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Abstract. Self-Organizing Maps have a wide range of beneficial properties for 
data mining, like vector quantization and projection. Several measures exist that 
quantify the quality of either of these properties. The scope of this work is to 
describe and compare some of the most well-known measures. This is done by 
conducting a series of experiments for different map topologies with several 
well-known data sets. The measures are examined whether they are suited to de-
termine hyperparameters like the optimal map size, how well the measure itself 
is suited to compare different maps, and if they allow comparison to other algo-
rithms similar to the SOM (e.g. Sammons Mapping). 

1   Introduction 

The Self-Organizing Map [7] is a very popular artificial neural network (ANN) algo-
rithm based on unsupervised learning. The SOM is used in various data mining tasks. 
It provides several very beneficial properties, like vector quantization and projection. 
To make the SOM comparable to other algorithms of these categories (e.g. projection 
methods like Sammon's mapping), and to measure the quality of the training algo-
rithms, several measures have been proposed. This paper provides an overview of 
some of the most important ones: 
The Quantization Error is described in Section 4.1. It is a well-known measure from the 
domain of clustering and vector quantization. In Section 4.2, the Topographic Product 
is described, which is  one of the oldest quality measures of the SOM. It measures the 
input space representation abilities of a given map. In Section 4.3, the Topographic 
Error is outlined, which is the simplest of the functions that assess the topology pres-
ervation. Section 4.4 is dedicated to the Trustworthiness and Neighborhood Preserva-
tion measures which are based on ranking pair wise distances for both the input and 
output dimension. Finally, in Section 4.5 the SOM Distortion Measure is described. It 



is particularly important since it has been shown to be the cost function the SOM 
algorithm optimizes. 
The experiments described in the later chapters are conducted with the following data-
sets: 
The Iris dataset is a popular multivariate data set which was introduced by R. A. Fisher 
as an example for discriminant analysis [15]. This dataset is included in many applica-
tions that deal with statistics and data analysis 1. The Iris data reports on four charac-
teristics of the iris flower, "sepal length", "sepal width", "petal length", and "petal 
width". The data set contains 50 samples for each of the three species ("Setosa", "Vir-
ginica" and "Versicolor"), with a total of 150 samples. Setosa iris flowers are clearly 
different from the other two species, while Virginica and Versicolor are harder to dis-
tinguish. Furthermore, the values for the petal variables (width and length) are highly 
correlated. 
Another dataset that will be used in experiments in Chapter 5 is the epileptics dataset 
which was collected on two-week seizure counts for 59 epileptics. The dataset con-
tains 236 samples and 8 variable dimensions2. 
The experiments described in this work have been performed with the help of the 
Mathworks' Matlab 6.53, a software tool and computer language for scientific comput-
ing. For the most part, the SOM toolbox for Matlab4 [17] has been used. 
The remainder of this paper is organized as follows: 
 

Chapter 2 surveys related work. Chapter 3 provides a short description of the SOM 
algorithm and some of its most relevant features and advantages. In Chapter 4, the 
actual methods for quality estimation are described and explained. Also, the datasets 
used for benchmarking and testing of the measures are presented. Chapter 5 provides 
benchmarks and experiments based on these methods. In Chapter 6, the findings de-
scribed in this document are summarized and an outlook and possible directions for 
future work are provided. 

2   Related Work 

Surveys for SOM quality measures are generally rare in literature. Earlier approaches 
have been mainly concerned with finding energy functions for the SOM [10, 19].  
Usually, whenever a new method for quantifying the quality of the SOM is proposed, 
it is compared to existing ones, and a short overview is presented in the introductions 
[2, 8]. 

                                                                 
1 Included, for example, in the SOM Toolbox [17] 
2 Included, for example, in the statistical program R: 

http://www.r-project.org 
3 http://www.mathworks.com 
4 http://www.cis.hut.fi/projects/somtoolbox 



For general topographic mapping methods, a wide range of energy functions and qual-
ity measures exist, see for example [9]. These are, however, not specifically designed 
for assessment of SOM quality. 
Several overviews exist for comparable clustering algorithms [20]. These usually also 
include sections on cluster quality measures. Another paper [21] deals exclusively 
with cluster validity. 

3   The Self-Organizing Map 

In this chapter, the SOM Training algorithm will be outlined in Section 3.1, along with 
its most important properties in Section 3.2. These are the properties that will later be 
quantified by the quality measures, each concerning a specific aspect of SOM fea-
tures.  

3.1   SOM Training Algorithm 

The Self-Organizing Map has been originally developed by Teuvo Kohonen [7] and is 
mostly used for the visualization of nonlinear relations of multidimensional data. It has 
been subject to extensive research and has applications ranging from full text and 
financial data analysis, pattern recognition, image analysis, process monitoring and 
control to fault diagnosis; for a comprehensive list of references, see for example [11]. 
The SOM consists of a two-dimensional lattice that contains a number of neurons. 
These neurons are usually arranged in a rectangular or hexagonal way. The position of 
the units in the grid, especially the distances between them and the neighborhood 
relations, are very important for the learning algorithm. A prototype vector (also 
"model" or "codebook" vector) is  associated with each neuron, which is a vector of 
the same dimension as the input data set. This prototype vector approximates a subset 
of the sample vectors. The dimension of the sample is called input dimension, and is 
usually larger than 2, the dimension of the lattice, which is called output dimension.  
For training and visualization purposes, the sample vectors are assigned to the most 
similar prototype vector, or best-matching unit (BMU), formally 
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i

c x x m t= −
 

(1) 

where mi are the prototype vectors, and x is the sample vector for which the BMU is 
determined. The learning process itself gradually adapts the model vectors to match 
the samples and to reflect their internal properties as faithfully as possible, which 
means that input vectors which are relatively close in input space should be mapped 
to units that are relatively close on the lattice. To achieve this, the training algorithm 
updates the model vectors iteratively during a number of training steps t, where a 
sample x(t) is selected randomly, and then the BMU and its neighbors are updated as 
follows: 
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where a(t) is the learning rate (which is decreasing monotonically over time) and hck(t) 
is the neighborhood kernel. The neighborhood kernel determines the influence to the 
neighboring model vectors and its radius s(t) is also decreasing with time. Thus, the 
learning process is gradually shifting from an initial rough learning phase with a big 
influence area and fast-changing prototype vectors to a fine-tuning phase with small 
neighborhood radius and prototype vectors that adapt slowly to the samples. 
The algorithm described above is referred to as "sequential training" or "basic SOM". 
Another important learning rule is called "Batch map", which is based on fixed point 
iteration, and is significantly faster in terms of computation time. At each step, the 
BMUs for all input samples are calculated at once, and the model vectors are updated 
as follows: 
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with N the number of sample vectors. 
Once the map has been trained, it is ready for post-processing and evaluation. Some of 
the figures in the later chapters refer to the SOM trained with the Iris dataset, for which 
the U-Matrix [16] visualization is shown in Figure 1. 

3.2   Properties of the SOM 

Data sets cannot be visualized on a sheet of paper or on a monitor if the dimensional-
ity is higher than 2. Vector projection (VP) aims at reducing the input space dimen-
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Fig. 1. U-Matrix [16] of the Iris SOM with 11x6 nodes. 
High values indicate gaps between the map nodes. 
Here, it can be seen that the upper 1st third of the map forms a 
coherent region, and, below the border region, another homoge-
neous area is located. 



sionality to a lower number of dimensions in the output space, and mapping vectors in 
input space to this lower dimensional space; the "lower dimensional space" is usually 
2-dimensional for visualization on a monitor or for printing to paper. The VP mapping 
should occur in a way that the distances in input space are preserved as faithfully as 
possible, such that similar vectors in input space are mapped to positions close to 
each other in output space, and vectors that are distant in input space are mapped to 
different coordinates in output space. Most VP algorithms emphasize on the preserva-
tion of distances of vectors that are close to each other, while not necessarily preserv-
ing relatively large distances (as long as two samples that are far apart in input space 
are not placed next to each other in output space, it does not really matter just how far 
apart they are in output space). Other VP methods include Metric Multidimensional 
Scaling (MDS) [12], Principal Component Analysis (PCA), and Sammon's Nonlinear 
Mapping [13]. 
The task of finding a suitable subset that describes and represents a larger set of data 
vectors is called vector quantization (VQ) [14]. In other words, VQ aims at reducing the 
number of sample vectors or at substituting them with representative centroids. The 
resulting centroids do not necessarily have to be from the set of samples but can also 
be an approximation of the vectors assigned to them, for example their average. VQ is 
closely related to clustering. Obviously, the SOM performs VQ since the sample vec-
tors are mapped to a (smaller) number of prototype vectors. 

4   SOM QUALITY MEASURES 

This chapter presents the quality measurement methods of the Self-Organizing Map. 
Measuring SOM Quality can be done in many ways. Two of the properties most of the 
measures try to evaluate are vector projection, which is sometimes refered to as "to-
pology preservation", and vector quantization. Technically, there is a tradeoff between 
these two, increasing projection quality usually decreases the projection properties. 
Topology preservation is a property that is not easy to define and even harder to 
measure. Since usually a major reduction of dimensionality is performed, information is 
necessarily lost in the projection process. Generally, the proximity in input and output 
spaces is compared, often relying on ranking orders and nearest neighbor determina-
tion.  
The methods can be further classified by what they can be used for. Some of the 
measures can be applied to select a hyperparameter. For example, the Topographic 
Product (Section 4.2) can be used to optimize the map size for any given dataset. Most 
of the quality measures, however, do not have this property, e.g. the Quantization 
Error decreases monotonically for increasing map sizes. Other measures can be used to 
benchmark a series of maps that have been trained from the same dataset. The Quanti-
zation Error and Distortion Measure are of this type. Another type of categorization 
can be made between methods applicable to the SOM only and methods that can 
compare the results to results from other algorithms. For example, the Topographic 
Error and the Trustworthiness both measure the projection quality, but only the latter 



can be used to determine the quality of other topographic mappings, like e.g. 
Sammon's Nonlinear Mapping. 
Note that the descriptions of the methods proposed in the remainder of this chapter do 
not contain exact definitions and formulas; for more in-depth information on the con-
cepts' internals, please refer to the referenced publications. 

4.1   Quantization Error 

The Quantization Error (QE) is traditionally related to all forms of vector quantization 
and clustering algorithms. Thus, this measure completely disregards map topology 
and alignment. The quantization error is computed by determining the average dis-
tance of the sample vectors to the cluster centroids by which they are represented. In 
case of the SOM, the cluster centroids are the prototype vectors. Measuring the 
Quantization Errors can be extended such that it works with datasets containing mis s-
ing values.  
For any given dataset, the Quantization Error can be reduced by simply increasing the 
number of map nodes, because then the data samples are distributed more sparsely on 
the map. 
Because of the tradeoff between vector quantization and projection properties of the 
SOM, changing the training process such that the QE is lowered usually leads to dis-
tortion of the map's topology.  

4.2   Topographic Product 

The Topographic Product [4] is one of the oldest measures that quantify the topology 
preservation properties of the Self-Organizing Map. The result of the computation of 
the Topographic Product indicates whether the size of the map is appropriate to fit 
onto the dataset. 
For computation of the Topographic Product, only the map's codebook is regarded. 
This algorithm relies heavily on the comparison of ranking orders in input and output 
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Fig. 2. Topographic Product; 
SOM with 11x6 map units trained with Iris dataset; 
Total Topographic Product P = 0.0113, which indicates that the 
map is slightly too small to represent the dataset 



space. First, a parameter k is selected that governs up to which rank the calculation is 
performed (e.g. for k=3, the 3 nearest neighbors are investigated). This is computed as 
two ratios, P1 and P2, where P1 measures the distortion in input space, and P2 in out-
put space; if the ranking is perfectly equal in both spaces, P1 and P2 are equal to 1. 
Otherwise, P1 is greater than 1, and P2 is between 0 and 1. The value P3 combines 
these two measures into a single measure by calculating the geometric mean of P1 and 
P2. However, the measures P1, P2 and P3 are functions of k and can be evaluated for 
single map units only; therefore, a combined single value for all map units is obtained 
by summing up all values of P3, resulting in the Topographic Product P. This value 
can then be interpreted easily: If P < 0, the map is too small (i.e. has too few map 
nodes); for P > 0, the map is too big for the data space it represents. 
An advantage of the Topographic Product is that the value P can be used to summa-
rize the quality of the topology preservation by a single number, while the actual 
causes can be exa mined by plotting curves for P1, P2 and P3, or by visualizing the 
errors per map unit on a SOM lattice. An example for the values for a map trained with 
the Iris dataset is given in Figures 2 and 3. The Topographic Product can be computed 
for maps trained with datasets that contain missing values, since the codebook itself 
never contains any missing values. 
It was shown by Villmann et al. that the Topographic Error presents reliable results 
only for nearly linear datasets. For further discussion see [18]. 

4.3   Topographic Error 

The Topographic Error is the most simple of the topology preservation measures. 
Other than the Topographic Product, the dataset is required to determine the Topog-
raphic Error. This computation is performed as follows: For all data samples, the re-
spective best and second-best matching units are determined. If these are not adjacent 
on the map lattice, this is considered an error. The total error is then normalized to a 
range form 0 to 1, where 0 means perfect topology preservation. 
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Fig. 3. Topographic Product per node; 
Note that the distortion here lies two lines below the border 
identified by the U-Matrix visualization 



Usually, a single value is returned that quantifies this property. It is however possible 
to decompose the Topographic Error such that they can be visualized on a map lattice. 
This can be done, for example, by raising the error for a unit every time it is selected as 
BMU by a data sample, and the 2nd BMU is not adjacent in output space. 
The Topographic Error can be computed for datasets containing missing values. 

4.4   Trustworthiness and Neighborhood Preservation 

In [5], two very similar topology preservation measures are proposed, the Trustwor-
thiness and the Neighborhood Preservation. Of these, the Trustworthiness is slightly 
more important since it quantifies a property that is usually disregarded by topology 
quality measures, namely whether the projected data points which are actually visual-
ized are close to each other in input space. Most other measures regard the other di-
rection, whether the neighborhoods in input space are properly preserved in output 
space, which is not as important according to Venna and Kaski.  
As with the Topographic Error, the dataset is required to determine the Trustworthi-
ness. It is computed separately for every rank order k, similar to the computation of P1 
of the Topographic Product. With a given k, the set of the k nearest neighbors are 
determined in output space (where the projected data points are considered, not the 
map units). Then, the k nearest neighbors in input space are determined. If the sets 
differ, an error counter is increased by the number of ranks in output space that ex-
ceeds the number k. In other words, whenever one of the neighbors on the map lattice 
is not one of the closest neighbors in the original data space, the error counter is in-
creased. The Trustworthiness value is then computed as one minus the average of 
these errors, such that values range from 0 to 1, where 1 is perfect preservation. 
There is, however, a number of problems with implementing the algorithm. Since the 
output space is discrete in case of the SOM, distances between data vectors is often 
exactly equal (e.g. all data samples that share the same BMU have distances of 0), 
resulting in many ex-aequo situations. This is very unlikely for rankings in input space, 
since it rarely occurs in (continuous) real world data that pairwise distances occur. For 
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this algorithm, this is a problem that has to be dealt with properly. The behavior of the 
experiments conducted in the original publication [5] could not be reproduced by the 
author. The strategies taken have been the following: 

• Optimist approach: Consider only the nearest (in input space) of the set of 
equally distant neighbors on the lattice. This leads to a considerably higher 
Trustworthiness value. 

• Pessimist approach: Use all the data samples from the nearest neighbor set, 
even if it exceeds the maximum number of elements k. This leads to problems 
with normalizing the final value to a range between 0 and 1 since the number 
of errors can possibly exceed the usual limit and is hard thus to determine. 
Also, a strong penalty for highly populated map units is obtained, which is 
not a property in question for a topology quality measure. 

• Random approach: From the set of k-nearest neighbors on the map lattice, 
members are eliminated randomly until the set contains exactly k samples. 
This seems plausible, but introduces an element of randomness that is not 
desired into deterministic quality measures. 

• Averaging approach: The errors resulting from the samples in the ex-aequo 
set are averaged and weighted accordingly. This approach seems most plau-
sible and will be used for the rest of this paper. 

When comparing the above strategies, the last one (averaging approach) is believed 
by the author to be the one described in the original publication. However, the original 
results could not be reproduced (the author's implementation differs significantly by 
10 – 20 % from the original results). 
Neighborhood Preservation is very similar to Trustworthiness, only the input and 
output space rankings are swapped. It measures rank orders in input space and com-
pares it to the neighbors in output space, thus penalizing data points close in input 
space and far apart on the map lattice. Again, the Neighborhood Preservation is scaled 
to a value between 0 and 1, with 1 being the best possible value. 
Both Trustworthiness and Neighborhood Preservation can be visualized on the map 
lattice, but experiments have shown that these plots are not very meaningful.  
Figure 4 shows an example for Trustworthiness and Neighborhood Preservation 
curves accumulated over all units for different values of k. 
Trustworthiness and Neighborhood Preservation can not be evaluated for datasets 
that contain missing values, since pair wise distances have to be calculated in input 
space. However, if further research is conducted in this direction, a solution can surely 
be found. 

4.4   SOM Distortion 

It has been shown that the SOM can not be considered the gradient of any energy 
function in the general case [10]. If the neighborhood kernel radius is made constant, 
then there exists an cost function the SOM optimizes, the SOM Distortion Measure 
[3]. This function can be used to compute an error value for the whole map. One of the 
major advantages is that the error can be decomposed in many ways: 



o per unit, such that the error can be localized on the map lattice 
o per component (variable dimension) 
o according to [1], the Distortion Measure can be decomposed into these parts: 

o Quantization Error 
o Neighborhood Bias 
o Neighborhood Variance 

The decomposition per unit is visualized in Figure 5. Note that the nodes with values 
of 0 are not selected as BMU by any data samples and therefore do not cause any 
distortion (like the area on the right side of the upper 3rd part of the map). 
For computation of the SOM Distortion Measure, the dataset is required in addition to 
the trained SOM. Missing values in the dataset are allowed. Since the Distortion 
Measure is the cost function of the SOM algorithm, it can be used to select the best 
fitting map from several maps trained with the same dataset. 

5   EXPERIMENTS 

The experiments conducted with the quality measures do not solely compare the find-
ings for any given map but test how sensitive the measures are to changes in map size 
and data set size. The test settings and results are described in the remainder of this 
chapter.  

5.1   Comparing maps of different sizes 

In this section, the behavior of the different quality measures with maps of the same 
data set but a different number of map units is investigated. For this purpose, 3 SOMs 
have been trained for the Iris dataset, with the following sizes: 
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o small Iris map: 5x3 (15 nodes) 
o medium Iris map: 11x6 (66 nodes) 
o large Iris map: 23x11 (253 nodes) 

and for the Epil dataset: 
o small Epil map: 5x4 (20 nodes) 
o medium Epil map: 10x8 (80 nodes) 
o large Epil map: 22x15 (330 nodes) 

The Quantization Error QE, as shown in Table 1, declines as the map becomes larger. 
This is not a surprising result. Thus, the Quantization Error can not be used to com-
pare maps of different sizes. 

Table 1. Quantization Errors 

 Iris Epil 

small 0.6833 1.7325 

medium 0.3925 1.1371 

large 0.2092 0.6774 

 
The Topographic Product declines as the map becomes larger. This can be seen in 
Table 2. The Topographic Product for the Medium Epil is exactly 0, so the map size fits 
perfectly according to this measure. 

Table 2. Topographic Product 

 Iris Epil 

small 0.0388 0.0097 

medium 0.0113 0.0000 

large 0.0045 -0.0128 

 

 
The values for the Topographic Error can be seen in Table 3. For maps that are too 
large for the dataset, unnecessary folds occur and are penalized with a higher error 
value. The high values for the small maps are partly due to the fact that this measure is 
almost overly simplistic and suffers from the discrete nature of the output space. Ac-
cording to the author's test results, the Topographic Error is not reliable for small 
maps. 



Table 3. Topographic Error 

 Iris Epil 

small 0.0267 0.0551 

medium 0.0067 0.0127 

large 0.0467 0.0169 

 

Results for Trustworthiness are summarized in Table 4. It has to be noted, that this 
function is defined for k ranging from 1 to half the number of data samples, so the 
smallest and largest values for k are depicted here. The Trustworthiness rises with 
increasing map size. For greater values of k, no such rule can be established. 

Table 4. Trustworthiness 

 Iris Epil 

 k=1 k=74 k=1 k=117 

small 0.898 0.931 0.886 0.793 

medium 0.972 0.934 0.969 0.827 

large 0.986 0.932 0.989 0.804 

 

The Neighborhood Preservation (as summarized in Table 5) does not vary too signifi-
cantly for increasing map sizes for small values of k, but diverges for larger k. These 
results, and the results of the Trustworthiness, have to be investigated more and ex-
tended by additional tests and experiments to come to a valid interpretation. 

Table 5. Neighborhood Preservation 

 Iris Epil 

 k=1 k=74 k=1 k=117 

small 0.976 0.973 0.952 0.869 

medium 0.982 0.939 0.969 0.827 

large 0.986 0.925 0.974 0.818 

 

The results for the SOM Distortion Measure can be seen in Table 7. The error in-
creases for larger maps. The SOM Distortion Measure is not suited to determine the 
right size of the map, but for comparing maps of the same size. 



Table 6. SOM Distortion Measure 

 Iris Epil 

small 7.7044 24.0505 

medium 3.8800 17.4798 

large 1.6411 9.6531 

 

5.2   Comparing the distance measures for smaller data sets 

In this section, the Iris data set is reduced to one half of its original size, removing 
every other sample in the dataset, so 75 data samples remain (25 of each species). The 
data is tested with the various measures against the maps trained in the previous sec-
tion and the results compared. This test aims at identifying whether the quality meas-
ures are invariant on the factor of dataset size. Also, it can be of advantage to use a 
smaller, still representative subset of the data samples to reduce the computation time 
of the measuring algorithm (some of the methods are computationally very heavy). 
For the Topographic Product, there is nothing to test at all since the computation does 
not rely on any data vectors. For Quantization Error and SOM Distortion Measure, the 
values are approximately the same for both settings. The values for the Topographic 
Error are so low in all instances, so that a comparison does not make sense.  
The Trustworthiness and Neighborhood Preservation require additional attention. The 
values for k=1 are almost equal in all cases; for larger k, the resulting quality values 
change twice as much in the smaller dataset setting. The maximum value for the pa-
rameter k is also half the original k value (the max value is computed by dividing the 
size of the dataset by 2). In the author's opinion, this is very misleading. Since the two 
measures can only be computed for any given k, the resulting values should be com-
parable even for different dataset sizes. This could be fixed by normalizing the value k 
to a range between 0 and 1, for example. 

6   CONCLUSION 

In this paper, some of the major SOM quality measuring methods have been presented 
and compared. In Chapter 3, an introduction to the necessary prerequisites has been 
given. The experiments have tested empirically how well the measures are suited for 
different map sizes and how changes of the size of the dataset affect the outcome of 
the algorithms. The advantages and disadvantages of the methods are summarized in 
the following lines: 

o Quantization Error: Measures vector quantization properties. It can not be 
used to compare maps of different sizes. It can be visualized on the map lat-
tice, and can be applied to any vector quantization and clustering algorithm. 



o Topographic Product: Only the map codebook is required for computation, 
not the dataset. It can be used to determine the best size of the map for the 
underlying dataset. Can be visualized on the map lattice. Can be applied to 
any projection method. 

o Topographic Error: Unreliable for small maps, results in very low values for 
maps that do not contain overly high numbers of nodes. Can be visualized on 
the map lattice, but requires additional testing for plausibility and usefulness. 
Can not be applied to other methods than the SOM. 

o Trustworthiness, Neighborhood Preservation: Provide a series of values that 
show the quality dependent on parameter k. To speed up the computation, 
the dataset can be reduced. There is no overall single result value. Trustwor-
thiness can be visualized to show the per-unit error on the map lattice. Both 
methods can be applied to all vector projection algorithms. 

o SOM Distortion Measure: Under special circumstances, this is the cost func-
tion of the SOM, and thus this measure has several advantageous properties. 
It can be decomposed in various ways and can be visualized on the map lat-
tice. Can not be used to compare maps of different sizes, but can be used to 
benchmark maps of the same size. Can not be applied to other algorithms than 
the SOM. 

There exist further methods such as the measure proposed in [8] that combines To-
pographic Error and Quantization Error, which can also be used to determine the best 
suited map size; and the Topographic Function [6]. 
For the Trustworthiness and Neighborhood Preservation methods, additional testing 
and evaluations should be conducted, since the results obtained in this paper do not 
come to a definite conclusion on the properties of these algorithms. 
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