
DIGITAL PRESERVATION CHALLENGE

Solutions Report

Alex Mason
alex.mason@durham.ac.uk

July 2008

Contents

1 Introduction 2

2 Scenario walkthroughs 2

2.1 Legacy Application File . 3

2.2 Images from a Legacy Computer Gaming Platform 16

2.3 Obsolete Database . 22

2.4 Electronic Art . 25

2.5 Web Archiving . 34

Appendices

A File Identification Tools/Resources 39

B Digital Image Preservation Formats 42

C Common Preservation Strategies 44

D Code Listings 46

References 56

1

1 Introduction

The Digital Preservation Challenge is a contest organised by Digital Preservation Eu-
rope (DPE). The challenge presents five realistic scenarios involving so called “digital
objects”, with the task to develop digital preservation solutions to provide access to the
digital objects, and hence preserve them.

This report contains my attempts to complete each of the five scenarios. I’ve attempted
to document the exact method I employed to complete the scenarios, along with any
tools and resources I used along the way. The appendices catalogue the tools and
resources, as well as provide my own conclusions on their suitability for the tasks they
were employed.

I am an undergraduate student reading Computer Science at Durham University, having
recently completed my first year. I have no prior knowledge of digital preservation, and
so the entire subject matter of this contest is new to me. I’ve tried to capture how I went
about each scenario, including any mistakes I made and red herrings I followed, simply
to give a better picture on how a solution was arrived at.

The majority of the search was carried out on a Dell Inspiron 1721 notebook, running
Windows Vista and Ubuntu Linu via dual boot. A few things required the use of an
older version of Microsoft Office, and so a DELL Latitude D510 running Windows XP
with Microsoft Office 2000 was used for those.

All custom programming was written using the Perl programming language1 and tested
against perl version v5.10.0. I feel perl is the perfect tool for custom preservation
scripts as it is: cross platform, allows for rapid development time as a dynamic lan-
guage, and provides a formidable amount of library code via CPAN2 which provide a
wide range of access to all sorts of formats.

2 Scenario walkthroughs

Each walkthrough consists of the scenario description and the list of tasks to be com-
pleted, followed by a detailed analysis of the methods employed to complete each task
of the scenario.

1http://www.perl.org
2http://www.cpan.org

2

2.1 Legacy Application File

2.1.1 Scenario Description

Your company archivist discovered an old tape in a store-room. The content is not
known but the label “Master Backup” suggests that is highly valuable. There were four
types of files on it, one type of text documents, one type of graphics and two unknown
file types. You are asked to identify the unknown file types and display the content of
the given sample files in such a way that they may be used in a different application.
You are also asked to design an appropriate preservation strategy that will facilitate
access to such records, and that can be applied, as far as possible, in an automatic
manner. Moreover, you are asked to estimate the cost/effort required to deploy the
strategies you propose. Task

Your task is to:

1. Identify the type of content of the unknown files.

2. Propose one or more suitable preservation strategies and provide a thorough de-
scription that highlights their advantages and disadvantages.

3. Implement a preservation strategy capable of mass handling of files of this type,
giving an estimate of the cost/effort for deploying the strategies.

4. Apply the preservation strategy to the objects and display the files.

5. Analyse the benefits and the shortcomings of the preservation strategy.

2.1.2 Scenario Solution

‘logo Pur.ltp’ (found in the ‘graphic’ folder) was the first file I attempted to identify.

I first attempted to identify it via its file extension using first FILExt3 and then wotsit4.
Unfortunately the extension wasn’t recognised in either database, nor did a Google
such for the extension bring up any clues as to the file format.

My next port of call was the ImageMagick identify utility5:

>identify "logo Pur.ltp"
identify: no decode delegate for this image format.

3See Appendix A.3
4See Appendix A.4
5http://www.imagemagick.org/www/identify.html

3

which was similarly unhelpful.

At this point, I moved on to the other files and came back to the logo at the end.
From identifying the other files prior, I put an estimated time of backup of the logo
file at around the early 90s in terms of the scenario. This being the case, I tried an
extensive Google search for the file extension, coming up with a somewhat obscure
file6 identifying the extension as a disk image for a Zx Spectrum7 emulator. I was
highly dubious this would lead to anything, the file being only 63.2kb in size, and the
Zx Spectrum being a slightly obscure choice to preserve an image. I was correct in my
scepticism, and fell back on the assumption ltp stood for “long term preservation”, as
Google thew up numerous references to this acronym, which fit with the scenario.

I then attempted to identify the file from content, opening it in a hexadecimal editor8

(see figure 1).

Figure 1: Hex edit view of the first few bytes of ‘logo Pur.ltp’

The file contained obvious padding, and so I concluded it was a raw image type, un-
compressed and representing a fixed size raster image. After unsuccessfully trying to
identify what looked like a header using the first few hex bytes (CD FF F8 FF 1A
58), I moved to searching for the distinctive repetitive buffer pattern, “FF FF FF 00 FF
FF FF”. Such a pattern, I suspected, was idiosyncratic of the format, as I would have
expected a blander pattern of “00 00 00 00” or a fixed repeated symbol.

Googling for this pattern revealed a C header file entitled,“Microsoft Windows bitmap
(BMP) file definitions.”9 This file also provided a handy description of the file format,
and header:

/***
* Uncompressed 16-color BMP
*
* 00000 42 4D id ‘BM’ \
* 00002 66 01 00 00 filesize 358 |
* 00006 00 00 00 00 reserved |
* 0000A 76 00 00 00 headersize 118 |

Noticing the start of the header “42 4D” was located 8 bytes from the start of the ‘logo
6http://melkor.dnp.fmph.uniba.sk/ garabik/readme.txt
7http://en.wikipedia.org/wiki/ZX Spectrum
8http://www.editpadpro.com - more a text editor with hex editing capabilities
9http://david.tribble.com/src/bmp/bmp.h

4

Pur.ltp’ file, I removed the first 8 bytes, which fixed the file. In summary, file was
in Windows 16-color BMP format, with a corrupted header, which could be fixed by
removing the first 8 bytes from the header.

In hindsight, I should have followed up the ltp = “long term preservation” lead more
thoroughly, and made the obvious deduction that it was a file in one of the major image
formats suitable for long term preservation, only slightly corrupted.

Methods of digital image preservation appear multiple times throughout the challenge,
and are similarly pronounced in general digital preservation. As such, Appendix B
focuses on image formats suitable for preservation, and their advantages/disadvantages.
Suffice to say, I felt the Windows bitmap image itself was not a suitable preservation
format, and so opted for migration10 to an image format suitable for preservation.

Following from the conclusions drawn, I developed an example program which is ca-
pable of mass handling converting files into Long Term Preservation (LTP) suitable
formats11. The program relies on the ImageMagick library to be installed, as well its
accompanying Perl module. The script accepts a list of files on the command line to
convert, but in a real world situation if that were not sufficient it could be easily changed
to accept a directory, in which it searched for and converted files.

Figure 2: “logo Pur.bmp” converted to a PNG

‘NEWS.doc’ (found in the ‘text’ folder) was the second file I attempted to identify.
As ‘.doc’ is an extremely common file extension, used by Microsoft Word, I assumed
the file was in a Microsoft Word format and so attempted to open it immediately using
Microsoft Word 2007, which resulted in an error (see figure 3).

I resolved this by creating a Word 2007 specific ‘trusted location’12 which allowed me
to open the file.

The file (see figure 4) is a 13 page newsletter of sorts from Digital Preservation Europe.
Saved in an evidently old and deprecated version of the Microsoft Word document
format, I suggest migration as the most viable method of preservation.

10See Appendix C.3
11See Appendix D.1.1
12http://office.microsoft.com/en-us/help/HA100319991033.aspx#15

5

Figure 3: Error message from Microsoft Word 2007

An alternative would be emulation13 via the use of a Virtual Machine running an older
version of Windows and older versions of Microsoft Office installed, but this does not
scale well with lots of documents of different versions of the ‘.doc’ format, and could
be cumbersome to implement unless absolutely necessary.

However, I advise some caution be taken before making assumptions regarding the
quality of the reproduction of the documents by newer versions of Microsoft Word.
Upon examining the document, there are minor signs of inconsistencies with the for-
matting of the document, for example changes in font in an itemised list, and the im-
plied omission of information on the last page, with it ending with ‘or visit’. If repro-
duction of the document needs to be exact, it may be prudent to opt for an emulation
route if the conversion of the documents to newer formats does not preserve the for-
matting and structural content of the document well enough. That said, I will continue
under the assumption that Microsoft is capable of reproducing its own formats to as
high a quality as possible, and employ a migration strategy accordingly.

Figure 4: Snippet of the file displayed in Word 2007

As far as migration is concerned, clearly using software developed by the company
responsible for the old format is advantageous for ensuring optimal quality of the con-
version. The old Microsoft Word document formats are proprietary and badly docu-
mented to the outside world, and so whereas it may be possible to migrate via the use

13See Appendix C.1

6

of another package, for example OpenOffice14, in an optimal scenario Microsoft Word
itself should be used.

This being the case, I have developed a tool suitable for mass conversion of such doc-
uments to newer formats (see Appendix D.1.2). This ‘Word Document Converter’
tool interfaces with Microsoft Word, which needs to be installed on the system, which
performs the actual conversion. The full range of Word input and output formats are
available via the tool, and so you can convert old documents, plaintext files etc to the
Word 97-2003 format, the new OOXML format15, or even PDF (and PDF/A) if using
Microsoft Word 2007 with the appropriate add-in.

It should be noted that if opening files of an extremely old format such as ‘NEWS.doc‘,
the conversion will fail unless a registry change is applied or a trusted location is set
up to allow Word to open the files.

Whereas the conversion tool can convert hundreds of documents to a particular format,
it’s currently bound by the speed at which Microsoft Word can convert each file, as
it waits until Word is finished before proceeding to the next file. Depending on how
much resources Word takes when converting files, and how well it can handle multiple
conversions simultaneously, it may be a better option to adopt threads in the conversion
tool, which could potentially speed it up substantially.

For a migration strategy, it’s important to decide which output format would be best
for files such as ‘NEWS.doc’. The conversion tool can handle every format Word can
handle, but not all of them are suitable for preservation.

The Florida Digital Archive’s ‘Recommended Data Formats for Preservation Purposes’
document lists the old binary ‘.doc’ formats as “Low Confidence”, and even the new
OOXML format and PDF as only “Medium Confidence”[1]. Ian Barnes in “Preser-
vation of word processing documents” goes even further, condemning OOXML, RTF,
and even PDF[2]. Barnes takes issue with the proprietary nature of OOXML, as well
as the Zip compression system used by OOXML and ODF, pointing to the potential for
catastrophic failure if corruption of any sort occurs.

Barnes’ concludes that the best option would be to employ a custom XML strategy,
using the DocBook standard or similar16. His reservations aside, for mass migration
of documents, hand converting them to DocBook would not be feasible, and OOXML
would be a fair choice of format. At the time of writing, OOXML is in the process of
becoming an ISO standard17, which means it will be an open format, maintained by
the ISO, and not require a license for use[12].

OOXML will be supported as a standard, and implemented via Microsoft Office for the

14http://www.openoffice.org
15http://en.wikipedia.org/wiki/Office Open XML
16http://en.wikipedia.org/wiki/DocBook
17http://www.iso.org/iso/catalogue detail?csnumber=45515

7

foreseeable future. As the standard is XML, it could potentially be converted to other
XML standards, such as ODF or future standards via XSLT18.

Despite its merits, I think there is a better migration format choice than OOXML, which
is PDF/A. Both OOXML and PDF/A are only available in Word 2007 (or above), with
the latter being available via a free add-in. PDF/A19 is a subset of the PDF standard,
designed with LTP suitability in mind[18]. It’s also an ISO standard (ISO 19005-
1:2005), and is a ‘preferred format’ in the LOC’s ‘Sustainability of Digital Formats’
project[16], and has been given a “High Confidence Level” by the FDA[1].

Therefore, I recommend mass file migration via the use of the ‘Word Document Con-
verter’ with the output type of ‘pdfa’ (PDF/A). This format requires Word 2007 with
the appropriate PDF add-in, but would ensure maximal quality of the migrated docu-
ment, as well as assurances to its viability in a LTP scheme, thanks to the ISO 19005
standard.

This migration strategy offers the advantages of far greater reliability in the format,
a format that could be directly accessed and reproduced as digital output without the
need for any intermediate steps, as well as far smaller file sizes than say TIFF, as well
as the option to embed metadata automatically, as well as manually. Also, the format
is very efficient and cost effective[9].

There are a couple of drawbacks to this strategy, namely the migration is to an in-
herently read-only format, which would make it difficult to get the document into a
flexible editable format, although this could be seen as an advantage from an archival
standpoint. Furthermore, the reproduction of the document in PDF/A format may not
exactly match the original, although differences should be minor and, on the whole, the
conversion is very reliable.

18http://en.wikipedia.org/wiki/XSLT
19http://en.wikipedia.org/wiki/PDF/A

8

Figure 5: Converted ‘NEWS.doc’ in PDF/A format

‘NEWS’ (found in the ‘unknown 1’ folder) was the third file I attempted to identify.
With no file extension, I began by trying to detect the file type using DROID, which was
unsuccessful. I then opened the file in a hex editor (see figure 6) and searched Google
using keywords from the ASCII view that looked related to the file format. Search-
ing for “+fldnames +charse” reveals multiple files bearing the ‘.SAM’ file extension.
FILExt lists this as an ‘Ami Pro Document’20.

As the format is related to word processing, and hence Microsoft Word, I immedi-
ately began looking for a converter, which led me to Microsoft knowledge base article
20886321: “How to convert documents between Ami Pro 3.0/3.01 and Word 2000”.
The converter pack listed does not seem to be available any more, but several other
sources on the internet pointed to an alternate location to download the converter22.

After installing, I attempted to open the renamed ‘NEWS.sam‘ in Microsoft Word
2007. Unfortunately this resulted in a blank page, and after researching the issue on
the web, I have concluded the problem lies with Word 2007, as when I installed the
converter on a machine running Word 2000, I could successfully open the file (see fig-

20http://en.wikipedia.org/wiki/Am%C3%AD
21http://support.microsoft.com/kb/208863
22http://www.gmayor.com/downloads.htm

9

Figure 6: Hex edit view of the first few bytes of ‘NEWS’

ure 7). It is clear that the file holds the same content as the ‘NEWS.doc’ file, and by
comparing the two I’m fairly confident the reproduction is to a high standard.

Figure 7: ‘NEWS.sam’ opened in Microsoft Word 2000

In terms of preservation, as Ami Pro is an obsolete word processing format, the same
arguments apply as for ‘NEWS.doc’. That being the case, the ‘Word Document Con-
verter’ could be used as part of a migration strategy, as long as Microsoft Word is
installed on the PC with the Ami Pro converter mentioned above. As with the Word
document, I would strongly recommend the final migration format be PDF/A.

10

As the PDF add-in only works on Word 2007, and the Ami pro converter only works
on versions below 2007, the document converter should be used convert the Ami Pro
file to the latest Word native document format supported by that version of Word, and
then that file converted to PDF/A via Word 2007 (see figure 8).

Figure 8: Converted ‘NEWS’ in PDF/A format

‘LONDON’, ’QSSOURCE’ & ‘QSTARGET’ (found in the ‘unknown 2’ folder)
were the last files to be identified. With no file type, DROID23 providing its trademark
“The format could not be identified” message, and all other identification tools at my
disposable drawing a blank: I again resorted to using a hex editor and searching Google
for promising strings. Searching for “+ISAAF +ISAPP” returned results referencing
‘Lotus 123’24 and its .wk4 format25.

As no copies or free downloads of ‘Lotus 123’ were evident, and IBM seemingly still
trying to sell a later generation of it, I searched for a converter to turn the files into
Excel format, or similar. I found a proprietary shareware converter solution called ‘

23See Appendix A.1
24http://en.wikipedia.org/wiki/Lotus 1-2-3
25http://filext.com/file-extension/wk4

11

ABC Amber Lotus 1-2-3 Convertor’, and an add-in for Microsoft Excel provided by
Microsoft26.

The Microsoft add-in failed to function on Excel 2007, which seems to be somewhat of
a running theme of Office 2007 providing no backwards compatibility with anything.
I instead turned to Excel 2000, where the add-in successfully installed and could load
up the files (see figure 9).

Figure 9: ‘LONDON.wk4’ loaded in Excel 2000

For preservation of the Lotus 1-2-3 file type, migration to a more popular format would
be a best case scenario as long as the conversion process is able to preserve the vast
majority of the original information. As far as I’m aware, at the time of writing there
is no open standard for digital spreadsheet preservation, and so for a migration route, I
believe the best option would be to convert to the most well supported format.

As with the previous items, if no migration route is able to adequately preserve the
information contained in the original, emulation would be necessary, although I do be-
lieve that the Excel converter is capable enough and so will not be pursuing emulation.
However, I would strongly recommend a copy of the original files be preserved, as well
as the migrated copy.

For mass handling of the documents, I developed a tool very similar to the ‘Word Doc-

26http://www.microsoft.com/Downloads/details.aspx?FamilyID=dd0697d5-c621-4cdc-981c-
4ac92071700d

12

ument Converter’, which I gave the inspired title of the ‘Excel Document Converter’27.
This converter interfaces with Excel in exactly the same way as the ‘Word Document
Converter’ interfaces with Word, and provides a near identical user interface, with a -t
flag and a list of files or a directory via a -d flag.

One issue with conversion is that some spreadsheet formats (like Lotus 1-2-3), provide
functionality to link values from other sheets. Clearly when migrating to a new for-
mat, it would be preferable for these links to remain in tact. This being the case, the
converter provides a -u flag which will attempt to do just that.

The -u flag works by seeing if the link source file exists in the same directory as the file
being converted, and if so whether or not that file has been converted. If the original
exists, it will either update the link to the converted copy, or if the file has not yet been
converted, it pushes the file to the end of the conversion queue, and re-runs, at which
point the file will have been converted. This simplistic approach while very effective,
can be brought into an infinite loop by two files linking from each other, to form a
deadlock28. In these cases, links would have to be resolved manually.

In the long term, which final format the files should be converted to would depend
on the purpose of the archiving. If it is enough to simply view a static snapshot of
the spreadsheet, then PDF conversion (Excel 2007) would be a good choice. A better
choice would be PDF/A, but unfortunately it appears the programmers of Microsoft
Excel neglected to add an option to export to PDF/A to their API29. That being the
case, to get PDF/A files would have to be converted to PDF/A by hand, or a macro
program built to simulate this.

PDF while a good preservation format, would be lossful in the case of formulas and
anything dynamic about the spreadsheet. This is akin to saving the HTML output of a
web page, not the scripts that back-end generated it. If dynamic content is involved, I
would recommend the latest OOXML format used for the conversion, although as the
add-in for Lotus 1-2-3 and other obsolete formats does not work on this version, an
intermediate format would have to be used. That is to say; Excel 2000, for example,
should convert the original file to its latest file format, and then that used as input for
Excel 2007, which converts it to OOXML. This should be a relatively safe operation,
as compatibility between recent native Excel formats is almost flawless.

As OOXML is not a preservation standard, if following that route it would be prudent
to encapsulate30 the files with a copy of Microsoft Excel capable of reading them, or at
least the OOXML specification pages, to ensure in the long term the files have a reader
capable of understanding them fully.

27See Appendix D.1.3
28http://en.wikipedia.org/wiki/Deadlock
29http://msdn.microsoft.com/en-us/library/bb238907.aspx
30See Appendix C.2

13

Figure 10: ‘LONDON’ in exported XLS format

Figure 11: Snippet of ‘QSSOURCE’ in exported XLS format

14

Figure 12: Snippet of ‘QSTARGET’ in exported XLS format

For the migration of the three files, I have chosen OOXML (XLSX extension) as the
migration format, due to the formulae used in the spreadsheets. In figure 12, several
fields (e.g Gross Profit) are linked to the corresponding fields in the QSSOURCE work-
sheet (figure 11). Other formulae in QSTARGET worksheet could not be correctly con-
verted, due to (I suspect) fields moving offsets during the conversion. Had PDF been
used as the output format, the information would be lost, however with OOXML, the
formulae are accessible and can be fixed manually. The same applies for formatting,
such as monetary values.

I have tried to use as much free and open source technology as possible with the preser-
vation strategies, and so the image conversion should incur no licensing overhead. The
other documents require potentially two separate versions of Microsoft Office, and
Windows to go along with it. Those costs are fixed and unknown, and would generally
be under $1000 dollars.

Labour costs would be potentially higher for the document and spreadsheet formats, as
depending on the desired quality levels, some things would have to be hand converted,
and files checked for quality control. We can be reasonably safe in assuming image
conversion could occur without such reservations, however.

15

Physical storage costs have not been taken into account, under the assumption that
hard drive space is relatively cheap and it is doubtful these types of files could take up
enough room to make a noticeable impact on a budget. Also, I would assume a system
would be in place if mass handling was involved, and such costs would have been laid
out up front before hand anyway.

2.2 Images from a Legacy Computer Gaming Platform

2.2.1 Scenario Description

An image archive received a donation from an artist representing working material
from his early years. While ingesting the data into the image archive repository, the
system failed to identify some of the file formats. The artists cannot remember the
name of the particular application or the computer platform. He also found a related
file for one type of the images, but he does not know what the file is. Can you display
the images? Include the images in your report in an appropriate form.

Your task is to:

1. Identify the application and computer platform that the files come from.

2. Display the images in an appropriate form.

3. Propose valid preservation alternatives pointing out their advantages and disad-
vantages.

4. Implement one or more of the preservation strategies (for example emulation or
migration).

5. Evaluate and compare their performance.

2.2.2 Scenario Solution

Of the three files: ‘GRID.PIC’, ‘SKY.PIC’, ‘XLART.XFD’, I decided to at first con-
centrate on the latter. I searched FILExt for the ‘XFD’ extension, with the third result
being ‘Atari Disk Image’, which fits perfectly with the scenario.

Armed with the knowledge that an XFD file was an Atari Disk Image, I then searched
the Web for a program that could run it. I found one in the form of the Xformer 2000
Atari emulator31.

31http://www.emulators.com/xformer.htm

16

Unfortunately Xformer 2000 continually crashed (possibly due to being run on Vista),
and so I quickly moved to another emulator: atari++32 (See figure 13).

Figure 13: XL-ART running under atai++

At this point I attempted to load the pictures, but unfortunately I could not find a method
of accessing the host hard drive from XL-ART running on the emulator. To get around
this issue, I searched for a tool which would allow me to edit the XFD disk image
directly, and place the PIC files onto the image. I found such a tool (AtrUtil) on ‘Ken’s
Atari 8-bit Page’33, and attempted to open ‘XLART.XFD’ using it. Unfortunately the
tool was unable to open the file, however I verified that the tool could open other XFD
files, and so drew the conclusion that the problem was specific to that particular XFD.
That being the case, I searched Google for another XL-ART XFD file, hoping it would
fair better. Eventually I located one, and proceeded to add ‘GRID.PIC’ to it using
AtrUtil (see figure 14).

With ‘GRID.PIC’ on the disk image file, I could load it using XL-ART (see figure 15).

Using this technique, I also loaded ‘SKY.PIC’ (see figure 16). I then saved ‘SKY.PIC’
as a ‘MIC’ file via the Disk menu of XL-ART, as I was curious as to what affect this
would have as a picture. Transferring it from the disk image via AtrUtil, I noticed in
a hex editor the format was similar to that of the ‘CAR’ and ‘EINSTEIN’ files, with
regards to the use of the null bytes (hexadecmial 00) as a marker, and a file size of
exactly 7684 bytes. Assuming ‘CAR’ and ‘EINSTEIN’ could too be opened by XL-
ART, I gave them both MIC extensions, and successfully loaded them via XL-ART

32http://www.math.tu-berlin.de/ thor/atari++
33http://atari.ksiders.tzo.com/a8emulators.html - AtrUtil95

17

Figure 14: AtrUtil editing ‘XL ART.xfd’

Figure 15: ‘GRID.PIC’ loaded in XL-ART

(see figures 17 and 18).

18

Figure 16: ‘CAR.PIC’ loaded in XL-ART

Figure 17: ‘CAR.MIC’ loaded in XL-ART

19

Figure 18: ‘EINSTEIN.MIC’ loaded in XL-ART

The two obvious preservation strategies for these files are emulation and migration34.
Emulation would require substantial effort, and is certainly not my preferred option.
Namely, it would require an Atari emulator (atari++ as our example), an image file
viewer for the emulator (XL-ART as our example), and a method of making the im-
ages accessible. Issues could arise with LTP due to the need to run the emulator, and so
the emulator itself would almost certainly need to be included with its host operating
system for long term preservation, for example a Virtual Machine (VM) running Win-
dows Vista. There is also the problem of making the images accessible to the image
file viewer. I could not locate a method of mapping a local drive running on the host
system to something understandable by an image file viewer running on the emulator.
Without this, files would have to be added to a disk image (which can be problematic
due to a maximum size of images and other limitations), which would be laborious and
potentially hard to automate without custom tools. Furthermore, viewing the archived
material would require the emulator to be run, and the interface of the image file viewer
to be navigated, and so instructions and documentation would need to be written up to
explain the functionality of the viewer. In short, whereas emulation would be possible,
the effort required to implement it as a strategy is not conducive to a fast or efficient
preservation strategy.

Migration appears a better option, as long as a migration route is possible without los-
ing any image quality from the original. My preference would be for a Perl command
line utility to perform a conversion, but unfortunately whereas I did find obscure spec-

34See Appendix C.1 and C.3

20

ifications for both the MIC35 and PIC36 formats, I was not able to write a converter
from Antic37 E graphic codes to their RGB equivalents.

Instead, I located a Windows application called Graph2Font38 which could load both
formats (see figure 19) and save them as BMPs. From there it would be trivial to convert
the BMPs to PNG, for example by using the ‘Image Converter’39. It is noticeable that
the images shown in Graph2Font have different colour shades to that of the atari++ XL-
Art view. After some study, it is evident that the fault lies with atari++’s reproduction,
and that the Graph2Font color palette is the correct one.

Figure 19: ‘EINSTEIN.MIC’ loaded in Graph2Font

Migration via Graph2Font and the ‘Image Converter’ provides an exact replica of the
image in a format suitable for long term preservation, with no software operational
costs, and at a high rate of efficiency. Emulation for this kind of preservation would
offer no obvious benefits, and would require an order of magnitude more effort, not to
mention increased costs.

35http://g2f.atari8.info/instrukcja eng.html
36http://www.pokey.nl/xoops/modules/megazine/index.php?op=viewarticle&artid=213
37http://en.wikipedia.org/wiki/ANTIC
38http://g2f.atari8.info/
39See Appendix D.1.1

21

Figure 20: All 4 pictures in PNG format

2.3 Obsolete Database

2.3.1 Scenario Description

In the beginning of 2003, the Porto Regional Archive (ADP) initiated a project called
DigitArq. The goal of the project was to bring together its various finding aids, pre-
viously scattered throughout the archive in many different forms and formats, into a
single centralised repository based on international standards such as ISAD(G) and
EAD. The planned repository would enable the standardisation of all archival proce-
dures and the development of new data services such as search mechanisms and de-
scription tools. However, in late 2007 a fire broke out in the server room destroying the
server that held all the information produced over the last 25 years. In addition to this
all the backup tapes that were kept in a cabinet in the adjoining room were destroyed.
Around 80% of the information had been synchronised with a similar repository at the
National Archives in Lisbon, and this information was easily recovered. The other 20%
had been migrated from an old database that was still kept at the archive but had not
been used since 1990. The ADP staff were unable to use the database, so they decided
to hire a digital preservation expert to do the job.

Your task is to:

1. Identify the database system that is necessary to interpret the provided data files.

2. Provide access to the data of the database.

22

3. Propose an adequate procedure to migrate the records from the old system to
the new one (please provide output files, scripts or standards to support your
answer).

4. Propose a disaster recovery plan so that if a similar incident takes place the dis-
ruption will be kept to a minimum.

2.3.2 Scenario Solution

The format of the obsolete database system was easily found by searching for a collec-
tion of file extensions in Google: “+mst +fdt +fst +ifp +database”. The first entries all
relate to CDS/ISIS40, the database format.

The Wikipedia page for CDS/ISIS shows the CDS/ISIS software package is developed
by a company called UNESCO. Their website provides a Windows software package
called WinISIS capable of opening CDS/ISIS databases41.

Access to the database is provided through the use of the WinISIS software package
(see figure 21).

Figure 21: Screenshot of WinISIS displaying a record

40http://en.wikipedia.org/wiki/CDS ISIS
41http://www.unesco.org/isis/files/winisislicense.html

23

Access to the database alone via the use of a Windows executable is limited in scope,
and so migration is necessary to make use of the data in the new system.

WinISIS provides an “Export to XML” facility which can convert the entire database
to XML format. However, as WinISIS is platform restricted, I have developed a Perl
script to perform a similar task (see Appendix D.2.1).

The CDS/ISIS Exporter Perl script can convert a CDS/ISIS database to the same XML
format as used by WinISIS with the default settings. It can also export the database to
MAchine-Readable Cataloging (MARC) format42.

Migration wise, it may be possible to migrate directly from the XML representation
of the database to an international standard such as ISAG(G) or EAD, although infor-
mation is sparse. I could not locate any sources to do this directly, which was part
of the motivation for writing the ‘CDS/ISIS Exporter’. Whereas its XML exporting
capabilities are clearly not on par with WinISIS’ built in facilities, the script can be
easily modified to change the output to something that maybe easier to convert to an
established format.

Building on this, (US)MARC exporting is also available. MARC is another internation-
ally recognised standard, designed by the US Library of Congress43. Its wide adoption
for storing bibliographic data, which is a not too dissimilar field to that of DigitArq,
makes it a logical candidate format to aid migration.

It may be possible for the MARC format could be used directly in the new system, but
if not the format is far more accessible than the CDS/ISIS XML format, and so would
provide an easier migration44 route.

From the MARC file, it seems perfectly possible to convert the data into formats such
as EAD, either directly by perhaps using the tools built for the MALVINE Project45 in
the ‘MALVINE SGML Feasibility Study’46. Another option would be to convert the
MARC file to MARCXML, and convert to EAD47 by using a crosswalk[13, 3]. As
MARCXML and EAD are both XML standards, this could be achieved more easily
using Extensible Stylesheet Language Transformations (XSLT)48.

In terms of the scenario, I will propose a disaster recovery plan that builds upon what
was implemented previously. Several things need to be taken into account to ensure no
data loss occurs if a disaster strikes:

42http://en.wikipedia.org/wiki/MARC standards
43http://www.loc.gov/marc/
44See Appendix C.3
45http://www.malvine.org/
46http://helmer.hit.uib.no/malvine/EADpage.html
47http://en.wikipedia.org/wiki/Encoded Archival Description
48http://en.wikipedia.org/wiki/XSL Transformations

24

• As well as regular backup tapes being kept near the server for easy replacement,
more backups should be stored at fixed intervals and stored externally e.g four
backup tapes stored in a different building, the oldest one being updated on a
weekly basis with a full backup.

• A redundancy system employed whereby each month a backup is loaded onto a
cheap dedicated system to ensure that the backup files are working and can be
restored from, and providing a small safety net in case the worst happens.

• Continue synchronising the repository with the Lisbon system, and if possible
extend that to other similar systems.

In the scenario the disruption was caused by the oversight of underestimating the
scope of possible damage, and hence not keeping external backups. I would assume
an archive project had at least basic disaster recovery precautions that are the same
throughout the IT industry, and so I have focused on the special needs of the particular
project.

2.4 Electronic Art

2.4.1 Scenario Description

Founded in 1987, the Prix Ars Electronica is an interdisciplinary platform for digital
art and media culture. The Prix Ars Electronica is one of the most important awards
for creativity and pioneering spirit in the field of digital media. With the rapid change
of software tools and frameworks for multimedia authoring their artworks are in dan-
ger of becoming inaccessible and unusable. You have been asked to preserve four
of these historical digital artworks for future generations and to develop appropriate
digital preservation strategies. Task

Your task is to:

1. Display the multimedia art, provide screenshots and a description of the steps
taken.

2. Decide which aspects of the artworks to preserve, and identify their significant
properties.

3. Develop a set of different preservation strategies for the four pieces of multi-
media art provided, that have the potential to address different aspects of the
artwork.

4. Point out the differences in the strategies with respect to the characteristics of the
preserved artworks and their suitability.

25

5. (Optional) Implement part of the preservation strategies you have developed and
submit code for this.

2.4.2 Scenario Solution

The first piece of artwork, Metamorphosia, I displayed natively in Windows Vista
merely by running the ‘MIA97.exe’ executable, with no changes necessary (see fig-
ure 22).

Figure 22: Screenshot of ‘Metamorphosia’

The second piece of artwork, ‘Cyberinstallation Botschaft An Europa 2098’, I dis-
played natively in Windows Vista by using the compatibility mode and setting it to
‘Windows 95’, I also set the colour depth to 256 colours (see figure 23).

The third piece of artwork, ‘Cyborg’s Eye’, I displayed using Mozilla Firefox 349 (see
figure 24), although it functions in Microsoft Internet Explorer 7 as well. To run,
merely open the ‘intro.html’ page in either of the browsers.

The final piece of artwork, ‘Interactive Paint’, I displayed natively in Windows Vista(see
figure 25), after fixing an error that prevented the program from loading by creating an
empty text file named kolofon.txt in the same directory as the main executable. Win-
dows Vista seems capable of running the basic program, although some of the interac-
tive nature of the colouring of pictures seems to be distorted, and using the compatibil-
ity mode could not resolve this.

49www.mozilla.com/firefox/

26

Figure 23: Screenshot of ‘Cyberinstallation Botschaft An Europa 2098’

Figure 24: Snippet of ‘Cyborg’s Eye’ running on Firefox

As is often the case, the only two main preservation strategies for these pieces of art-
work are emulation or migration. Due to the interactive nature of the pieces, they

27

Figure 25: Screenshot of ‘Interactive Paint’

cannot adequately be represented in a non-computational medium.

Emulation can take many forms, and so one preservation strategy I propose for all of
the pieces is full environmental reproduction and emulation. This would involve using
a virtual machine (VM) with Windows 95 running as the operating system. Appropriate
plugins would have to be installed on this environment to show some aspects of the art-
work. For example, the ‘Cyborg’s Eye’ requires the use of an obsolete ActiveX browser
component for ‘Surround Video’, and ‘Metamorphosia’ may require the Macromedia
Shockwave plugin50. This strategy would require the least amount of work and effort
to implement, and should be able to capture all aspects of the artwork with the correct
environment. However, the artwork would be tied to the emulation making it difficult
to decouple aspects of it, file sizes would be large, and there would be an overhead up-
front cost of purchasing virtualisation equipment/software and licensing any software
required to emulate the environment.

As a example of how this could be implemented, as all the pieces presumably are de-
signed to run on a typical computer of the day, a VMWare virtual machine could be
set up with a copy of Windows 95. This would provide the native APIs and library
code capable of running the executable files. Software of the time, for example Macro-
media Shockwave and the browser plugins would have to be sought, although Adobe
holds archived shockwave versions51, and the other plugins can be found via Google

50http://www.adobe.com/products/shockwaveplayer/
51http://www.adobe.com/shockwave/download/?P1 Prod Version=SWArchive7.02 from Internet Ex-

plorer

28

searches.

In the majority of cases, migration would be preferable to emulation if the ‘essence’ of
the original could be captured. For each piece of artwork, I will propose a migration
strategy, listing any shortcomings and caveats, along with comparison to the general
emulation strategy listed above. From there, I will draw a conclusion as to whether
migration is the more viable option, and if so give an example of how it could be
conducted.

Metamorphosia Metamorphosia is an abstract art ‘experience’ for lack of a better
word. The program provides an interface of sorts to different sections which consist of
a montage of motion, images, sounds, and interactivity. Its written for a German audi-
ence, but presentation wise resembles a subdued version of a Larry Carlson52 piece.

The artwork has a difficult to identify interactive element, where content can seemingly
be moved around at will forming and opening new content through rules I fail to com-
prehend. I do not have any migration recommendations, a cursory look at the format
files provides no clues, and so I am unable to tell how much of the dynamic content
is generated by the executable, and how much can be extracted. From the strings53

tool, I have determined the executable was compiled using the WATCOM compiler54,
although this information in itself is not useful to aid migration.

Due to this lack of information and uncertainty, the only viable option I see is emulation
as described above in the general purpose emulation strategy. Attempting a migration
strategy without knowledge of the internal workings would be folly, and may result in
catastrophic loss of information. At a best case scenario, you’d have an indeterminate
amount of content that may or may not be salvageable to any degree.

Cyberinstallation Botschaft An Europa 2098 is a cross between a menu based seg-
mented image viewer, and a slide show player. The main menu gives access to different
areas of the artwork, that contain text and images.

Basic research of the file types show that it was crated using Macromedia55 Director,
now Adobe Director56. The DXR files are protected Adobe DIR files, which appears
to make editing them impossible. However the main executable, ‘DIOS W95.exe’ has
a packed DIR file which can seemingly be extracted using a tool called ‘Swift Xena
Pro’57.

52http://www.larrycarlson.com
53http://linux.about.com/library/cmd/blcmdl1 strings.htm
54http://en.wikipedia.org/wiki/Watcom C compiler
55http://en.wikipedia.org/wiki/Macromedia
56http://en.wikipedia.org/wiki/Adobe Director
57http://www.buraks.com/swifty/xena.html

29

Full migration looks problematic, as even if you could update the main director file,
the encrypted content files are of a much older version, and it is unclear whether or not
it is possible to ‘mix & match’.

Instead, partial migration could be possible through the use of screenshots and moving
the navigation to a broader format. For example, the DXR files are playable in Internet
Explorer 7 (with the Adobe Flash58 plugin), showing trainsitions of screens between
each section. That is to say, whereas in the program you would traverse a sections
content using the menu, when opened in Internet Explorer, each section is transitioned
in term after a fixed delay.

Hence, if a screenshot were somehow taken of each of the separate pages from the DXR
file (or the images extracted, which looks possible), through manual navigation of the
program (and by merely viewing the navigational icon thumbnail pictures and matching
it to the corresponding slide), you could map out the navigation of the system. Instead
of screenshots, it may be possible to use dirOpener59 to extract information from the
DXR files, and load this into Adobe Director to extract the images directly.

Assuming the images were extracted, you could then put each separate slide on a web
page, and link between them to emulate the effect of the original program. This, com-
bined with the background sound from the extracted DIR file, would be a migration of
the full content of the original.

The migration strategy outlined above is time consuming, and would require consid-
erably cost and effort. However, it is preferable to emulation in terms of LTP and
accessibility of the content, and so would be my recommended choice, assuming the
images could easily be extracted by the use of dirOpener or similar tools. It has the
advantage of being cross platform, and suitable for LTP if the image format was PNG
or similar60. On the other hand, the reproduction would not be the original, but I think
with the possibility of all of the content being migrated and the core navigation system
conceptually preserved, this is vastly outweighed by the benefits.

Cyborg’s Eye is an interactive website which provides a virtual tour of Ljubljana,
through the use of Java applets for ‘aerial views’, images, surround video, and live
streams.

The live streams functionality does not work, evidently due to the web provider being
shut down, no doubt years ago. The surround video also did not function in Firefox or
Internet Exploer by default, and there’s one VRML61 file that also didn’t function.

58http://en.wikipedia.org/wiki/Adobe Flash
59http://j-roen.blogspot.com/2005/11/diropener.html
60See Appendix B
61http://en.wikipedia.org/wiki/VRML

30

Disregarding the live interactive element, the majority of the content is in the form of
the applet (or images if Java is not installed), surround video and general images make
up the bulk of the content. Whereas emulation could restore all of these, HTML in
itself is very well supported and potentially available without the need for emulation,
as are the other items.

The major obstacles for migrating are the surround sound files. The Java applet should
is compiled into bytecode, and therefore runnable on any Java certified vVM. This
means no migration is necessary, and by very virtue of the VM, we can be reasonable
confident the applet will continue to work in the future.

The surround video uses obsolete technology, in the form of SVH files. This tech-
nology seems primarily routed at the very early days of the modern internet, and so
is badly documented. However, the surround videos are accessible from tInternet Ex-
plorer 7 using an ActiveX control.

In the HTML source, the code to invoke the control is as follows:

CLASSID="clsid:7142BA01-8BDF-11CF-9E23-0000E8A37440"
CODEBASE="bin/svideo.cab#version=1,0,0,180"

The CLASSID property identifies the control, and the CODEBASE property points
to its physical location in terms of a URI. I found a working control by searching
for the CLASSID, ‘7142BA01-8BDF-11CF-9E23-0000E8A37440’ and downloaded
the corresponding CAB62 file, and placing it in a ‘bin’ folder, I created in the ‘cye’
directory.

The CODEBASE property also includes ‘version’ which dictates what version of the
control must be used. If the version of the control does not match the one specified,
the control is not loaded. To get around this limitation, I executed a small perl program
in the ‘cye’ directory to remove these version references, allowing the control to load
(should be one line):

>perl -pi.bak -e "BEGIN{@BAK=map{$_.$ˆI}@ARGV=glob qq(@ARGV)}
s/#version=1,0,0,180//g; END{ unlink @BAK or warn $!,@BAK}"
sv_*.html

When run from the ‘cye’ directory, it will edit all the HTML files containing references
to the surround video ActiveX control, and remove the version string.

With this done, the surround video files are accessible from Internet Explorer (see
figure 26). Internet Explorer 7 will ask if the control should be run, via a yellow bar

62http://en.wikipedia.org/wiki/Cabinet (file format)

31

at the top of the page. The control should be allowed and enabled to make use of the
embedded surround video.

Figure 26: Surround video in ‘Cyborg’s Eye’

Migrating the surround video files would be problematic, and so I propose the migra-
tion strategy make use of ActiveX controls, with additional documentation in to form
basic encapsulation63. Losing the surround video would be an unacceptable loss for
the artwork, and so the only alternative is to attempt to migrate the format. This could
be done by recording a full cycle of the surround video, and providing it in AVI64 or
QuickTime65 format. The recording could be done with a utility like FRAPS66, how-
ever a recording would lose the interactive element of the surround video and some of
the video, as you would be unable to change direction, and the video would only show
one angle.

The VRML file is accessible in Firefox and Internet Explorer (see figure 27) via a
browser plugin, such as Cosmo Player67. As VRML is an ISO standard68 with several
implementation players, it should be accessible in the future. However, the standard
has been replaced by the X3D69, and so it could be migrated to the newer format,
although as there’s only one VRML file and it contains very little content, this may not
be justifiable.

63See Appendix C.2
64http://en.wikipedia.org/wiki/AVI
65http://en.wikipedia.org/wiki/QuickTime#QuickTime file format
66http://www.fraps.com/
67http://cic.nist.gov/vrml/cosmoplayer.html
68http://www.web3d.org/x3d/specifications/vrml/
69http://en.wikipedia.org/wiki/X3D

32

Figure 27: VRML ‘Parlament’ in ‘Cyborg’s Eye’

In conclusion, I’d recommend migration, as all major aspects of the artwork are acces-
sible using modern technology. The core of the artwork is HTML, a very well sup-
ported and implemented standard, and the surround video still works using the same
browser plugin technology, a decade later. That said, I’d recommend including basic
documentation on VRML and the surround video format, along with a browser with
plugins installed.

Interactive Paint is, as the name suggests, an interactive paint program at heart. The
concept appears to be that the program was originally designed to be used by a touch
screen system, it provides a multilingual interface to pick a picture from a selection,
edit it (i.e change the colouring in some manner), sign it, and print it off. The image
manipulation is somewhat broken in Vista, and so I can only guess what the effects
are on the image, although while editing some audio files are played with a French
speaker (inexplicably French regardless of language chosen) remaking on something
(as to what remains a mystery to your humble author, who has next to no knowledge
of the language). The finished image is then supposedly printed off, although this
component didn’t work for me, but then again I don’t have a printer.

The core of this artworks seems to be the interactive element, where the user is creating
artwork using the pictures as a base. This being the case, whereas it would be perfectly
possible to compress the bitmap images to PNG format and the WAV files to FLAC70,
the interactive element is lost.

Without emulation, it would be very difficult to migrate the interactive elements of this
piece of artwork, given it relies heavily on an executable. Basic disassembly and string

70FLAC is a free lossless audio compressor, although its viability for LTP is still under scrutiny)

33

searching71 shows it was created using an antiquated version of Delphi72. Porting the
application to ensure it will run on new and later platforms would be extremely difficult
and unreliable.

From a migration standpoint, the only way to ensure the interactive element is pre-
served, is to literally recode the executable using newer technology such as Java73.
However, this would be a complex and arduous task, and faithful reproduction would
be challenging. It is even debatable whether this would still constitute the same piece
of artwork, although I believe the artistic value is contained in the concept and choice
of audio and visual elements, rather than the executable format.

In conclusion, putting the reliance on later versions of Microsoft Windows to maintain
backwards compatibility aside, emulation is the only viable route to keep the interactive
element of the artwork.

For migration, I’d recommend converting the images to PNG format, possibly convert-
ing the WAV files to FLAC, depending on your confidence of the lossless format, and
documenting the interactive functionality and concept, as well as including the original
executable and related files in archived format.

I believe migration a better route for preservation, as although it would make the pro-
gram unusable (with the incompatible image files), the concept would be preserved,
and the file size would be much lower. I believe thorough documentation of the pro-
gram (with screenshots of an example use), would suffice in terms of preservation,
along with the media content, and the tradeoff is worth the loss of the interactive func-
tionality.

2.5 Web Archiving

2.5.1 Scenario Description

Your company wants to preserve their website to document their growth and evolu-
tion over time. You are asked to analyse different preservation strategies for websites.
The developed strategies will be applied to two internet domains and to analyse their
advantages and disadvantages. Task

Your task is to:

1. Devise at least two preservation strategies for websites, highlighting their respec-
tive advantages and disadvantages.

71http://linux.about.com/library/cmd/blcmdl1 strings.htm
72http://en.wikipedia.org/wiki/Delphi
73http://java.sun.com

34

2. Harvest the two following internet domains documenting the date, time and
method of harvesting:

• www.digitalpreservationeurope.eu with a depth of 3 (approximately 15MB
of data)

• www.rai.it with a depth of 2 (approximately 40MB of data)

3. Apply the identified preservation strategies to the harvested websites, compare
and document the results (for example storage size, processing time, presentation
quality). Give an estimate of the resources (such as time, storage, effort, costs)
required to deploy the strategies.

2.5.2 Scenario Solution

Web archiving is an extremely complex task, in a very new part of digital preservation.
Not many web archive exists, and so I will propose two general systems suitable for
archiving based on different needs.

The first system is designed at simply displaying a website in the typical environment
of the times, with no additional information on metadata. In short, a snapshot of the
frontend of a website with no special effort made to accomodate exotic data types. Fun-
damentally, harvested data from a website in the age of dynamic and server generated
pages means that any archive can only be a brief snapshot of a sites state, potentially
crippled of all its functionality in the case of so called ‘Web 2.0’74 sites, that rely on
Ajax75 technologies. As This being the case, I feel for a snapshot of a site, it is not
worth the effort or resources to ensure maximum compatibility when so much will be
lost anyway in terms of the backend.

This system is designed to be easy to implement, generic, and as easy to operate as
possible. It’s separated into two parts, harvesting of the information and viewing it at a
later time, following the KISS principle76.

To harvest the data, I have opted for using the GNU ‘wget’77 utility. wget is command
line based, cross platform, and simple to use. This allows it to be potentially incorpo-
rated into a larger application, and its open source nature allows tailoring if required.

The wget options employed are as follows:

>wget -r -l DEPTH -p -k http://www.example.org

74http://en.wikipedia.org/wiki/Web 2.0
75http://en.wikipedia.org/wiki/Ajax (programming)
76http://en.wikipedia.org/wiki/KISS principle
77www.gnu.org/software/wget

35

The -r flag specified that links from the initial page should be followed, and the -l
flag specifies to which depth (hops). DEPTH should be replaced by a number, with
the default being 5. To map an entire domain, this would be set to 0 or -1. The -p
flag ensures all the files (e.g images) required to view a given HTML page are also
downloaded. Finally, the -k flag rewrites all links in terms of relative paths, which
would allow the website to be viewed ‘offline’, as it were.

These options form a basic generic web spider capable of harvesting a website to a
specific depth. The only change to the pages is the rewriting of the links, which is
required for viewing. It is an intentional decision not to do anything further to the
page, following the KISS principle, as too many changes may corrupt the website or
contaminate the content.

While harvesting the example websites with this method, I noted that harvesting the
DPE website to depth 3 resulted in far more files than advertised (over double when I
cancelled the harvest), and so I reduced the depth of 2. The opposite was noticed with
www.rai.it, and so its depth was raised to 3.

The harvested content from the DPE and rai.it websites take up 7.36mb and 13.5mb on
disk respectively. No compression is used in this strategy for simplicity, and because
of the risk of a slight corrupted of an encrypted file leading to catastrophic data loss.

The harvested sites are viewable as-is via a web browser, with any links to the same
domain78 rewritten to point to the local files. This forms the basis of the preservation,
and the first part of the strategy.

The second part of the strategy involves ensuring the data remains viewable. For this,
I recommend the use of a virtual machine. As an example, VMWare offer a ’browser
appliance’79, which is a small virtual machine designed for browsing, including Fire-
fox running under a lightweight Ubuntu80 system. As a VMWare virtual machine,
it is cross platform and able to run on all major operating systems that have the free
VMWare installation. Preservation can take the form of a website hosting the harvested
domain in folders, and being accessed by the virtual machine, or the purchase of a full
VMWare license, and then editing the virtual machine as to include the harvested do-
mains on file.

In conclusion, this strategy provides a simplistic and generic method of website preser-
vation, useful for the small scale archiving of website snapshots to be viewed on a
whim. It is not ‘heavy duty’, does not store metadata on the harvested sites, and pro-
vides no method of ensuring data on the sites can be viewed. It relies on the fact that a
well designed website worth archiving should not rely on anything exotic, but use well
established technologies that would be included with the VM viewer.

78subdomains are not treated as the same domain, to change this consult the wget documentation
79http://www.vmware.com/appliances/directory/browserapp.html
80http://en.wikipedia.org/wiki/Ubuntu

36

The second strategy is more involved, and so I will explain the basic concept and
omit a specific implementation due to the range of uses available.

This strategy uses open source technology, and relies on the wisdom of the inter-
net archive81 as a base. Sites are crawled using Heritrix82, an opensource ‘industrial
strength’ Java webcrawler, developed and maintained by the internet archive. Heritrix
provides a web based UI for crawling (see figure 28).

Figure 28: Heritrix Web UI

The internet archive provides the biggest and oldest website archive database, which
has a public frontend called the ‘Wayback Machine’83. Heritrix is used to crawl web-
sites, in a highly configurable manner, and store the results in an ARC84 file. This file
can then be queries and data extracted by open source tools85.

This strategy provides far more archival information, such as MIME types, date of
crawl, and a checksums to ensure integrity. The ARC format also allows entire domains
to reside in one file, resorting to a compression format that is susceptible to corruption
causing massive loss of data.

Viewing of the ARC files depends on exactly what you wish to gain from them. This
strategy is not for simply viewing the content again, but much broader in scope, for
example collecting statistics of tracking change over time. As such, it’s difficult to
provide examples without defining a limited scope.

Using the mature and well maintained codebase of the internet archive is a clear prefer-
able choice for advanced archiving. As with any opensource code, things can be con-
figured and tailored towards specific needs, as well as no costs due to licensing.

81http://crawler.archive.org
82http://crawler.archive.org
83http://www.archive.org/web/web.php
84http://www.archive.org/web/researcher/ArcFileFormat.php
85http://www.archive.org/web/researcher/tool documentation.php

37

resources and costs of the two strategies are not really comparable as I’ve aimed
them at different purposes. The first one is small scale and designed for snapshots, us-
ing free technology, and designed to be as automated as possible. In a general scenario,
resources could be flexible as the harvesting tool allows configurable delays between
requests, and so processor resources would be minimal, as would the machine specifi-
cations required to perform the harvesting. Time and effort should also be minimal, as
the strategy is designed to be extremely simple, easy to set-up, with minimum hassle.

The second strategy may require considerably more resources and effort, if used on
an enterprise scale. Depending on what is desired from the archive, custom tools may
have to be developed, or existing ones modified, and a frontend for the data put in
place. That said, the harvesting is again taken care of by Heritrix, and with the option
to set up custom harvesting profiles, the set-up cost would be a one time event.

The results of the two are not comparable, they apply to different needs on different
scales. On a simple scale, Heritrix would allow compression to be used more easily,
resulting in smaller files, containing more information, and better crawling. However
the information would not be immediately accessible, and a big overhead would be
incurred providing access to it for a user.

38

Appendices

A File Identification Tools/Resources

A.1 DROID

Description from the website86: DROID (Digital Record Object Identification) is a
software tool developed by The National Archives to perform automated batch identi-
fication of file formats. Developed by its Digital Preservation Department as part of
its broader digital preservation activities, DROID is designed to meet the fundamental
requirement of any digital repository to be able to identify the precise format of all
stored digital objects, and to link that identification to a central registry of technical
information about that format and its dependencies.

DROID is signature based, with the database containing information on file extensions,
and magic numbers87. It requires Java88 to run, and provides a Graphical User Interface
(GUI).

Figure 29: Screenshot of the DROID 3.0

What DROID lacks in identification prowess it makes up for in usability and aesthetic
86http://droid.sourceforge.net
87http://en.wikipedia.org/wiki/File format#Magic number
88http://java.sun.com

39

value. Not to put too fine a point on it, it’s lots of icing without any cake. Out of all the
files I attempted to identify, it failed to identify a single one. Given a known file, e.g
one with a well known extension, it works, but with more exotic files - no such luck. It
appears the magic number database is extremely limited, as well as being heuristically
simplistic, as was evident in the Scenario 1 identification of the graphics file. The
header was slightly corrupted, but even a cursory check past the first few bytes for a
match would have been successful.

Overall, DROID appears a good idea in theory, with a good framework to support it. In
practice, its database is too small to be of much value. Hopefully in the coming years
it will expand, and add better heuristics to go with its polished looks.

A.2 file

The Linux file89 utility attempts to classify files using a range of methods. It works
by conducting language tests, file system tests and magic number tests. For most file
identification, it is the magic number tests which are relevant, and which provide file
with the information it needs to classify a file.

file is an old utility, included on all popular Linux distributions, which makes it perfect
for quickly trying to detect the format of a file. Its large database of common format
magic numbers means it should correctly identify the majority of common file formats
in use on Linux systems.

However, the tool is not really suited for identifying exotic or very old Windows
platform-dependent files.

A.3 FILExt

FILExt (http://filext.com) is a website dedicated to cataloguing known file extensions.
It allows you to search for a file extension, and returns all the known matches for that
extension. The results page displays lots of useful information about each result, such
as the file type name, originating company, mime type, and useful notes about the file
format (see figure 30).

89http://linux.about.com/library/cmd/blcmdl1 file.htm

40

Figure 30: Screenshot of FILExt results

A.4 Wotsit

Wotsit (http://www.filext.org) is another website dedicated to file extensions, similar
to FILExt. Apart from being an alternative resource which may have some extensions
listed that FILExt does not, it also serves a slightly different purpose. Whereas FILExt
documents lots of information and background of the formats associated with a partic-
ular extension, Wotsit instead provides links to downloable format specifications, that
describe the underlying structure of a format from a programmer’s perspective. Wot-
sit’s use, therefore, is more related to working with a format to manipulate it or extract
information, as opposed to simply describing where it can be found.

Figure 31: Screenshot of Wotsit alphabetical results listings

41

B Digital Image Preservation Formats

Choosing which format to use to preserve digital images is an important decision that
shouldn’t be taken lightly. What follows is an evaluation of image formats suitable for
long term preservation of digital images. The evaluation is primarily aimed at raster
image formats, although some formats are general purpose.

B.1 TIFF

TIFF is a tag-based file format designed for storing raster images. The current version
is Revision 6.0, published in 1992[15]. The format in an uncompressed state has been
labelled “High Confidence Level” for preserving raster images by the Florida Digital
Archive (FDA)[1], as well as labelled a “Preferred Deposit Format” by the Arts and
Humanities Data Service (AHDS)[4]. The AHDS also go on to state it is the de facto
standard for image preservation, although it further states an uncompressed TIFF of at
least v6 is the only suitable TIFF for preservation purposes.

The TIFF was originally created jointly by Aldus90 and Microsoft. Today, the specifi-
cation is controlled by Adobe Systems Incorporated. TIFF does not require a license
for use, and its proliferation since conception has resulted it in its wide adoption owing
to its suitability as a long term image preservation format.

B.2 PNG

The Portable Network Graphics (PNG) format was originally designed to replace the
GIF89a standard for use on the internet[14] in 1995, by being a free an open standard.
The related GIF patents are now expired, but the PNG format still holds value as a
general purpose raster image format.

PNG has been given a “High Confidence Level” by the FDA and is listed as a “Preferred
Deposit Format” by the AHDS, matching the TIFF format. It’s open nature and well
documented specification91 as an ISO standard (15948:2003) as well as good platform
support (supported by all major browsers and by the latest versions of the three main
desktop operating systems (Windows, Linux, and Mac OSX), makes it suitable as a
long term image preservation format.

90http://en.wikipedia.org/wiki/Aldus
91See http://www.w3.org/TR/PNG/

42

B.3 JPEG2000

The JPEG2000 format is a revision of the JPEG format which includes among other
things lossless compression. It has been given a “Medium Confidence Level” by the
FDA, and marked as a “Problematic Deposit Format” by the AHDS, citing slow uptake
and a lack of industry support[1, 4].

However, a later study (2008) concludes that JPEG2000 is “a good current solution for
our digital repositories”, and ranks it above TIFF in terms of robustness[6].

B.4 Comparisons

All of the above formats are described as lossless, which means they retain image
quality even when compressed. This means if a better suited format is released in the
future, images in any of these formats can be converted to it with no loss of quality
from the original.

This said, JPEG2000 has better compression than TIFF[6], and is emerging as a good
general purpose replacement. I believe at the time of writing, PNG is the best choice for
digital image preservation as the format is viewable and provides good compression,
like JPEG2000, and despite still not having the market share of GIF, is well supported
by applications and operating systems.

43

C Common Preservation Strategies

The following is a brief outline of the three prevailing methods of digital preservation.

C.1 Emulation

Emulation allows digital objects to run on a different platform from that which they
were designed to run on, by emulating the original platform[7].

Whereas not nearly as popular as migration, emulation has benefits in the preservation
of such things as software, where the dynamic and complex nature of the digital object
is such that it relies on a platform too heavily to be migrated[11]. It can also be more
cost effective over time, despite a higher upfront cost, due to less labour hours and
continual work as present with migration[8].

C.2 Encapsulation

Encapsulation involves grouping together digital objects with the materials needed to
provide access to those objects. It can function on a hardware and software level.
Usually it would involve formal specifications of the technologies in use, as well as
much metadata as possible to describe the digital objects[19].

C.3 Migration

Migration is the predominant preservation strategy, which involves the conversion of
older formats to newer ones, or ones suitable for Long Term Preservation (LTP).

As migration is about fundamentally converting formats, data loss can be an issue with
some aspects of the original not being able to be converted for a variety of reasons.
This said, in a lot of cases enough information can be converted to make any small
lapses ignorable.

As the main preservation strategy, there are many variants of migration, although all
invariably involve format conversion. The main advantage of migration, apart from it
often being the only viable method, is that it can make old formats usable in different
ways on newer platforms, by its very nature.

44

C.4 Physical Preservation

All of the above digital preservation strategies carry an underlying assumption that the
physical medium in which the data resides will remain intact. In reality, this assumption
is naı̈ve at best and negligent at worst. The physical medium in which digital data
is stores is always susceptible to degradation and eventual corruption leading to data
loss.[17, 10]

To combat this, a migration strategy called refreshment should be invoked at regu-
lar intervals. Refreshment involves combatting degradation by moving data from one
physical medium to another on a bit level. This way degradation will not become an
issue, and there will be no added problems with the mediums themselves becoming
obsolete.[5]

Refreshment itself works in conjunction with the above strategies, and should be scene
purely as a method of ensuring the integrity of the underlying physical medium.

45

D Code Listings

Below are the descriptions and code listings for all the custom tools I developed to aid
preservation of file types in the scenarios. I am an ardent supporter of free and open
software, and so would always advocate custom programming over proprietary system
if a free and open source tool did not exist, and it was possible to create something of
a high quality.

Custom tools also have the advance of being far more customisable than proprietary
solutions, as well as giving the ability to mix and match them to fully automate a
preservation strategy. In some cases, it is possible to mix the two to give the flexibil-
ity of a custom system with the stability and maturity of well established proprietary
software.

D.1 Scenario 1

D.1.1 Image Converter

The image converter converts images between image formats via the aid of ImageMag-
ick in the form of the Image::Magick Perl module. The program accepts a list of files
and optionally a directory (via the -d flag) to be converted to a particular format, which
is specified via the -t flag (if no -t flag is specified, it defaults to PNG).

Example: perl image.pl -t tiff "logo Pur.bmp"

Listing 1: ”image.pl”
1 #!/usr/bin/perl

3 use warnings;
use strict;

5

use Getopt::Long;
7 use Image::Magick;

9 my ($help , $dir);
my $type = ’png’;

11 GetOptions(’h’ => \$help , ’d=s’ => \$dir , ’t=s’ => \$type);

13 if ($help) {
print "Usage: $0 [-t type] [-d directory] <files >\n";

15 print "If -d is used , all files in the given directory will be converted\n";
print "Files can be relative or absolute paths\n";

17 print "Type can be any common type (png, tiff etc)\n";
print "Example: $0 \"logo.bmp\" \"..\\test.jpg\"";

19 exit;
}

21

die "Arguments expected , use the -h flag for help\n"
23 unless $dir || @ARGV;

46

25 if ($dir) {
format directory

27 $dir =˜ s!\\!/!g;
$dir =˜ s!(\s)!\\$1!g;

29

print convert_file($_) for (<$dir/*>);
31 }

33 print convert_file($_) for (@ARGV);

35 sub convert_file {
my $file = shift;

37 my ($out , $error);

39 my $image = Image::Magick ->new;

41 # remove extension if one
$out = ($file =˜ /(.*)\..*/ && $1) || $file;

43

$error = $image ->Read($file);
45 return $error if $error;

47 $error = $image ->Write(filename => "$out.$type");
return $error if $error;

49

return "Successfully converted ’$file ’\n";
51 }

D.1.2 Word Document Converter

The Word document converter converts files between any file readable by Microsoft
Word to any output file type supported by Microsoft Word. The converter must be run
on the Windows operating system, with Microsoft Word installed, as it interfaces with
Microsoft Word via OLE.

The program accepts a list of files to be converted and optionally a directory (via the -d
flag) to a particular format, which is specified via the -t flag (if no -t flag is specified,
the format will be Microsoft Word’s default save format).

The -t flag accepts numerical formats, which are listed at http://msdn.microsoft.com/en-
us/library/bb238158.aspx, as well as a ‘pdfa’92 type, if using Word 2007 with the PDF
add-in. If additional exporter formats are installed, these can also be used by their nu-
merical values (a list of available exporter types and their correct numerical values can
be shown by using ‘list’ as the value of the -t flag).

The program was tested with Microsoft Word 2007 and 2000, but should be compat-
ible with Microsoft Word 97 and above. What input/output formats are available will
depend on which version of Microsoft Word is installed.

Output files are saved in the same directory as the input file, with ’-new’ appended to

92http://en.wikipedia.org/wiki/PDF/A

47

the file name. The file extension of the output file will depend on the value of the -t
flag.

The -v flag can be used to make the Word instance visible, which may be helpful for
debugging purposes.

Example: perl docs.pl -t 0 "report.doc"

Listing 2: ”docs.pl”
1 #!/usr/bin/perl

3 use warnings;
use strict;

5

use Getopt::Long;
7

use Win32::OLE;
9 use Win32::OLE::Const ’Microsoft.Word’;

11 my ($help , $dir , $visible);
my $type = 16;

13 GetOptions(’h’ => \$help , ’d=s’ => \$dir , ’t=s’ => \$type , ’v’ => \$visible);

15 if ($help) {
print "Usage: $0 [-t type] [-v] [-d directory] <files >\n";

17 print "If -d is used , all files in the given directory will be converted\n";
print "If -v is used , the Word instance will be visible (good for debugging)\ ←↩

n";
19 print "Files can be relative or absolute paths\n";

print "Numerical type values listed at:s"
21 . " http://msdn.microsoft.com/en-us/library/bb238158.aspx\n";

print "Along with the numerical values , ’pdfa’ is also supported"
23 . " (Word 2007 and above), as well as any exporter types (use type list ←↩

to"
. " see a list of these)\n";

25 print "Note: converted files will have ’-new’ appended to the filename\n";
print "Example: $0 \"report.doc\"";

27 exit;
}

29

die "Arguments expected , use the -h flag for help\n"
31 unless $dir || $type eq ’list’ || @ARGV;

33 die "Invalid type , use the -h flag for more information"
if ($type ne ’pdfa’ && $type ne ’list’ && $type !˜ /-?\d+$/);

35

my $word = Win32::OLE->new(’Word.Application’)
37 or die "Could not interface with Microsoft Word\n";

39 if ($type eq ’list’) {
my @converters = Win32::OLE::in($word ->FileConverters());

41

for my $converter (@converters) {
43 my $num = defined $converter ->{SaveFormat} ? $converter ->{SaveFormat} : -1;

45 print "Name: ‘" . $converter ->{ClassName} . "’, Save Format Number: $num\n"
if ($num >= 0);

47 }

49 $word ->Quit();
exit;

51 }

53 if ($type eq ’pdfa’ && $word ->Application ->Version() < 12) {

48

print "Word 2007 or higher required for type pdfa\n";
55 $word ->Quit();

exit;
57 }

59 $word ->{’Visible’} = $visible;
$word ->{’DisplayAlerts’} = 0;

61

if ($dir) {
63 # format directory

$dir =˜ s!\\!/!g;
65 $dir =˜ s!(\s)!\\$1!g;

67 convert_file($_) for (<$dir/*>);
}

69

convert_file($_) for (@ARGV);
71

$word ->Quit();
73

sub convert_file {
75 s!/!\\!g; # change delimeter back to \

77 my $file = $word ->Documents ->Open($_)
or return print "Could not open file ’$_’\n";

79

my $name = $file ->Name();
81 my $new = ($file ->FullName() =˜ /(?:(.*)\.)|(.*)/ && ($1 || $2) . ’-new’);

83 if ($type eq ’pdfa’) {
$file ->ExportAsFixedFormat({ OutputFileName => $new ,

85 ExportFormat => 17,
UseISO19005_1 => 1 });

87 $file ->close() && return print "Unable to convert file ’$name ’\n"
if Win32::OLE->LastError();

89 }
else {

91 $type += 0; # ensure integer (weird bug)

93 $file ->SaveAs({ FileName => $new , FileFormat => $type});
$file ->close() && return print "Unable to convert file ’$name ’\n"

95 if Win32::OLE->LastError();
}

97

print "Successfully converted ’$name ’\n";
99 $file ->close();

}

D.1.3 Excel Document Converter

In a similar vein to the Word Document Converter, the Excel Document converter
converts files between any file readable by Microsoft Excel, to any output format sup-
ported by Microsoft Excel. The converter must run on Windows, with Microsoft Excel
installed.

The program accepts a list of files to be converted and optionally a directory (via the -d
flag) to a particular format, which is specified via the -t flag (if no -t flag is specified,
the format will be Microsoft Excel’s default save format).

49

As with the document converter, the -t flags accepts a range of formats, listed at
http://msdn.microsoft.com/en-us/library/bb241279.aspx, as well as ‘pdf’, if using Ex-
cel 2007 with the PDF add-in. If additional exporter formats are installed, they will
also be available via their numerical ID, but unfortunately the program does not sup-
port listings supported IDs at this point.

The program was tested with Microsoft Excel 2007 and 2000, but should be compat-
ible with Microsoft Word 97 and above. What input/output formats are available will
depend on which version of Microsoft Excel is installed.

Output files are saved in the same directory as the input file, with ’-new’ appended to
the file name. The file extension of the output file will depend on the value of the -t
flag.

The -u flag when specified in conjunction with the -d flag, attempts to resolve all links
in the converter directory. For example if ‘file1.wk1‘ links information ‘file2.wk1’, this
link would be converted to point to ‘file2.xls’, or whatever file extension the converted
file has.

The -v flag can be used to make the Excel instance visible, which may be helpful for
debugging purposes.

Example: perl sheets.pl -d "C:\excel\" -u

Listing 3: ”sheet.pl”
#!/usr/bin/perl

2

use warnings;
4 use strict;

6 use Getopt::Long;

8 use Win32::OLE;
use Win32::OLE::Const ’Microsoft.Excel’;

10

my ($help , $dir , $visible , $update_links);
12 my $type = 16;

14 GetOptions(’h’ => \$help , ’d=s’ => \$dir , ’t=s’ => \$type ,
’v’ => \$visible , ’u’ => \$update_links);

16

if ($help) {
18 print "Usage: $0 [-t type] [-v] [-u] [-d directory] <files >\n";

print "If -d is used , all files in the given directory will be converted\n";
20 print "If -v is used , the Excel instance will be visible"

. " (good for debugging)\n";
22 print "If -u is used , links will be updated if possible (requires -d)\n";

print "Files can be relative or absolute paths\n";
24 print "Numerical type values listed at:"

. " http://msdn.microsoft.com/en-us/library/bb241279.aspx\n";
26 print "Along with the numerical values , ’pdf’ is also supported"

. " (Excel 2007 and above), as well as any exporter types\n";
28 print "Note: converted files will have ’-new’ appended to the filename\n";

print "Example: $0 \"book.wk1\"";
30 exit;

}

50

32

die "Arguments expected , use the -h flag for help\n"
34 unless $dir || $type eq ’pdf’ || @ARGV;

36 die "Invalid type , use the -h flag for more information"
if ($type ne ’pdf’ && $type ne ’list’ && $type !˜ /ˆ-?\d+$/);

38

my $excel = Win32::OLE->new(’Excel.Application’)
40 or die "Could not interface with Microsoft Excel\n";

42 $excel ->{’Visible’} = $visible;
$excel ->{’DisplayAlerts’} = 0;

44

my $file_suffix = ’-new’;
46

if ($dir) {
48 # format directory

$dir =˜ s!\\!/!g;
50 $dir =˜ s!(\s)!\\$1!g;

52 convert_file($_) for (<$dir/*>);
}

54

convert_file($_) for (@ARGV);
56

$excel ->Quit();
58

sub convert_file {
60 s!/!\\!g; # change delimeter back to \

62 my $file = $excel ->Workbooks ->Open({ FileName => $_, ReadOnly => 1,
UpdateLinks => $update_links ? 3 : 2 })

64 or return print "Could not open file ’$_’\n";

66 my $name = $file ->Name();
my $new = ($file ->FullName() =˜ /(?:(.*)\.)|(.*)/

68 && ($1 || $2) . $file_suffix);

70 my @links = Win32::OLE::in($file ->LinkSources());

72 # update any links (source files need converting first)
if ($file and $update_links

74 and my $filedir = ($file ->FullName() =˜ /(.*\\)/ && $1)) {
for my $link (@links) {

76 next unless $link;

78 my $name = ($link =˜ /.*\\([ˆ\\]+)$/ && $1) || next;
next unless (-e $filedir . $name && $name =˜ /(?:(.*)\.)|(.*)/);

80

my $prefix = ($1 || $2) . $file_suffix; # file without extension
82

format directory for glob
84 my $source = $filedir . $prefix . ’.*’;

$source =˜ s!\\!/!g;
86 $source =˜ s!(\s)!\\$1!g;

88 # link source file already converted
if (my @source = glob $source) {

90 my $ext = ($source[0] =˜ /.*\.([ˆ.]+)/ && $1);

92 $file ->ChangeLink($link , $filedir . $prefix . ’.’ . $ext);
next;

94 }

96 # put us at end of queue so link files can be converted first
push @ARGV , $_;

98 $file ->close();
return;

51

100 }
}

102

if ($type eq ’pdf’) {
104 $file ->ExportAsFixedFormat({ FileName => $new , Type => 0 });

$file ->close() && return print "Unable to convert file ’$name ’\n"
106 if Win32::OLE->LastError();

}
108 else {

$type += 0; # ensure integer (weird bug)
110

$file ->SaveAs({ FileName => $new , FileFormat => $type});
112 $file ->close() && return print "Unable to convert file ’$name ’\n"

if Win32::OLE->LastError();
114 }

116 print "Successfully converted ’$name ’\n";
$file ->close();

118 }

D.2 Scenario 3

D.2.1 CDS/ISIS Exporter

The ISIS Exporter loads a CDS/ISIS database via the Biblio::ISIS Perl module, and at-
tempts to export the database to either XML or USMARC formats (USMARC requires
the Marc::Record Perl module).

The XML exporter is very simplistic, and tried to ascertain the fields and elements for-
mat by running through the records and collecting as much information as possible. As
a result, in sample exports, the XML database acquires more elements than the WinI-
SIS export function for actual records, but omits elements that are seemingly defined
but never used in any of the records. Furthermore, field names are not exported, and
fields are listed via their tag numbers, as is the default with the WinISIS Export to XML
facility.

The integrity of the XML exporter has not been thoroughly tested due to time con-
straints, although UNESCO have a utility called XML2Isis93 which appears to be able
to read the structure of the exported XML reasonably well.

The program accepts a path to the CDS/ISIS directory, and a type which is specified
via the -t flag (if no -t flag is specified, it defaults to XML). The allowed types are:
XML, MARC.

Example: perl isis.pl -t XML "C:\isis\db1"

Listing 4: ”isis.pl”

93http://www.unesco.org/isis/files/winisis/windows/utilities/

52

#!/usr/bin/perl
2

use warnings;
4 use strict;

6 use Getopt::Long;
use Biblio::Isis;

8

my $help;
10 my $type = ’xml’;

GetOptions(’h’ => \$help , ’t=s’ => \$type);
12

if ($help) {
14 print "Usage: [-t type] $0 <ISIS DB directory >\n";

print "Type is either xml or marc\n";
16 exit;

}
18

die "Arguments expected , use the -h flag for help\n"
20 unless @ARGV;

22 die "Invalid type , valid types are: xml, marc\n"
if (lc $type ne ’xml’ && lc $type ne ’marc’);

24

format directory
26 my $directory = $ARGV[0] . ’/’;

$directory =˜ tr!\\!/!;
28 $directory =˜ s!(\s)!\\$1!g;

30 # get database name from directory
my $dbname = ($directory =˜ m!.*/([ˆ/]+)/$! && uc $1) || ’DATABASE’;

32

my $isis = new Biblio::Isis(isisdb => $directory , read_fdt => 1)
34 or die "Could not load the Database/n";

36 # change format to work with direct open
$directory =˜ s/\\(\s+)/$1/g;

38

if (lc $type eq ’marc’) {
40 use MARC::Record;

42 open OUTPUT , ’>’, $directory . "$dbname.dat"
or die "Could not create file ’$dbname.dat ’: $!\n";

44

for my $mfn (1..$isis ->count) {
46 my $record = $isis ->to_hash($mfn) || next;

my $marc = MARC::Record ->new();
48

for my $key (sort { $a <=> $b } keys %$record) {
50 next if $key eq ’000’;

my $tag = (length $key < 3 ? ’0’ . $key : $key);
52

my $field = MARC::Field ->new($tag , ’’, ’’, ’’ => ’’);
54

for my $value (@{ $record ->{$key} }) {
56 unless (ref $value) {

$field ->add_subfields(’0’, $value);
58 next;

}
60

for my $subkey (keys %$value) {
62 $field ->add_subfields($subkey , $value ->{$subkey});

}
64 }

66 $marc ->append_fields($field);
}

68

53

print OUTPUT $marc ->as_usmarc();
70 }

}
72

elsif (lc $type eq ’xml’) {
74 open OUTPUT , ’+>’, $directory . "$dbname.xml"

or die "Could not create file ’$dbname.xml ’: $!\n";
76

my %tags;
78 my @tags;

80 print OUTPUT "<DATABASE_$dbname >\n";

82 for my $mfn (1..$isis ->count) {
my $record = $isis ->to_hash($mfn) || next;

84 next unless (%$record);

86 print OUTPUT "<RECORD >\n";

88 for my $key (sort { $a <=> $b } keys %$record) {
next if $key eq ’000’;

90 my $field = $record ->{$key};

92 $tags{$key} ||= {};

94 for my $value (@$field) {
print OUTPUT "<Tag_$key >";

96

if (ref $value eq ’HASH’) {
98 for my $subkey (keys %$value) {

print OUTPUT "<Tag_${key}_$subkey >" . $value ->{$subkey}
100 . "</Tag_${key}_$subkey >";

$tags{$key}->{$subkey} = 1;
102 }

}
104 elsif ($value) {

print OUTPUT $value;
106 }

108 print OUTPUT "</Tag_$key >\n";
}

110 }

112 print OUTPUT "</RECORD >\n";
}

114

print OUTPUT "</DATABASE_$dbname >\n";
116 close OUTPUT;

118 {
inplace editing of file

120 local ($ˆI, @ARGV) = (’.tmp’, ($directory . "$dbname.xml"));

122 while (<>) {
print && next if ($. > 1); # write original file back

124

print "<?xml version =\"1.0\" encoding=\"ISO -8859-1\"?>\n";
126 print "<!DOCTYPE DATABASE_${dbname}[\n";

print "<!ELEMENT DATABASE_$dbname (RECORD*)>\n";
128

list of record fields
130 # TODO: find out why ? is sometimes * and change appropiately

push @tags , "Tag_$_?" for (sort { $a <=> $b } keys %tags);
132 print "<!ELEMENT RECORD (" . join(’, ’, @tags) . ")>\n";

134 # element list
for my $key (sort { $a <=> $b } keys %tags) {

136 if (!%{ $tags{$key} }) {

54

print "<!ELEMENT Tag_$key (#PCDATA)*>\n";
138 }

else {
140 print "<!ELEMENT Tag_$key (#PCDATA | ";

print join(’ | ’, map { "Tag_${key}_$_" } keys %{ $tags{$key} });
142 print ")*>\n";

144 print "<!ELEMENT Tag_${key}_$_ (#PCDATA)>\n"
for (keys %{ $tags{$key} });

146 }
}

148

print "]>\n";
150 print; # put back original first line

}
152

unlink $directory . "$dbname.xml.tmp"
154 if (-e $directory . "$dbname.xml.tmp");

}
156

print "Database ’$dbname’ successfully exported to XML format";
158 }

160 close OUTPUT;

55

References

[1] Florida Digital Archive. Recommended data formats for preservation purposes.
URL: http://www.fcla.edu/digitalArchive/pdfs/recFormats.pdf.

[2] Ian Barnes. Preservation of word processing documents. July 2006. URL:
http://www.apsr.edu.au/publications/word processing preservation.pdf.

[3] Geoff Brown. Adding archival finding aids to the library cata-
logue: Simple crosswalk or data traffic jam? Canadian Journal
of Library and Information Practice and Research, 2, 2007. URL:
http://gir.uoguelph.ca/index.php/perj/article/viewFile/298/558.

[4] Michael Eadie. Preservation handbook: Bitmap (raster) images, Jul 2005. URL:
http://ahds.ac.uk/preservation/Bitmap-preservation-handbook d6.pdf.

[5] Consultative Committee for Space Data Systems (CCSDS). Rec-
ommendation for space data systems standards, Jan 2002. URL:
http://public.ccsds.org/publications/archive/650x0b1.pdf.

[6] Paolo Buonora Franco Liberati. A study on jpeg 2000 file
robustness. D-Lib Magazine, 14(7/8), Aug 2008. URL:
http://www.dlib.org/dlib/july08/buonora/07buonora.html.

[7] Stewart Granger. Emulation as a digital preservation
strategy. D-Lib Magazine, 6(10), Oct 2000. URL:
http://www.dlib.org/dlib/october00/granger/10granger.html.

[8] Stewart Granger. Digital preservation & emulation: from theory to practice, Sep
2001. URL: http://www.leeds.ac.uk/cedars/pubconf/papers/ichim01SG.html.

[9] Adobe Systems Incorporated. Pdf/a - archiving standard faq, 2003. URL:
http://www.adobe.com/government/pdfs/faq archivingstandard pdf a.pdf.

[10] Julian Jackson. Digital longevity: the lifespan of digital files. URL:
http://www.dpconline.org/graphics/events/digitallongevity.html.

[11] Koninklijke Bibliotheek National library of the Netherlands. What is emulation?
URL: http://www.kb.nl/hrd/dd/dd projecten/projecten emulatiewatis-en.html.

[12] Microsoft. Open specification promise, 2008. URL:
http://www.microsoft.com/interop/osp/default.mspx.

[13] Library of Congress (LOC). Ead application guidelines: Appendix b, 1999. URL:
http://www.loc.gov/ead/ag/agappb.html#sec4.

[14] Library of Congress (LOC). Sustainability of digital formats: Png, Oct 2006.
URL: http://www.digitalpreservation.gov/formats/fdd/fdd000153.shtml.

[15] Library of Congress (LOC). Sustainability of digital formats: Tiff, Oct 2006.
URL: http://www.digitalpreservation.gov/formats/fdd/fdd000022.shtml.

56

[16] Library of Congress (LOC). Sustainability of digital formats: Pdf/a-1, Feb 2007.
URL: http://www.digitalpreservation.gov/formats/fdd/fdd000125.shtml.

[17] Optical Storage Technological Association (OSTA). Understanding cd-r and cd-
rw disc longevity. URL: http://www.osta.org/technology/cdqa13.htm.

[18] Roger Reeves. Pdf/a - a new standard for long-term archiving, 2008. URL:
http://www.pdfa.org/doku.php?id=pdfa:en:pdfa whitepaper.

[19] Preserving Access to Digital Information (PADI). Encapsulation. URL:
http://www.nla.gov.au/padi/topics/20.html.

57

