICE) 

University of California: San Diego 
bizhu@ucsd.edu 

Alexandra Chassanoff 
School of Information & Library 

Science (SILS) 
UNC Chapel Hill 

achass@email.unc.edu 

Chien-Yi Hou 
Sustainable Archives & Leveraging 

Technologies (SALT) 
UNC Chapel Hill 
chienyi@unc.edu 

Richard Marciano 
Sustainable Archives & Leveraging 

Technologies (SALT) 
UNC Chapel Hill 

richard_marciano@unc.edu 

ABSTRACT 

Given the growing need for cross-repository integration 
to enable a trusted, scalable, open and distributed 
content infrastructure, this paper introduces the Policy-
Driven Repository Interoperability (PoDRI) project 
investigating interoperability mechanisms between 
repositories at the policy level. Simply moving digital 
content from one repository to another may not capture 
the essential management policies needed to ensure its 
integrity and authenticity. Platform-independent, policy-
aware object models, including policy expressions, and 
a distributed architecture for policy-driven management 
are fundamental building blocks of a sustainable access 
and preservation infrastructure. This project integrates 
iRODS and Fedora to demonstrate such an 
infrastructure. Using iRODS and its rules engine, 
combined with Fedora’s rich semantic object model for 
digital objects, provides the basis for implementing a 
policy-driven test-bed. Using a policy-driven 
architecture is an essential part of realizing a fully 
model-driven repository infrastructure capable of 
decoupling the permanent digital content from the 
constantly evolving information technology used to 
support them. 

1. INTRODUCTION 

This paper introduces the Policy-Driven Repository 
Interoperability (PoDRI) project investigating 
interoperability between repositories at the policy level. 
PoDRI is led by the University of North Carolina at 
UNC, with units ranging from SALT (Sustainable 
Archives & Leveraging Technologies), RENCI 
(Renaissance Computing Institute), SILS (School of 
Information and Library Science), and the 
Libraries/CDR (Carolina Digital Repository).  Key 
partners include Bing Zhu at UCSD (DICE, Data 
Intensive Cyber Environments) and Daniel Davis at 
DuraSpace (combining DSpace and Fedora Commons) 
and Cornell Information Sciences.  The project is 
sponsored by an IMLS National Leadership grant and is 
motivated by the growing need to create a scalable, open 
and distributed infrastructure that provides durable, 
trusted access and management of our valuable digital 
content of all kinds (e.g. research data sets, documents, 
video, metadata). This problem is well described in the 

NSF’s Cyberinfrastructure Vision for the 21st Century 
[14]. 

 
Simply replicating digital content from one repository, 
with or without any associated metadata, may not 
capture the essential management policies that ensure 
integrity and authenticity, a critical requirement for 
establishing a trust model. “A policy is typically a rule 
describing the interactions of actions that take place 
within the archive, or a constraint determining when and 
by whom an action may be taken [8].” Typical policies 
include those that control data ingestion, administration, 
preservation, access procedure, authentication and 
authorization. 

A distributed policy management architecture is an 
essential component in realizing a trust mechanism for 
repository interoperability. The PoDRI project 
investigates the requirements for policy-aware 
interoperability and demonstrates key features needed 
for its implementation. The project is focused on 
integrating object models, including interoperable policy 
expressions, and a policy-aware distributed architecture 
that includes both repositories and middleware services. 

Our overarching design paradigm is that permanent 
digital content must be decoupled from the constantly 
evolving infrastructure supporting it. Increasingly, the 
information infrastructure will be a part of a global, 
interoperable, heterogeneous, distributed “system-of-
systems”. Model-driven methods will be essential to 
make the management of such an infrastructure feasible; 
policy-driven methods are a core, enabling part of 
governance mechanisms needed to ensure control and 
preservation of our permanent digital content. 

The PoDRI project addresses the following research 
problem: What is the feasibility of repository 
interoperability at the policy level? Research 
questions to be addressed are: 

 
• Can a preservation environment be assembled from 

two or more existing repositories? 
• Can the policies of the federation be enforced across 

repositories? 
• Can policies be migrated between repositories? 
• What fundamental mechanisms are needed within a 

repository to implement new policies? 
 

iRODS (integrated Rule-Oriented Data System) 
[12,14] and the Fedora Repository [7,9] will be used as 
representative open source software to demonstrate the 

© 2010 Austrian Computer Society (OCG). 
 



  
 
PoDRI architecture. Combining iRODS and Fedora 
enables use of the best features of both products for 
building sustainable digital repositories. iRODS 
provides an integrated rule engine, distributed virtual 
storage, the iCAT1, and micro-services2. Fedora offers 
rich semantic object modeling for digital objects, 
extensible format-neutral metadata and a flexible service 
mediation mechanism.  

2. RATIONAL FOR IRODS-FEDORA 
INTEGRATION 

Early in 2006, the DART project [3] created an SRB 
storage interface for Fedora that allows all Fedora 
digital content, including Fedora Digital Objects (FDO) 
and their Datastreams, to be stored in SRB distributed 
repositories. Similarly, a storage module was developed 
by Aschenbrenner and Zhu [1] for iRODS. Using the 
Fedora-iRODS storage module, iRODS can act as a 
back-end for Fedora and, thus, provide opportunities for 
Fedora to use iRODS capabilities such as virtual 
federated storage, micro-services and the rules engine. 

iRODS offers an appealing platform for 
implementing a distributed policy-driven management 
architecture. The integrated rules engine can be used to 
invoke a range of rules including policy expressions 
and, through the use of micro-services, can execute code 
for those policies in a distributed environment. Rules 
can act as simple workflows performing a sequence of 
pre-defined actions. iRODS rules can be executed 
explicitly, triggered by external conditions or events and 
executed at timed intervals. For example, iRODS can 
implement a replication policy, geographically 
disbursing file copies across the network. Micro-
services can be written for feature extraction, format 
migration, integrity checks and other preservation 
services. 

While used to efficiently hold and query structured 
data and metadata, the iCAT relational database is not 
optimal for handling the complex, variable metadata 
needed for preservation and curation. Indeed, any 
relational database will require considerable coding to 
support complex metadata schemas, making the use of 
unstructured data (files) possibly in combination with 
XML databases or semantic triplestores as a more 
flexible alternative [10].  

Fedora is file-centric; all Fedora data and metadata is 
stored in files [6]. The Fedora Digital Object (FDO), a 
kind of compound digital object, provides the 
organizing metadata used to “make sense” of itself and 
other resources. It uses the FOXML schema to 
encapsulate metadata, and to reference other files or web 
resources. Since the FDO is a file, it can be stored in 
iRODS like any other file. 

                                                             
1 iCAT is the metadata catalog in iRODS that stores metadata 
about all objects in iRODS in relational databases. 
2 Microservices are function snippets or executables that can be 
used to perform a distinct task using well-defined input 
information structures.  

Digital content (or user-defined metadata) managed 
by the FDO is stored in one or more separate files — 
each registered in a FOXML element called a 
Datastream. Datastreams can also capture relationships 
to other objects and external resources. Users may add 
metadata to the FDO or add additional metadata 
Datastreams (to be stored like any other file).  

This means, however, that metadata is stored in an 
unstructured format, often XML or RDF, and requires 
external indices to support querying by search engines, 
semantic triplestores, XML databases, and the iCAT. 
Fedora’s approach provides a format neutral, extensible 
framework for representing data and metadata. 

The rich metadata environment provided by the FDO 
can augment the structured metadata found in the iCAT. 
Metadata can be copied from the iCAT into a more 
easily preserved unstructured file format, as 
demonstrated by Bing Zhu and colleagues [17]. Critical 
data can be copied from the FDO, or as user metadata 
files (Datastreams), so they can be queried from the 
iCAT. With suitable metadata both the iCAT and the 
Fedora repository could be entirely rebuilt from files if 
the indices were lost or corrupted. 

Fedora has a set of “front-end” APIs that provide the 
means to ingest and manipulate FDOs (CRUD). iRODS 
is capable of calling these APIs to perform operations 
from micro-services. Fedora also provides an extensible 
mechanism to add custom functionality called 
“services” that are executed within the context of the 
FDO. Services act as extensions to the “front-end” API 
of the object. Fedora mediates the service request calling 
the appropriate “back-end” functionality. The back-end 
functionality can be a Web service, in this case 
potentially provided by iRODS. Custom Fedora services 
provide another mechanism to interact with iRODS. 
Since iRODS can interact with Fedora’s “front-end” 
APIs, “back-end” services, and the Fedora-iRODS 
storage module, one may picture iRODS wrapping 
around Fedora. 

3. ENABLING A POLICY-DRIVEN 
MANAGEMENT ARCHITECTURE 

To demonstrate distributed policy-driven management 
architecture, we plan to implement the following 
operational scenarios: 

 
• Integrate views of content, original arrangement 

(hierarchy) and metadata 
• Create an audit trail of policy execution events and 

related provenance information 
• Manage policies through Fedora  
• Show iRODS invoking policies from Fedora 

 
Both iRODS and Fedora fully support distributed 

computing installations. In effect, both products can be 
characterized as virtualization middleware for storage, 
access and service execution. The products, however, 
have very different operational paradigms which must 
be accommodated but provide complementary strengths 
that can be exploited when used together. 



  
 

The virtual file system in iRODS makes it the logical 
choice for all storage (including FDOs). In addition, the 
iRODS rules engine and micro-services provide an 
effective means for orchestrating services such as policy 
invocation. Fedora’s capabilities, on the other hand, are 
especially powerful for handling variable content and 
different metadata formats, for flexibly relating 
resources, facilitating presentation (manifestation of 
content), and its mediation capabilities make it 
appealing in building systems that are “designed for 
change.”  

A policy-driven management architecture requires 
that policy expressions be persistent. Fedora could be 
used to create FDOs containing policy expressions, 
which would subsequently be loaded into machine-
actionable form and invoked as iRODS rules. Since 
policies are part of an object’s provenance, Fedora can 
relate the policy FDOs to content items in which they 
apply. Because policy invocation will be performed by 
iRODS, audit records of the execution must also be 
created by iRODS. Subsequently, iRODS will store the 
execution records back into Fedora as FDOs, linking 
them to the FDOs containing the content and policy 
expressions.  

iRODS does not currently generate audit data in a 
format compliant with the PREMIS preservation 
metadata schema. The CDR, however, implements 
auditing of objects via a PREMIS.XML file for each 
iRODS data object. This method may not be sustainable 
for repositories containing millions of objects. 
Preservation activities, such as replication or fixity 
checks, generate large amounts of log entries over time 
and potentially exceed the byte size of the original 
object. Discussions between CDR and iRODS 
developers suggest multiple methods for retaining and 
aggregating various component logs for translation into 
PREMIS-compliant events. Do we continue to store 
these events with the individual objects or as an 
aggregate? Do we generate specific PREMIS 

information upon request? In the case of replicas 
residing on disparate nodes in a data grid, auditable 
events will occur that differ from those affecting the 
original object. How do we reconcile these events in a 
singular view of the object?  

Users and user applications will still need to interact 
with Fedora or iRODS directly. This is particularly true 
of research (grid) applications with large datasets. Select 
metadata will need to be duplicated in both products to 
access content, to represent relationships, and to 
preserve integrity and authenticity. Direct interaction by 
users or user applications with either Fedora or iRODS 
will require both products to synchronize or update 
metadata. 

These interactions may trigger policy invocations. 
For example, Fedora may trigger policy invocation 
indirectly when interacting with a file (CRUD) or 
directly through a Fedora custom service. Conversely, 
iRODS’ micro-services can call Fedora services to 
provide feedback in the system.  

A more comprehensive “Concept of Operations” 
document will be prepared as part of the PoDRI project.  
The following set of questions is drawn from our current 
understanding of the operational scenarios: 

 
• How will the collection structure be represented in the 

two products? 
• How will Fedora be initialized for existing content in 

iRODS? 
• How will Fedora be informed of content or metadata 

changes initiated directly in iRODS? 
• How can content or metadata from Fedora be accessed 

by iRODS services? 

4. ENABLING USE CASES 

Five enabling use cases have been identified for the 
Fedora-iRODS integration. These use cases are: 

 

 
Figure 1: New Content Ingest via Fedora 



  
 
1. New content ingest via Fedora 
2. New content ingest via iRODS  
3. Bulk registration from iRODS into Fedora 
4. Update of content or metadata via Fedora 
5. Update of content or metadata via iRODS 

 
We introduce each of these use cases in this paper. 

While they do not by themselves represent policy 
management operations, they are prerequisites for 
enabling policy-driven operations and represent 
demonstrations of policy interoperability between 
repositories. The initial implementation work is focused 
on uses cases one and two together with the storage 
plug-in, a key enabler, described in Section 5.1. 

4.1. New Content Ingest via Fedora 

Current users of Fedora will want to continue ingesting 
into Fedora. Users are also likely to use Fedora features 
to add and relate rich metadata including policy, 
provenance and authenticity information. As shown in 
Figure 1, when new content is ingested into Fedora, it is 
able to capture the metadata needed for its operation. 
Digital content (or user-defined metadata) is either 
pulled in by Fedora or pushed to Fedora and stored in 
individual files. The file containing the FDO (FOXML) 
and the content files are subsequently stored in iRODS 
with no permanent storage directly managed by Fedora. 

Selected metadata is collected by Fedora during the 
ingest process and stored in an internal system index 
implemented using a relational database. This database 
is used only to speed up access to content or bindings to 
services (formerly called disseminators). Optionally, 
metadata or notifications can be sent to index services 
such as semantic triplestores, search engines and OAI-
PMH harvesters. 

The Carolina Digital Repository (CDR) is using 
Solr/Lucene as the indexing and search engine for 
discovery of ingested content. Metadata is extracted 
during the ingest process from MODS and FOXML 
files. 

Objects ingested via Fedora and stored in iRODS do 
not, by default, retain the logical tree structure of the 
original file system. Instead, CDR preserves the 
hierarchal structure of the file system via relations in the 
RDF triple store. 

The arrangement of objects is achieved by creating 
FDOs representing the parent and child. The 
relationship is recorded in RDF (within the RELS-EXT 
Datastream) using the “isMemberOf” relation asserted 
in the child to the parent. The obverse relation 
“hasMember” is implied and could be stated explicitly 
in the parent. These two relations provide a way to build 
a hierarchical structure for all objects, collections and 
files. In Fedora, these relations form a “graph” and 
objects may participate in any number of graphs using 
other relations and, therefore, are not limited to a single 
hierarchy. Relationship information can be accessed by 
introspecting on the FDO or the relations can be indexed 
into a RDF triplestore [16] and queried by applications 
to extract a graph for navigating from parent to children 
as people usually do for a tree structure. Similar 
methods can be used to navigate any relationship graph. 

How will the metadata in iRODS be updated in this 
use case? Two alternatives being considered are: (1) call 
a Fedora custom service to update the iCAT; (2) when 
the FOXML file is ingested, a monitoring rule can 
trigger an iRODS micro-service to introspect on the 
FDO to extract the metadata. 

 
Figure 2: New Content Ingest via iRODS 



  
 

4.2. New Content Ingest via iRODS 

Current iRODS users will likely want to continue to use 
iRODS directly to store data objects, particularly in 
research settings where direct access to storage is 
desired. The digital content (data object) is typically 
ingested into iRODS as a file operation. In iRODS, the 
hierarchical relation of a data object and its ancestors 
are encoded and described explicitly in its global object 
name.  Two questions arise from this scenario.  First, 
how will Fedora be notified of arrival of the new data 
object? Second, how will an analog component to its 
iRODS hierarchy be represented in Fedora? 

As depicted in Figure 2, a utility is needed to register 
iRODS files into Fedora. A micro-service could call this 
utility when triggered by a monitoring rule on the 
storage operation which would create the FDO for the 
data object and ingest it into Fedora.  The micro-service 

can be deployed as a rule under the iRODS rule event, 
‘acPostProcForPut’. Once this rule is activated in an 
iRODS server, the micro-service can be triggered after 
each new iRODS data object is created in a specified 
collection in the iRODS Content Store (see iRODS 
Storage Module). It will create pre-ingest FOXML for 
the new data object, querying the iCAT for additional 
metadata as needed. Within the FOXML, it will create a 
Datastream containing a reference to the location of the 
data object within iRODS. It will then ingest the 
FOXML using Fedora’s API-M to create the FDO. This 
rule is activated once placed in the rule configuration 
file of an iRODS server. It will monitor all file activities 
in the iCAT catalog and will create an FDO for any 
newly created iRODS file. 

When using iRODS for back-end storage, all FDOs 
and Datastreams are stored in iRODS as files in one of 
two collections: FOXML Object Store and iRODS 
Content Store. Therefore, users can directly access the 

 
Figure 4: Update Content or Metadata via Fedora 

 

 
Figure 3: Bulk Registration into Fedora 

 



  
 
files containing Fedora metadata through the iRODS 
interface. On the other hand, files stored in iRODS, 
whether for an FDO or a Datastream, have both an 
independent set of iRODS system metadata as well as a 
set of user-defined metadata. The system metadata 
contains important information for each replica of an 
iRODS file, including the file’s location, storage type, 
audit trail, and associated iRODS rules. The two sets of 
metadata can be represented as external Datastreams in 
FOXML and generated dynamically when accessed 
using the Fedora-iRODS storage module. 

As described above, Fedora uses RDF relations to 
describe the arrangement of objects. This requires the 
creation of FDOs representing each hierarchical level 
which has the advantage of enabling the participation of 
iRODS in the semantic network functionality provided 
by Fedora. Since iRODS can create a virtual hierarchy, 
it may not be desirable to instantiate corresponding 
FDOs. Users can create custom Datastreams as “finding 
aids”; the virtual hierarchy can then be encoded using 
RDF or any other desired format. Similar to iRODS, 
parent-child relationships can be modeled as path 
metadata and stored in the custom Datastream. An 
application or a Fedora custom service can be used to 
interpret the format of the Datastream to display the 
hierarchy [5]. 

One of the CDR’s core constituencies are the special 
collections in our university libraries. These collections 
tend to have rich metadata associated with them and 
have usually undergone preliminary curation. The 
longer term goal of the repository is to harvest content 
directly from research-based iRODS data grids. 
Metadata quality and quantity is typically limited in 
these collections.  Repository outreach and development 
is concerned not only with identifying and preserving 
“at risk” collections, but cultivating metadata collection 
and data curation proactively throughout the research 
lifecycle. 

4.3. Bulk registration from iRODS into Fedora 

Often we will be presented with existing collections in 
iRODS which we want to add to Fedora. How will these 
collections be registered into Fedora? It would be time 
consuming to require manual extraction, encapsulation 
(in an FDO) and storage of each data object. 

As shown in Figure 3, a four step process is needed 
to automate this process: (1) identify the iRODS data 
objects to register; (2) iterate over each data object; (3) 
automatically collect metadata about each data object; 
(4) create the analogous FDO and ingest it via Fedora 
(possibly with additional FDOs to represent the 
hierarchy). 

Bulk registration of a collection of iRODS files 
could be deployed and executed by a data curator 
through a single command irule, an iRODS command to 
send and execute a rule in an iRODS server. Often, such 
a rule is executed for a collection recursively. 
Registering multiple collections can be accomplished by 
through a batch script, which could query all iRODS 
files within a specified collection and create an FDO for 
each iRODS file. All FDOs could then be stored back 
into iRODS in the FOXML Object Store. Note that 
executing this process through iRODS facilitates 
inclusion of feature extraction services to automate 
metadata extraction. Also, note that services often can be 
reused in multiple use cases, reducing software 
development and deployment costs. 

4.4. Update Content or Metadata via Fedora 

Updates via Fedora use the same techniques as when 
iRODS is not present (see Figure 4). A user or 
application uses the Fedora APIs to update metadata, add 
new Datastreams, or new Datastream versions.  Note that 
when a Datastream is versioned, it will result in a new 
file in iRODS. 

However, iRODS must update system and user 
metadata in the iCAT by interpreting the updated FDO, 
extracting modified metadata, and updating the iCAT. 

 
Figure 5: Update Content or Metadata via iRODS 

 



  
 
This operation is triggered when the modified FDO is 
saved causing the execution of a micro-service to 
perform these tasks. The micro-service will then be able 
to query the iCAT to fetch data that will help and update 
the iCAT. 

4.5. Update Content or Metadata via iRODS 

An update via iRODS is similar to registering a new 
iRODS file into Fedora. As shown in Figure 5, however, 
the FDO already exists and must first be fetched, revised 
and updated in Fedora. The Fedora APIs are also 
capable of performing more fine-grained operations on 
the FDO for very common updates. For example, if a 
new file is added to iRODS, it may be registered in a 
new FDO (see Ingest New Content via iRODS). 
However, since Fedora supports a compound object 
model, the new file could be added as a new Datastream 
to an existing FDO.  In this case, the addDatastream API 
method is preferred. Similar convenience functions exist 
for updating relations and certain metadata elements. 

If a file is updated in iRODS, metadata (for 
example, the “last update” timestamp) for the 
Datastream in Fedora must also be updated.  If a new 
version of a file is added to iRODS, the 
updateDatastream API method is used.  This can only be 
used if the new version is represented by a new file in 
iRODS. 

The update case puts a significant burden on the 
micro-service to determine the best approach to update 
Fedora. In particular, the micro-service must be 
informed of the FDO which correlates with the iRODS 
file.  The iCAT will have to be extended to include the 
Fedora PID. 

5. ADDITIONAL UTILITIES 

We are implementing two key enabling utilities in 
addition to the functionality described above. First is an 
updated storage module as an iRODS-specific plug-in to 
replace Fedora’s Low-level Store. Second is a harvester 
utility which can be used in both bulk registration and 
for disaster recovery. 

5.1. iRODS Storage Module 

We plan to store all files in iRODS. This will require an 
update of the existing iRODS-Fedora Storage Module or 
building a new one. Because this is a key enabler, work 
is concentrating on updating the existing iRODS plug-in 
replacing the Fedora Low-Level storage module. A new 
storage module is also being built, using Jargon and the 
Fedora Commons Akubra interface. Furthermore, a 
storage module is being developed by Aschenbrenner, 
based on the Merritt Storage System [2], in an iRODS 
community project. We are also closely following work 
in DuraCloud for integrating with cloud storage and 
service providers [13]. Selecting these candidates was 
based on a survey of available storage subsystems, 
finding a great proliferation of new approaches. Testing, 
however, eliminated all FUSE-based solutions as too 
unreliable except for the most lightweight usage. 

Building a new storage module, based on one or more of 
these existing technologies, would permit research on 
using it as a feedback path for policy operations 
including security policies. 

When iRODS serves as a storage module for Fedora, 
the current design is to use two iRODS collections: (1) 
Fedora Digital Objects (FOXML) in the FOXML Object 
Store, and (2) content objects (Datastreams) in the 
iRODS Content Store. They are accessed through a 
single curator user account in iRODS. This makes it 
easier to distinguish between policies related to FDOs 
from those operating on content objects (Datastreams). 

This approach, however, differs from the 
Fedora/Jargon/Merritt default of storing objects in 
folders based on a directory/file path and naming 
scheme. For the CDR and other existing 
implementations, a restructuring of objects into the 
segregated object store will be required. This will alter 
iRODS based failure recovery mechanisms and integrity 
audits. 

5.2. iRODS Data Harvester for Fedora 

The iRODS Data Harvester is an adaptive version of the 
Data Rebuilder in Fedora. It is used to re-build the 
object indices from the FOXML Object Store and 
iRODS Content Store. It does not create any new 
FOXML objects; rather, it surveys all the objects stored 
within the FOXML Object Store, verifies the 
Datastreams inside the iRODS Content Store, and 
creates the indices in the database used by the Fedora 
server. The iRODS Data Harvester also builds the 
necessary RDF data to be stored in the RDF triplestore 
for the navigation of hierarchical structure. 

6. POLICY FEDERATION AND MIGRATION 

The iRODS rule engine provides the capability to apply 
rules on the data grid side to implement the policies. 
The Distributed Custodial Archival Preservation 
Environments (DCAPE) project [4] aims to work with a 
group of archivists to develop a set of rules to automate 
many of the administrative tasks associated with the 
management of archival repositories and validation of 
their trustworthiness. These DCAPE rules could be 
applied to different repositories based on the 
institution’s policies. We plan to provide the 
functionality for users to manage the policies through 
the Fedora interface and be able to check what rules are 
in action. 

Current implementations, even in data grid 
environments, depend on local enforcement of policies 
and typically do not consider the larger framework of 
uniform policy implementation across heterogeneous 
repositories. Though currently still in development, the 
ISO/NP 1636 standard [11] could present a model for 
identification of machine-actionable rules that can be 
expressed as policies. Stored as Fedora Service 
Definitions, the policies will have unique service 
deployment bindings for each data storage system. Our 
demonstration storage implementation is iRODS, but 



  
 
other storage environments may be supported by 
changing deployment mechanisms. 

The CDR is developing a policy management 
framework based on a machine interpretable series of 
actions across repositories in a data grid. 
Implementation of new policy requires identification of 
machine-actionable components and mapping to 
specific, testable deployment mechanisms. 

7. SUMMARY 

In this paper, we introduced the Policy-Driven 
Repository Interoperability (PoDRI) project 
investigating interoperability mechanisms between 
repositories at the policy level. The rationale for using 
iRODS and Fedora to demonstrate key features of a 
distributed policy-driven management architecture was 
described. Four scenarios that will be demonstrated as 
part of the project were enumerated. We have identified 
five enabling use cases that are needed for the 
demonstration scenarios along with two key utilities 
planned for development. We also introduced work on 
policy federation and migration. PoDRI is an applied 
research project and its details will change as we 
develop a greater understanding of the methods for 
policy-driven interoperability. 

8. ACKNOWLEDGEMENTS 

This project is funded by IMLS grant LG-06-09-0184-
09 as part of the 2009 National Leadership Grants NLG 
Library-Research and Demonstration, awarded to the 
University of North Carolina at Chapel Hill. Project 
Director is Richard Marciano. Collaborators at UNC / 
SILS include: Alex Chassanoff, Chien-Yi Hou, Reagan 
Moore, and Helen Tibbo. At UNC / Libraries: Steve 
Barr, Greg Jansen, Will Owen, and Dave Pcolar. At 
UNC / RENCI: Leesa Brieger. At UCSD: Bing Zhu. At 
DuraSpace and Cornell Information Sciences: Daniel 
Davis and Sandy Payette. Finally, at the University of 
Maryland iSchool: Bruce Ambacher. 

9. REFERENCES 

[1] Aschenbrenner, A., Zhu, B. “iRODS-Fedora 
Integration”, http://www.irods.org/index.php/Fedora 

[2] California Digital Library. “Merritt storage service”, 
http://confluence.ucop.edu/display/curation/storage 

[3] DART, University of Queensland. “Fedora-SRB 
Database integration module”, 
http://www.itee.uq.edu.au/~eresearch/projects/dart/outco
mes/FedoraDB.php 

[4] DCAPE. “Distributed custodial archival preservation 
environments”, an NHPRC-funded project, 
http://dcape.org 

[5] DuraSpace. “The Content Model Architecture”, 
http://fedora-commons.org/confluence/x/gABI 

[6] DuraSpace. “The Fedora Digital Object Model”, 
http://fedora-commons.org/confluence/x/dgBI 

[7] DuraSpace. “Fedora Repository 3.3 documentation”, 
http://fedora-commons.org/confluence/x/AgAU 

[8] DuraSpace. “PLEDGE project”, http://fedora-
commons.org/confluence/x/WSDS 

 [9] Fedora Commons, http://www.fedora-commons.org 

[10] Hedges, M., Hasan, A., and Blanke, T. 
“Management and preservation of research data with 
iRODS”, Proceedings of the ACM first workshop on 
CyberInfrastructure:Information management in 
eScience, Lisbon, Portugal, pp. 17-22, 2007. doi: 
http://doi.acm.org/10.1145/1317353.1317358 

[11] International Organization for Standardization. 
“ISO/NP 16363: Audit and certification of trustworthy 
repositories”, 
http://www.iso.org/iso/catalogue_detail.htm?csnumber=
56510 

[12] iRODS: Data grids, Digital Libraries, Persistent 
Archives, and Real-time Data Systems. 
http://www.irods.org  

[13] The Library of Congress. “DuraCloud”, 
http://www.digitalpreservation.gov/partners/duracloud/d
uracloud.html 

[14] Moore, R., Rajasekar, A., Wan, M., and Schroeder, 
W. “Policy-based distributed data management 
systems”, The 4th International Conference on Open 
Repositories, Atlanta, Georgia, May 19, 2009. 

[15] NSF Cyberinfrastructure Council. “NSF's 
cyberinfrastructure vision for 21st century discovery”, 
National Science Foundation, March 2007, 
http://www.nsf.gov/pubs/2007/nsf0728/index.jsp?org=N
SF 

[16] Wikipedia. “Triplestore”, 
http://en.wikipedia.org/wiki/Triplestore 

[17] Zhu, B., Marciano, R., and Moore, R. “Enabling 
Inter-Repository Access Management between iRODS 
and Fedora”, The 4th International Conference on Open 
Repositories, Atlanta, Georgia, May 19, 2009 

 


