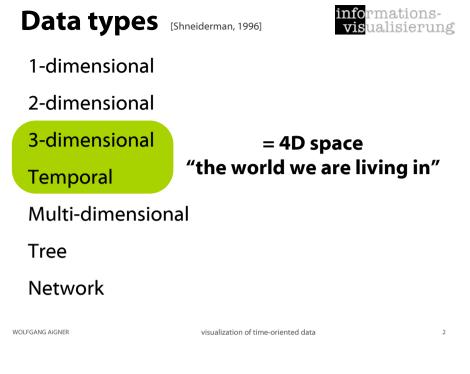


visualization of **time-oriented data**

introduction

Wol	lfgang Aigner
-	er@ifs.tuwien.ac.at uwien.ac.at/~aigner/
	Version 3.3 7.1.2011
sualization of time-oriented data	1


Spatial + temporal dimensions

informationsvisualisierung

Every data element we measure is related and often only meaningful in context of **space + time**

Example: price of a computer

where? when?

Differences between space and time

Space can be traversered "arbitrarily" we can move back to where we came from

Time is unidirectional we can't go back or forward in time

Humans have senses for perceiving **space** visually, touch

Humans don't have senses for perceiving time

WOLEGANG AIGNER

Interactive visualization

Gives us the ability to...

WOLFGANG AIGNER

visualization of time-oriented data

Event calendar

Zeit	Montag 4.10.2004	Zeit	Dienstag 5.10.2004	Mittwoch 6.10.2004	Donnerstag 7.10.2004	Freitag 8.10.2004
		9.00 bis 10.45	Plenar- veranstaltungen 1+2+3	Plenar- veranstaltungen 7+8+9	Plenar- veranstaltungen 13+14	Sektionen, Arbeitsgruppen, Ad·hoc-
11.00 bis 13.00	Sektions- sprechertreffen Presse- konferenz	11.00 bis 12.45	Plenar- veranstaltungen 4+5+6	Plenar- veranstaltungen 10+11+12	Plenar- veranstaltungen 15+16+17	Gruppen Abschluss- veranstaltung
		13.00 bis 14.00	Mittags- vorlesungen 1+2	Mittags- vorlesungen 3+4	Mittags- vorlesungen 5+6	
14.00 bis 17.00	Eröffnungs- veranstaltung	14.15 bis 17.00	Sektionen, Arbeitsgruppen, Ad-hoc- Gruppen	Sektionen, Arbeitsgruppen, Ad-hoc- Gruppen	Sektionen, Arbeitsgruppen, Ad-hoc- Gruppen	Konzilsitzung Presse- konferenz
		17.00 bis 18.00	Authors meet Critics, Foren, Sonder- veranstaltungen	Authors meet Critics, Foren, Sonder- veranstaltungen	Authors meet Critics, Foren, Sonder- veranstaltungen	
		18.00 bis 20.00	Abend- veranstaltungen 1+2	Sonder- veranstaltung DGS Mitglieder- versammlung	Abend- veranstaltungen 3+4	
АЬ 20.00	Kongressparty	20.00	Podiums- diskussion	Sonder- veranstaltung	Podiums- diskussion	
Zeit	Montag 4.10.2004	Zeit	Dienstag 5.10.2004	Mittwoch 6.10.2004	Donnerstag 7.10.2004	Freitag 8.10.2004

informationsvisualisierung

 \mathbf{vis}

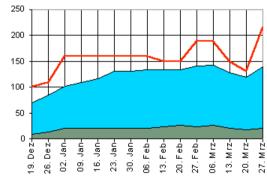
ualisierung

5

Snow height & sunshine hours

<u>next ></u>

6


Organization

chart

visualization of time-oriented data

iPod price

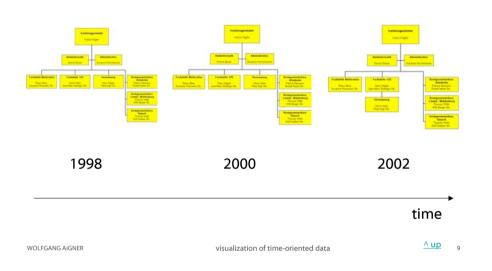
<u>^ up</u> 7

WOLFGANG AIGNER

WOLFGANG AIGNER

visualization of time-oriented data

<u>^ up</u> 8


Event calendar

Snow height &

sunshine hours

Organization chart

What is time?

"If no one asks me, I know.

But if I wanted to explain it to one who asks me, I plainly do not know."

-- Augustinus (AD 354-430, The Confessions)

"Die Empfindung der Zeit hängt davon ab, auf welcher Seite der geschlossenen Klotür man sich befindet." -- Albert Einstein

iPod 324 .--Shop [zum Shop] 0 Note: 2,24 Versandfertig in ca. 1-Music -Extras Settings Shuffle Songs Backlight 330 a i S SL 328 326 326 325 325 325 325 325 Vorkasse: € 5.30 ne: zzgl. € 4.80 <u>^ up</u> WOLEGANG AIGNER visualization of time-oriented data 10

What is time-oriented data?

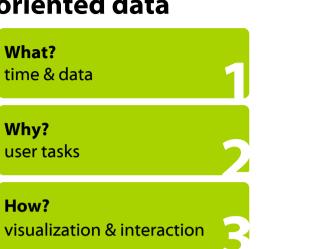
informations-

lalisierung

vis

no formal definition

iPod price


what is considered as time-oriented data depends on the intended **task**

a possible definition:

Data, where **changes over time** or **temporal aspects** play a central role or are of interest.

WOLFGANG AIGNER

Visualization of timeoriented data

WOLFGANG AIGNER

visualization of time-oriented data

Scale

ordinal

only order is known

discrete

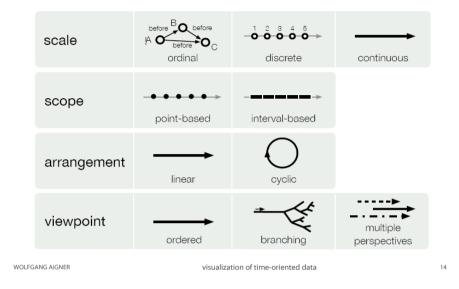
 $A \rightarrow B \rightarrow C$

every element of time has a unique predecessor and successor comparable to Integer

continuous

between any two elements in time there might be another one in between dense time

comparable to Float



13

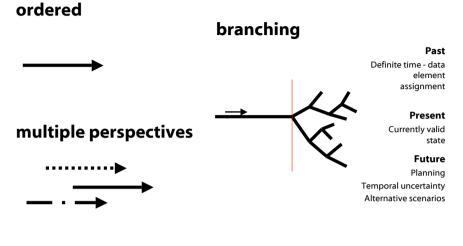
informations-

Modeling time

informationsvisualisierung

Arrangement

cyclic

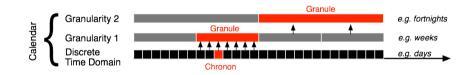


each element of time has a unique predecessor and a unique successor \bigcirc

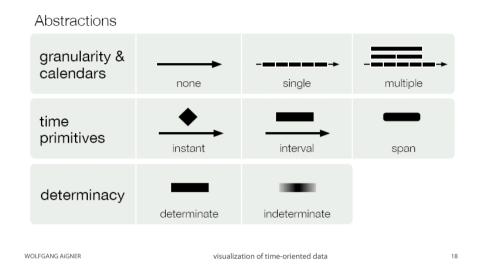
summer is before winter, but winter is also before summer

Viewpoints

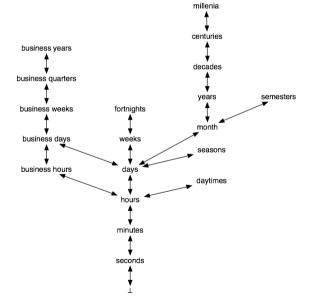
WOLFGANG AIGNER


visualization of time-oriented data

Granularity


17

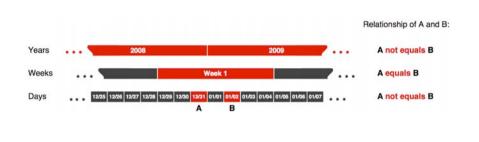
19


Modeling time

informationsvisualisierung

Calendar

WOLFGANG AIGNER


Example: Granularity paradoxon

Time primitives

instant - single point in time

WOLFGANG AIGNER

visualization of time-oriented data

Determinacy

21

determinate

complete knowledge of temporal attributes

indeterminate

incomplete knowledge of temporal attributes

no exact knowledge

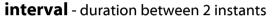
i.e. "time when the earth was formed"

future planning

i.e. "it will take 2-3 weeks"

imprecise event times

i.e. "one or two days ago"


multiple granularities

WOI FGANG	AIGNER

23

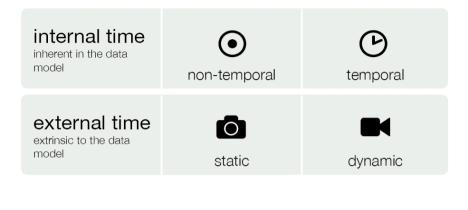
unanchored

span - duration of time

WOLFGANG AIGNER

anchored

visualization of time-oriented data


Characterizing data

scale	3.14 3.27 4.88 quantitative	coconut banana apple qualitative
frame of reference	▼ abstract	spatial
kind of data	J L events	states
number of variables	univariate	multivariate

Relating data & time

WOLFGANG AIGNER

visualization of time-oriented data

Low-level Task List 1/2

25

[McEachren, 1995]

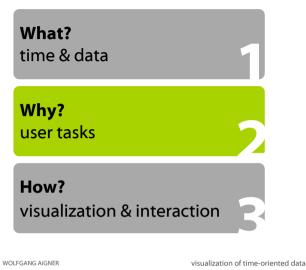
Existence of a data element

Does a data element exist at a specific time? Example: Was a measurement made in July, 1960?

Temporal location

When does a data element exist in time? Example: Is there a lecture taking place on November 24, 2005?

Time interval


How long is the time span from beginning to end of the data element? *Example: How long was the processing time for data set A?*

Temporal texture

How often does a data element occur? Example: How often was Jane sick last year?

Visualization of timeoriented data

26

Low-level Task List 2/2

[McEachren, 1995]

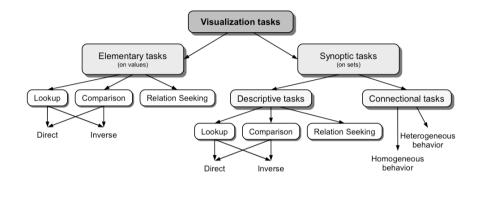
Rate of change

How fast is a data element changing or how much difference is there from data element to data element over time?

Example: How much did the price of gasoline change since last September?

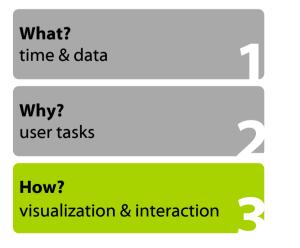
Sequence

In what order do data elements appear? Example: Did the explosion happen before or after the car accident?


Synchronization

Do data elements exist together? Example: Is Jill's birthday on Easter Monday this year?

Task Taxonomy 1/2


[Andrienko & Andrienko, 2006]

WOLEGANG AIGNER

visualization of time-oriented data

Visualization of timeoriented data

Task Taxonomy 2/2			
Task Type	Example	[Andrienko & Andrienko, 2006]	
Elementary			
Direct lookup	What was the price of Google stocks	on January 14?	
Inverse lookup	On which day(s) was the lowest sto 2010?	ock price for Amazon in	
Direct comparison	Compare the stock prices of Yahoo a	nd Microsoft on January	

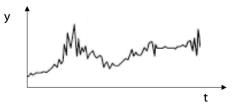
	14.
Inverse comparison	Did the price of an Apple stock reach \$200 before or after January 14?
Relation seeking	On which days was the price of Adobe stocks higher than the price of AOL stocks?
Synoptic	
Direct lookup (pattern definition)	What was the trend of Oracle stocks during January?
Inverse lookup (pattern search)	Find months in which the price of Novell stocks decreased.
Direct (pattern) comparison	Compare the behavior of the stock price of Hewlett-Packard in January and June.
Inverse (pattern) comparison	How is a decreasing trend of Dell stocks related to the period of summer vacation?
Relation seeking	Find two contiguous months with opposite trends in the stock price of Lenovo.
Homogeneous behavior	Is the behavior of Nokia stocks influencing the behavior of Motorola stocks?
Heterogeneous behavior	Do the phases of the moon influence the behavior of Intel stocks?

WOLEGANG AIGNER

visualization of time-oriented data

Visualization roots

30


informations-

Statistics

Visualization of time-series.

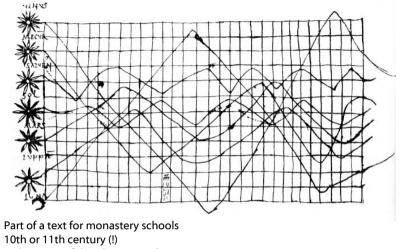
The time-series plot is the most frequently used form of graphic design. [Tufte, 1983]

Mostly one parameter over time.

29

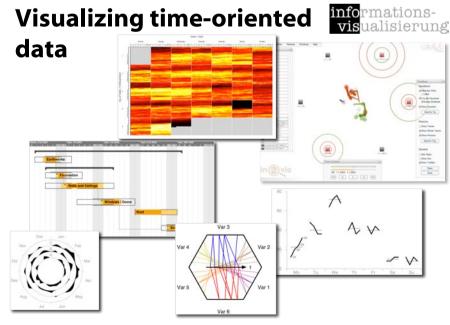
informations-

ualisierung

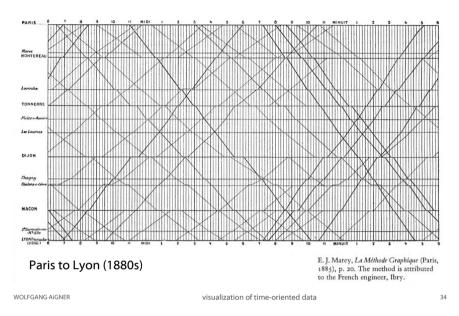

vis

WOI FGANG AIGNER

Early time-series plot


33

Inclinations of the planetary orbits over time 800 years before other time-series plots appeared


WOLFGANG AIGNER

visualization of time-oriented data

Train schedule

informationsvisualisierung

Visual mapping of time **info**rmations-visualisierung

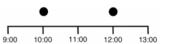
Dynamic: Time \rightarrow Time (Animation)

probably the most natural form of mapping no "conversion" of concepts needed in between well suited for

- keeping track of changes
- following trends and movements
- not well suited for
 - analytic and explorative tasks
 - no direct comparison of parameters between different points in
 - time is possible

Static: *Time* → *Space*

mapping of time to visual features


direct comparison of parameters between different points in time is possible

WOI FGANG AIGNER

Visual variables

position

most common mapping

the most accurately perceived visual feature

length

20:00

info

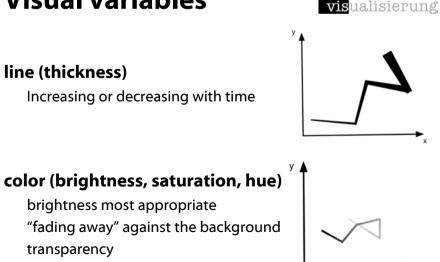
30:00

40:00

mations-

38

10:00


second most accurate attribute

typically, the length of an object denotes the duration, as for example in timelines

WOLFGANG AIGNER

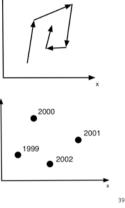
visualization of time-oriented data

Visual variables

Visual variables

angle, slope

analog-clock-based visualizations

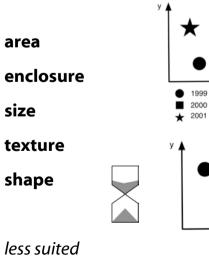

connection

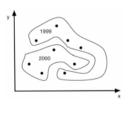
connecting arrows or lines "before element" --> "after element"

text, label

WOLEGANG AIGNER

simple text labelling often combined with "connection"

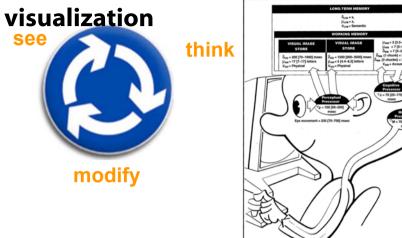



informations-

visualisierung

Visual variables

nfo<mark>rmationsvis</mark>ualisierung

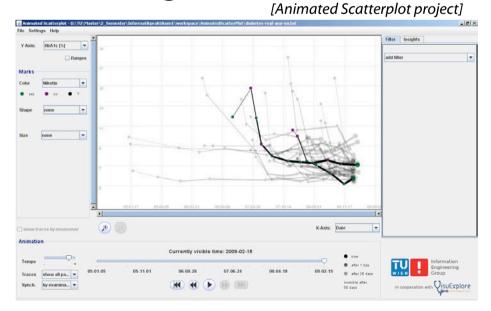


WOLFGANG AIGNER

40

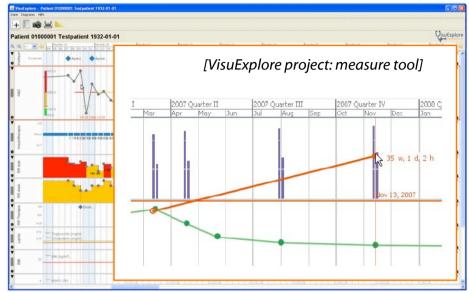
visualization of time-oriented data

Interaction facilitates active visualisierung discourse with the data and


visualization of time-oriented data

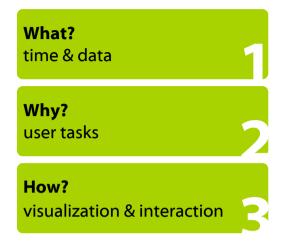
WOLEGANG AIGNER

[Card et al., 1983]


informationsvisualisierung

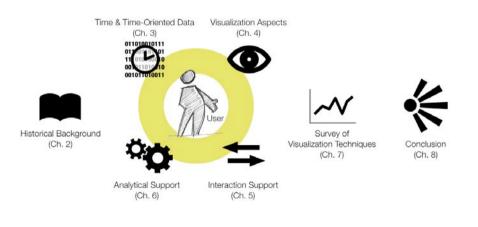
Interacting with time

informationsvisualisierung [VisuExplore project]




Interacting with time

Visualization of timeoriented data



Tominski, 2011]

46

informations-

visualisierung

visualization of time-oriented data

WOI FGANG AIGNER

WOLEGANG AIGNER

[Aigner, Miksch, Schumann, visualization of time-oriented c

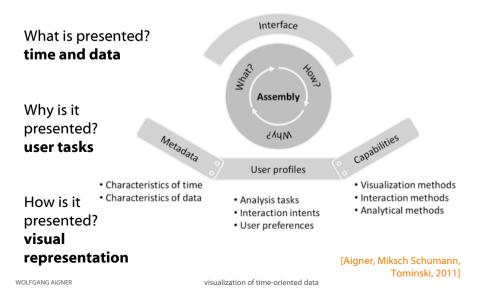
Forthcoming book 2011

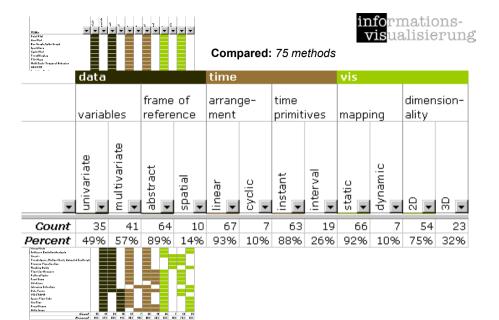
Springer

Visualization of Time-Oriented Data

Series: » Human-Computer Interaction Series

Aigner, W., Miksch, S., Schumann, H., Tominski, C. 1st Edition., 2011, XVI, 184 p. 150 illus. in color., Hardcover ISBN: 978-0-85729-078-6 Due: May 20, 2011


WOLEGANG AIGNER


visualization of time-oriented da

[Aigner, Miksch, Schumann, Tominski, 2011]

Visualization design

[Aigner, Miksch, Schumann, dc Tominski, 2011]