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Abstract. Therapy management needs sophisticated patient monitor-
ing and therapy planning, especially in high-frequency domains, like
Neonatal Intensive Care Units (NICUs), where complex data sets are
collected every second. An elegant method to tackle this problem is the
use of time-oriented, skeletal plans. Asgaard is a framework for the rep-
resentation, visualization, and execution of such plans. These plans work
on qualitative abstracted time-oriented data which closely resemble the
concepts used by experienced clinicians.
This papers presents the data abstraction unit of the Asgaard system.
It provides a range of connectable data abstraction methods bridging
the gap between the raw data collected by monitoring devices and the
abstract concepts used in therapeutic plans. The usability of this data
abstraction unit is demonstrated by the implementation of a controller
for the automated optimization of the fraction of inspired oxygen (FiO2).
The use of the time-oriented data abstraction methods results in safe and
smooth adjustment actions of our controller in a neonatal care setting.

1 Introduction

Most Intensive Care Units (ICUs) are well equipped with modern devices for
patient monitoring. On-line recording of patient data and storage in computer-
based patient records (CPR) and patient data management systems (PDMS)
become common place in today’s ICUs. Still, the workload of the clinical staff
prevents the optimal utilization of these measurements since it limits the number
of adjustments during daily routine. To ease a particular part of that workload we
have developed a system that helps the medical staff in automatically providing
the necessary oxygen supply to newborn infants within the optimal range.

Previous experience [6, 10] shows that patient monitoring may be improved
by using therapy management strategies, e.g., by using a data abstraction unit
for processing the raw monitoring data. This unit must be integrated into a larger



system that supports therapy planning and the execution of clinical protocols. In
this paper we describe temporal data-abstraction methods and their application
to control the adjustment of the fraction of inspired oxygen (FiO2) based on
continuously recorded pulsoximeter derived arterial oxygen saturation (SpO2)
monitoring data. The system is part of the Asgaard framework [9] which supports
the application of time-oriented, skeletal plans in the medical domain.

1.1 FiO2 Controller

The oxygen delivery to a premature or sick newborn infant must be adjusted very
closely in order to grant adequate tissue oxygenation while minimizing possible
toxic effects of supplying oxygen.

Correct FiO2 settings are achieved by manual adjusting the FiO2 accord-
ing to the oxygen saturation readings from pulsoximetry, transcutaneous and
invasive blood gas measurements. In some patients this requires frequent ad-
justments within short intervals. In order to reduce the cumbersome frequent
alarms and FiO2 adjustments, we often notice generous SpO2 limits resulting in
an oversupply of oxygen. We therefore consider manual adjustments of the FiO2

not as an optimal solution.
The aim of our project is to develop a continuously operating automated

FiO2 controller for optimizing the oxygen delivery to newborn infants. The au-
tomated FiO2 controller will adjust the FiO2 settings based on the continuous
transcutaneous SpO2 measurements. During each control cycle, data are read
from the pulsoximeter, validated, and in case preset SpO2 limits are exceeded or
fall short of, the FiO2 is adjusted accordingly.

A similar approach is the fuzzy logic assisted controller developed by Sun
et al. [11]. However, the functionality of this fuzzy controller has the important
disadvantage that it resulted in an huge number of FiO2 changes. This could
lead to disturbances of the immature respiratory system of preterm infants and
should be avoided.

The controller described in this paper uses temporal data abstraction. It
accounts for stability of the data, recognizes trend, and applies qualitative rea-
soning similar to that performed by clinicians.

1.2 Temporal Data Abstraction

Data abstraction derives meaningful information (seen as abstractions) from
raw data able to support specific knowledge-based problem-solving activities.
Temporal data abstraction methods represent an important subgroup where the
processed data are temporal [5].

Common methods of intelligent data analysis are time-series analysis, con-
trol theory, and probabilistic or fuzzy classifiers [2]. These approaches have a
lot of shortcomings, which lead to applying knowledge-based techniques to de-
rive qualitative values or patterns of current and past situations of a patient.
The RÉSUMÉ project [10] performs temporal abstraction of time-stamped data



without predefined trends. The system is based on a knowledge-based temporal-
abstraction method. Larizza et al. [4] have developed methods to detect prede-
fined courses in a time series. Complex abstraction allows one to detect specific
temporal relationships between intervals. Bellazzi et al. [1] utilize Bayesian tech-
niques to extract overall trends from cyclic data in the field of diabetes.

All these approaches are dealing mostly with low-frequency data, i.e., only
few data items per day have to be processed. On the contrary, in the ICU we
receive a set of data items every second. This results in the problems of oscillating
data, frequently shifting contexts, repeating patterns of states and events as well
as different expectations of the development of parameters.

Promising approaches for high-frequency data are the Time Series Work-
bench [3] which approximates data curves through a series of line-segments and
VIE-VENT [6]. The temporal abstraction module of VIE-VENT focuses on the
high-frequency domain of artificial ventilation of newborn infants. VIE-VENT
incorporates fixed, but context-dependent temporal data abstraction schemata.
It uses an epsilon region to reduce frequent qualitative changes when oscillations
occur around borders of qualitative regions. However, none of these two methods
offer the flexibility of a general data abstraction unit which provides methods
for stable processing even on changing signal quality.

To overcome limitations observed in previous approaches, namely to arrive
at a system combining temporal data abstraction with the execution of skeletal,
time-oriented plans representing clinical treatment plans, the Asgaard framework
was developed.

In the following section we describe the data abstraction methods of the
Asgaard system. Their use in a practical application—the FiO2 controller—is
demonstrated in Section 3. This is followed by notes on the evaluation and
concluding remarks.

2 Data Abstraction in Asgaard

In this section we first give an overview of those parts of Asgaard dealing with
plan execution and data abstraction followed by a description of the data ab-
straction unit in greater detail.

2.1 Introduction to Asgaard

The Asgaard framework [9] outlines task-specific problem-solving methods to
support both design and execution of skeletal plans. This project tries to build
a bridge between the medical approaches and the planning approaches, address-
ing the demands of the medical staff on the one side and applying rich plan
management on the other side. For the representation of plans, a time-oriented,
intention-based, skeletal plan-representation language, called Asbru, was devel-
oped [8]. Asbru is used to define skeletal plans which are instantiated during
plan execution. Figure 1 shows those parts of the Asgaard framework which deal
with the execution of plans including the data abstraction unit:
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Fig. 1. Runtime Modules of Asgaard.

– Data Abstraction Unit: The data abstraction unit receives the data from the
input sources and processes it through a set of abstraction methods described
in the next section.

– Monitoring Unit: The monitoring unit receives a list of parameter propo-
sitions (i.e., parts of conditions) which are relevant for future plan-state
transitions from the execution unit and compares it to the high-level ab-
stractions delivered by the data abstraction unit. If it detects a match, it
informs the execution unit which performs the resulting state transitions.

– Execution Unit: The execution unit handles the state transitions of the plans.
It instantiates plans from the plan library and governs their life-cycle accord-
ing to the state of the world as reported by the monitoring unit.

2.2 The Data Abstraction Unit

Asgaard implements 15 classes of abstraction methods which can be connected
to each other on instantiation. Their instances are configured in the domain
definition of the plan library. We distinguish the following classes (written in
italics).

– A raw data interface performs error checking on data directly coming from
the input sources.

– Numeric calculations are based on parameters and constants and comprise
elementary arithmetic functions.

– Logical combinations are applied on Boolean parameters. Like the other ab-
stractions, they can cope with undefined values.

– The spread [7] is used to smooth noisy raw data. We slide a time window
of constant width over the curve in small steps. For each position of the
time window, we calculate a linear regression of the valid data points within
the window. On the center of the line we plot the adapted standard error.
Connecting the ends of each bar with those of its neighbors yields a band
(called spread). It vertically follows the average of the curve. The width
shows the uncertainty involved in its calculation. The smaller the spread,
the better the quality of the curve.



– Based on the spread, a set of abstractions are derived: slope, standard devia-
tion, standard error , center , and end point (of the regression line), and time
to alarm (intersection of the elongation of the regression line with a defined
threshold value).

– Quantitative abstractions based on raw data are change rate and average. In
contrast to the spread, they are calculated in the conventional way which is
more suitable for low-frequency data.

– Qualitative abstractions are based on context-sensitive transformations of
quantitative parameters using context-sensitive transformation schemata based
on the spread.

– Logical dependency definitions yield qualitative or quantitative abstractions
based on a set of logical expressions.

– Boolean parameters are abstracted from logical expressions.

In practical applications, instances of the above classes are connected in a di-
rected graph which fills the gap between the input sources and the monitoring
unit. Each instance receives time-stamped data (one measurement at a time)
from more basic instances of abstraction methods, refines the information to a
higher level of abstraction and passes the result to other instances along the
graph.

Both the connections between the abstraction methods and their parameters
are defined in the domain definition of the Asbru plan-library.

3 The FiO2 Controller – A Practical Example

In the following we describe an application of Asgaard’s data abstraction capa-
bilities to control the oxygen delivery to premature newborn infants. The aim of
our controller is the optimization of oxygen supply through small adjustments at
a moderate rate. It is designed for closed-loop operation which adjusts the FiO2

by executing instantiated skeletal plans. For safety considerations, changes ex-
ceeding a limit of 10% are to be acknowledged by the medical staff. Adjustments
result from an abstract view of the SpO2 data stream.

3.1 Temporal Data Abstraction for the FiO2 Controller

In this section we show how the instances of Asgaard’s data abstraction methods
are configured to form the controller necessary to meet the aims described above.
The overall goal is to keep the SpO2 in the range of normal values with minimum
adjustments. We distinguish four modes of operation:

Normal operation: If none of the following exceptions described below occur,
the adjustment based on the current abstractions from the SpO2 readings is
performed and wait mode is entered. If the SpO2 is in the target region, no
adjustment is performed.



Wait mode: After any change in the FiO2 setting the system waits for five
minutes (This parameter depends on the mode of ventilation.) before it takes
another action based on the fact that it takes that long until the change in the
FiO2 setting shows an effect in the SpO2 of the patient. This is implemented
in the filter conditions of the plans [8] performing the adjustment. These plan
details are not described in this paper.

Check mode: Since the signal from pulsoximetry is not valid all the time, a
set of criteria is defined under which the system temporarily suspends its actions.
They are detailed below. The system displays the check mode but no acknowl-
edgment by the user is demanded since our system is not aimed at alarming but
at optimization of the FiO2 in standard situations.

Postpone mode: If the system should adjust the FiO2, but most recent in-
formation seems to invalidate this action the adjustment is postponed until the
short term observations match the intended action or another adjustment is con-
sidered which is in accordance with recent observations. The reasoning behind
this is given below.

Figure 2 shows the instances of abstraction methods employed in our exam-
ple and the connections between them. Figure 3 shows a retrospective analysis
of a 45-minutes sequence of SpO2 recording together with the output of the
controller.

In the following we describe the instances of the abstraction methods used
to form the FiO2 controller.
Raw Data Selection and Validation. The interface to the data delivered
by the pulsoximeter is defined in the specification of raw-data. It contains the
low-level identification of the parameter SpO2 and the range of values allowed.
Underlying Spreads. Two spreads [7] are fundamental for the abstraction pro-
cess: the state-spread and the trend-spread. The state-spread is calculated
from a time-window of five minutes as a basis of the qualitative state of the
SpO2, while the trend-spread is based on a one-minute time-window to include
most recent development in the SpO2 reading.
State and Trend. On the center of the state-spread the qualitative abstrac-
tion state of the SpO2 is obtained. Five qualitative values are derived from the
state: substantially above, above, normal range, below, and substantially below.
They are the foundation of the adjustment values for the FiO2. Based on the
slope of the trend-spread the trend is abstracted. It knows whether SpO2 is
increasing, stable, or decreasing.
Check Mode. The credibility of a system heavily depends on its ability to
recognize its limits. We therefore implemented in check-mode (an instance of
Boolean) the following conditions under which the system signals that the situ-
ation is beyond its scope of operation:

– If the standard error of the state-spread calculated for the previous five
minutes exceeds a limit of 1.5, data are too unreliable to be a basis of further
reasoning. Figure 3 shows two such periods. These are visualized by red/gray
bars in line CHECK.
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Fig. 2. Combination of abstraction methods used in the FiO2 controller. The names
of the instances of the abstraction methods are inside the boxes while their classes
are given in italics on top of them.

Fig. 3. Retrospective analysis of controller operation using recorded data. The top
graph shows the qualitative values abstracted from the median of the SpO2. The graph
in the middle shows the state-spread and the qualitative values (state, displayed
as horizontal bars) abstracted from it. Below we display the controller output (from
top to bottom): The intended-adjustment: first decrease FiO2 (in black) multiple
times until 1:20, then the target region is reached (green/light gray bars); the periods
of wait mode following each adjustment (gray); two periods of check mode (red/dark
gray); and a series of short periods during which the value of raw-data contradicts the
intended-adjustment (line REGION) or the trend dissuades from decreasing FiO2

(line TREND), both in blue/black.



– If the input from the pulsoximeter (raw-data) is missing or invalid due to
movements of the patient or the sensor, any change of the FiO2would not
seem plausible, even if 95% of the data in the time window under consider-
ation were valid.

– If the current reading of SpO2 drops below 80% for more than four seconds,
an acute hypoxy is occurring which will be signaled by the pulsoximeter.
Since our system is aimed at the optimization of SpO2 in normal situations,
it cannot contribute to handling such emergencies.

Postpone Mode. In addition to the above reasons for pausing operation there
are situations during normal operation in which it is not feasible to take the
intended action since the current data contradicts the results of the analysis of
the previous minutes. In the following situations the adjustment is postponed:

– If the trend observed for the last minute shows a change in the same direc-
tion which the adjustment tries to achieve, an additional change in the FiO2

setting could lead to over-reactions. E.g., if the past five minutes suggest
decreasing the oxygen supply but during the last minute SpO2 was decreas-
ing without such intervention, further observation is necessary. If the trend
continues, the desired effect takes place without the need for adjustments. If
the trend changes unfavorably, the FiO2 setting must be changed according
to the pending adjustment. The left half of Figure 3 shows a series of short
intervals (as blue/black bars in line TREND) during which the graph of the
raw data descends, rendering a reduction of FiO2 superfluous.

– If the most recent SpO2 reading grossly contradicts the intended adjustment,
the latter is not issued. This is the case if the system intends to decrease
the FiO2 and the current reading is normal or even below normal or vice
versa. Again we postpone the action. Line REGION in Figure 3 shows these
periods.

Intended and Final Adjustment. Based on the state, an intended-adjust-
ment is calculated. If neither check-mode nor postpone-mode are active (rep-
resented as true-value of these parameters), the final-adjustment takes the
value of the indented-adjustment. Otherwise no adjustment is recommended,
i.e., final-adjustment is zero.

Figure 3 shows a period from 1:00 to 1:20 during which decreasing the FiO2

by 1% is intended, interleaved with one period of check-mode and a series of short
periods during which either the trend or a mismatch of state and raw-data
hint at postponing the adjustment. From 1:20 onwards the qualitative value of
SpO2 is in the target region and no adjustment is necessary as marked by the
green/gray bar.

The output of the data abstraction—final-adjustment—is fed into the plan
execution unit via the monitoring unit which performs the instantiation and exe-
cution of the plans (compare Figure 1). The plans refer to the final-adjustment
in their filter conditions, i.e., an appropriate user-performed plan is started to
realize the adjustment whenever necessary.



4 Limitations

The spread algorithm is suitable for high-frequency, noisy signals. It is not appro-
priate for low-frequency data nor for data which shows meaningful oscillations.
However, the data-abstraction unit can handle low-frequency data using other
modules.

The current implementation handles several measurements per second with-
out problems. The absolute limit of performance depends on the complexity of
the instantiated data-abstraction, the performance of the computer used, and
the data format and transmission speed of the measuring device(s) connected to
the serial port.

5 Evaluation and Further Work

We currently perform a three step evaluation process of the FiO2 controller.
In a first step, we compared the spread to median filtering. The spread leads
to a more stable judgment of the patient’s situation and therefore reduces the
number of unnecessary adjustments of FiO2 (see Fig. 3, top and middle graphs).
We retrospectively evaluated recordings obtained from 10 patients. In a total of
126 hours (median 12, range 3–24) the adjustment based on the spread changed
148 times compared to 519 changes in the adjustment based on the median.

In a second step, we implemented the logic described above to derive adjust-
ments of the FiO2 setting. This proved to fully eliminate controversial adjust-
ments.

In the next step the system will be evaluated online in a Neonatal Intensive
Care Unit (NICU). The clinical study is designed to incorporate 13 premature
infants, first 3 for tuning the parameters of the controller, the others to evaluate
the performance. For safety reasons the system will run in open-loop mode. The
necessary adjustments to the FiO2 are displayed to the medical staff and set
manually. In three consecutive 2-hours periods the neonates are managed by
the ward staff, an expert giving special attention to ventilation management,
and the open-loop controller. Comparison of performance will give insights to
improvements in health-care offered by automated devices.

6 Conclusion

The work described in this paper shows that temporal data abstraction needs a
complex intelligent toolset to provide complex solutions necessary in real-world
applications such as optimizing the oxygen supply of premature neonates. The
data abstraction facilities provided by the Asgaard system are powerful enough
to implement such a system.

The design using formal data abstraction methods offers the flexibility to
adapt the FiO2 controller to different settings required by the various ventilation
modes used in the NICU. The controller is flexible enough to be used with
an incubator, in CPAP (continuous positive airways pressure) mode and with



controlled ventilation. Future work will be devoted to fine-tune the parameters
to various situations in the field of artificial ventilation of neonates.

Acknowledgments. This project is supported by ”Fonds zur Förderung der wis-
senschaftlichen Forschung - FWF” (Austrian Science Foundation), P12797-INF. We
appreciate the support given to the Austrian Research Institute of Artificial Intelligence
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