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Abstract. There are many approaches to support di-
agnosis and decision support in the medical domain.
There are also some systems modelling therapy plans.
But currently there is only little connection between the
two fields. Still, diagnosis and treatment are interde-
pendent in various ways.

After describing the connections between these two
tasks, we give an overview of the Asgaard framework.
Finally, we demonstrate the representation of both diag-
nosis and treatment in Asbru—the plan representation
language of the Asgaard system.

1 Introduction

In the medical domain two developments take place.
First, an increasing number of measuring devices de-
liver an increasingly complex stream of raw data which
is often difficult to interpret. Second, both care
providers and patient advocates call for ”optimal” care.
This means that any actions taken by the medical staff
should lead to minimal cost and best patient outcome—
sometimes conflicting goals which are most often diffi-
cult to fulfill.

The first problem—the interpretation of data—is
handled by temporal data abstraction. It transforms
measured low-level data into abstract, high-level infor-
mation. E.g., it abstracts the information ”the oxygen
content of the patients blood is reduced” from a stream
of numbers.

The second problem—finding the optimal
treatment—is handled by therapy planning. In the
USA and most European countries, medical orga-
nizations installed concensus boards issuing clinical
guidelines and protocols for a broad range of situations
or diseases. These guidelines ensure the flow of
information from recent research to common practice,
they help to save costs by informing physicians about

cost effective alternatives, and they provide safe ground
for physicians defending their decisions.

Data abstraction and therapy planning form a feed-
back cycle. On the one hand, data abstraction is al-
ways context dependent, i.e., one and the same value
can mean different things under different contexts. This
context is formed by the current therapeutic situation,
i.e., it is supplied by executing therapy plans. On the
other hand, the execution of therapy plans must be syn-
chronized with the actual state of the patient. Data ab-
straction is the crucial foundation of such a synchro-
nization process since the treatment plans use high-level
concepts to describe the patient’s state. Since the syn-
chronization of plans and patient states involves com-
plex temporal reasoning, it is often considered a process
of its own right, called patient monitoring.

In Section 2 we describe the issues in data abstrac-
tion and therapy planning. In Section 3 we show related
work. In Section 4 we describe the Asgaard system and
in Section 5 we give a practical example.

2 Related Work

Common methods of intelligent data analysis are time-
series analysis, control theory, and probabilistic or
fuzzy classifiers [2]. These approaches have a lot of
shortcomings, which lead to applying knowledge-based
techniques to derive qualitative values or patterns of
current and past situations of a patient. The RÉSUMÉ
project [12] performs temporal abstraction of time-
stamped data without predefined trends. The system
is based on a knowledge-based temporal-abstraction
method. Bellazzi et al. [1] utilize Bayesian techniques
to extract overall trends from cyclic data in the field of
diabetes.

All these approaches are dealing mostly with low-
frequency data, i.e., only few data items per day have to
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be processed. Promising approaches for high-frequency
data are the Time Series Workbench [4] which approxi-
mates data curves through a series of line-segments and
VIE-VENT [5]. The temporal abstraction module of
VIE-VENT focuses on the high-frequency domain of
artificial ventilation of newborn infants. VIE-VENT in-
corporates fixed, but context-dependent temporal data
abstraction schemata.

During the past 20 years, there have been several ef-
forts to support complex guideline- and protocol-based
care over time in automated fashion in automated fash-
ion as explicit, well-defined plans. Examples of special-
ized architectures include EON [6], Careflow [9], PRO-
forma [3], and the guideline interchange format (GLIF)
[8].

A number of methods have been applied to represent
clinical protocols and guidelines, including free text,
flowcharts, decision tables, and medical logic modules
[7]. However, the large domain knowledge available
is often too uncertain and vague. To represent the im-
plicit medical knowledge with these techniques explic-
itly is a nasty and intractable problem. Therefore, most
protocol- based care systems basically consider proto-
cols as composition of actions (which are to be per-
formed) and conditions (which define when it is appro-
priate to perform the actions).

To overcome limitations observed in previous ap-
proaches, namely to arrive at a system combining tem-
poral data abstraction with the execution of skele-
tal, time-oriented plans representing clinical treatment
plans, theAsgaardframework was developed.

3 Our Solution

To handle the above described problems, the Asgaard
framework [11] was developed. It outlines task-specific
problem-solving methods to support both design and
execution of skeletal plans. This project tries to build
a bridge between the medical approaches and the plan-
ning approaches, addressing the demands of the med-
ical staff on the one side and applying rich plan man-
agement on the other side. For the representation of
plans, a time-oriented, intention-based, skeletal plan-
representation language, called Asbru, was jointly de-
veloped by Peter Johnson, Silvia Miksch, and Yuval
Shahar at the Stanford University in 1996. The cur-
rent version of Asbru, 7.2, is based on XML (eX-
tensible Markup Language) which allows the use of
a series of public domain tools for editing, parsing,
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Figure 1: Runtime Modules of Asgaard.

and low-level verification. Details can be found at
http://www.ifs.tuwien.ac.at/asgaard/ .

Figure 1 shows those parts of the Asgaard framework
which deal with the execution of plans including the
data abstraction unit.

Data Abstraction Unit: The data abstraction unit re-
ceives the data from the input sources and processes it
through a set of abstraction methods.

Monitoring Unit: The monitoring unit receives a list of
parameter propositions (i.e., parts of conditions) which
are relevant for future plan-state transitions from the ex-
ecution unit and compares it to the high-level abstrac-
tions delivered by the data abstraction unit. If it detects
a match, it informs the execution unit which performs
the resulting state transitions.

Execution Unit: The execution unit handles the state
transitions of the plans. It instantiates plans from the
plan library and governs their life-cycle according to the
state of the world as reported by the monitoring unit.

The data abstraction is specified in the header of the
plan library. Each of the abstraction steps is described
in oneparameter definitionincluding its parameters and
the connections to other steps. This way, the data ab-
straction and the plan execution are seamlessly config-
ured in a single file.

4 A Practical Example

In this section we present a practical example of the use
of the data abstraction unit.

In artificial ventilation of neonates the setting for the
fraction of inspired oxygen (FiO2) must be adjusted ac-
cording to the saturation of oxygen in the blood of the
patient. This is measured by pulsoximetry, which deliv-
ers one measurement per second. These measurements
show oscillations of various origins including technical
issues of measurement. In contrast, frequent changes in
the supply of oxygen are considered infavourable from
the medical point of view. Any change in the FiO2 takes

2



more than 5 minutes to take effects in the patients body,
so more frequent changes are not admitted. Therefore,
the measurements cannot be used to directly control the
oxygen supply.

Bridging the gap between the high-frequency noisy
measurements and the longer term perspective on the
oxygen supply is performed by abstracting qualitative
values using the spread algorithm. Mimicking the
physicians practice, we observe the previous 5 minutes,
i.e., we calculate a spread over 5 minutes. Based on it,
we abstract a qualitative value of typespo2-scale
which takes one of the valuessubstantially-
below , slightly-below , normal , slightly-
above , andsubstantially-above . The follow-
ing Asbru code defines this.

<qualitative-scale-def name="SpO2-scale">
<qualitative-entry entry="substantially-below"/>
<qualitative-entry entry="slightly-below"/>
<qualitative-entry entry="normal"/>
<qualitative-entry entry="slightly-above"/>
<qualitative-entry entry="substantially-above"/>

</qualitative-scale-def>

The measurements are read in from the pulsoximeter
which supplies them tagged as ”SPO2” in the stream
of measurements. This association is defined in the tag
channel-name. Minimum and maximum values ensure
that any values which are not within this range of plau-
sible values are marked invalid and are not processed
further.

<parameter-def name="raw-data" type="percent">
<raw-data-def channel-name="SPO2"

mode="automatic" unit="%">
<minimum-value>

<numerical-constant unit="%" value="40"/>
</minimum-value>
<maximum-value>

<numerical-constant unit="%" value="100"/>
</maximum-value>

</raw-data-def>
</parameter-def>

Based on theraw-data , a spread is calculated ev-
ery second for the previous 5 minutes. If more than 70%
of the values in this time interval are missing or invalid,
the spread is not calculated and the result is marked in-
valid instead. This is because the result of a calculation
based on too few values might not represent the entity
which is hidden behind the missing values. In the fol-
lowing, we first show the definition of the spread and
then the definition of the qualitative values based on this
spread.

<parameter-def name="state-spread" type="spread">
<spread-def>

<time-window-size>

<numerical-constant unit="min" value="5"/>
</time-window-size>
<step-width>

<numerical-constant unit="s" value="1"/>
</step-width>
<minimum-of-valid-points>

<numerical-constant unit="%" value="70"/>
</minimum-of-valid-points>
<parameter-ref name="raw-data"/>

</spread-def>
</parameter-def>
<parameter-def name="state" type="SpO2-states">

<qualitative-parameter-def>
<limits unit="%">

<context>
<any/>

</context>
<limit-entry value="80.0"/>
<limit-entry value="86.5"/>
<limit-entry value="89.5"/>
<limit-entry value="93.5"/>
<limit-entry value="96.5"/>
<limit-entry value="100.0"/>

</limits>
<parameter-ref name="state-spread"/>

</qualitative-parameter-def>
</parameter-def>

Controlling the oxygen supply based on these qual-
itative values is not too straightforward and cannot be
included in this paper. See [10] for the details of the
complete setting to controll the FiO2 based on the SpO2
delivered by the pulsoximeter.

The following example illustrates the ordering of
subplans i.e. treatment steps in the a plan. The plan I-
RDS (infants’ respiratory distress syndrome) starts by a
subplaninitial-phase . Then is takes one of three
options, one at a time depending on their individual
filter-condititions: controlled-ventilation ,
permissive-hypercarpnia , and crisis-
management . If one of these fails, it tries another
one, until finally thecontrolled-ventilation
completes successfully. It then pursues by starting the
subplanweaning .

Of course, this is again a simplyfied excerpt of what
is necessary in a real clinical setting.

<plan name="I-RDS">
<plan-body>

<subplans type="sequentially">
<wait-for>

<all/>
</wait-for>
<plan-activation>

<plan-schema name="initial-phase"/>
</plan-activation>
<subplans type="any-order"

retry-aborted-children="yes">
<wait-for>

<static-plan-pointer
plan-name="controlled-ventilation"/>

</wait-for>
<plan-activation>

<plan-schema
name="controlled-ventilation"/>
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</plan-activation>
<plan-activation>

<plan-schema
name="permissive-hypercapnia"/>

</plan-activation>
<plan-activation>

<plan-schema name="crisis-management"/>
</plan-activation>

</subplans>
<plan-activation>

<plan-schema name="weaning"/>
</plan-activation>

</subplans>
</plan-body>

</plan>

5 Conclusion

Currently, the medical staff is suffering from informa-
tion overload which range from the problems of data
interpretation (like, arriving at trustable data, abstrac-
tion time-oriented qualitative information from quanti-
tative data) to complex treatment management (like, in-
tertwined diagnosis and treatment, exception handling,
crisis management).

We presented a solution to overcome such difficul-
ties. Our approach is part of the Asgaard project, which
outlines task-specific problem-solving methods to sup-
port both design and execution of skeletal plans. Clin-
ical protocols are becoming widespread in the medi-
cal domain to guarantee particular health care standards
with appropriate costs. Our Asgaard system represents
protocols as time-oriented, skeletal plans. It provides
tools for the various problem-solving methods needed
during design and execution time of protocols. An in-
tegrated framework for all the aspects involved is pro-
vided and a common representation language – Asbru
– is used. Therefore, the Asgaard system ensures the
beneficial use of computer support for all the tasks in-
volved in the design, application, and improvement of
protocols.

The system presented supports the data interpretation
on the one hand, and simplifies the complex treatment
management, which is based on the derived qualitative
descriptions, on the other hand. These result in an easy
to use and to comprehend treatment recommendations.
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