
Temporal Dimension of Medical Guidelines:
The Semantics of Asbru Time Annotations

Jonathan Schmitt,1 Wolfgang Reif,1 Andreas Seyfang,2 Silvia Miksch2,3

Abstract. The temporal dimension of observations, actions,
and tasks described in clinical guidelines and protocols (CGP)
is important and at the same time sometimes vague or com-
plex. Correct understanding of a modelling language of CGPs
is basis for a high quality formal model.

In this paper, we describe how the temporal dimension is
specified using Asbru time annotation as well as the semantics
and some important properties of these time annotations.

1 Introduction

Clinical guidelines and protocols (CGPs) are an important
means to ensure the quality of medical care, to aid the medi-
cal staff and to control cost. In order to use computer support
for verification and execution, they need to be translated to a
formal representation such as Asbru. Once formalised, prop-
erties to ensure the soundness of CGPs can be verified, which
is an important method to ensure integrity and quality.

The temporal aspect of both observations (patient state)
and actions (treatment steps) is important in practical appli-
cations of CGPs. An example for the temporal dimension of
a patient state observation is the measurement of bilirubin in
the treatment of Jaundice in otherwise healthy newborns [1].
Here, the treatment depends on the level of bilirubin in the
blood and on the age of the infant. This age is abstracted to
the three possibilities first day, second day and later. When
translating this guideline to a formal representation such as
Asbru, it is necessary to clarify this temporal information: Is
the first day the calendar day, on which the baby was born,
or is it the first 24 hours after birth? In practice the care
personnel may use their own rules to map the term in the
guideline to their actual actions, potentially deviating from
the intended treatment. Therefore, these details must be clar-
ified and expressed in an unambiguous way when formalising
the guideline.

While adding such information causes effort on the part of
the modeller, the resulting model provides valuable feedback
for the original guideline. In particular, the now explicit time
constraints can be discussed by domain experts and verified
using formal methods. Also, a precise model is a precondition
for executing the guideline in a decision support system, which
not only is an important means to implement the guideline in

1 University of Augsburg, D-86135 Augsburg, Germany,
{schmitt, reif}@informatik.uni-augsburg.de

2 Vienna University of Technology, A-1040 Vienna, Austria,
{seyfang, silvia}@asgaard.tuwien.ac.at

3 Danube-University Krems, A-3500 Krems, Austria

practice, but also helps to ”debug” the guideline by testing
various scenarios, feeding it different sets of patient data.

Among a range of formal representations of CGPs, Asbru
was found to have the strongest features to express temporal
aspects [2]. It is a time-oriented plan representation language
that represents clinical guidelines as skeletal plans. In Asbru,
the concept of skeletal plans has been enriched with temporal
aspects.

Asbru was originally developed by the Asgaard project [3].
Later Asbru evolved into an XML-based language with exten-
sions regarding temporal data abstraction and more specific
modelling of data [4]. The semantics of a subset of Asbru has
been defined using Structured Operational Semantics [5].

All conditions for the transition from one plan state to an-
other are expressed in terms of temporal patterns. A tempo-
ral pattern consists of one or more parameter propositions or
plan-state descriptions. Each parameter proposition contains
a value description, a context, and a time annotation.

A time annotation describes sets of time intervals in a flex-
ible way. It specifies a time range for the starting point, one
for the finishing point and one range restricting the duration
of the intervals. Start and end ranges are defined relative to
a reference point. Using different reference points in different
time annotations allows for different time lines in the CGP.
Time ranges may be partly undefined – see Table 1 for details.

In practical knowledge acquisition, the variety of values
used to describe a single interval often confuses users. The
main reason is that in daily life we deal with abstracted de-
scriptions which refer to the typical case and which imply
some tolerance regarding actual start, end and duration.

To overcome this problem, it has proven useful to query
each of the 6 constraints on its own. Doing so, taking the
negative approach yields more precise results. I.e., if you ask
”should an interval be included that starts after X?” is per-
ceived as a weaker statement than ”should an interval be ex-
cluded that starts before X?”. In other words, each of the
6 constraints defines an exclusion criterion for intervals to
match, but only all together they describe the inclusion cri-
terion. Therefore, looking at isolated values, one must think
about exclusion instead of inclusion.

The same question about the exclusion gives the answer to
whether this value is used at all. If the question ”When is
the duration of this interval too short?” cannot be answered,
then the minimum duration obviously is not defined here. In
contrast, the answer to a more general question like ”How
long should the interval be?” will not directly map to a time
annotation.



Name Abbr. Default Description

Reference point RP The time point, to which the following four
values (called shifts) are offsets.

Earliest starting shift ESS −∞ The earliest point in time, at which a fit-
ting interval may start.

Latest starting shift LSS ∞ The latest point in time, at which a fitting
interval may start.

Earliest finishing shift EFS −∞ The earliest point in time, at which a fit-
ting interval may end.

Latest finishing shift LFS ∞ The latest point in time, at which a fitting
interval may end.

Minimum duration MinDu 0 The shortest time span of an interval to be
a fitting interval.

Maximum duration MaxDu ∞ The longest time span of an interval to be
a fitting interval.

Table 1. Elements of a time annotation.

2 Timing in Asbru

Timing in Asbru is based on the strong synchronous hypoth-
esis [6]. This basically means that system transitions are as-
sumed to be instantaneous, while only environmental transi-
tions use up time. This is implemented by a micro/macro step
timing scheme, with system transitions happening during the
micro steps while environment transitions happen during the
macro steps. Macro steps are only allowed to occur, if the sys-
tem state is stable, which is, if all active system transitions
cannot change the state of the system, i.e. the system stutters.

Input variables, e.g. patient data, do not change during mi-
cro steps. Internal variables, e.g. the plan states, may change
during a micro step. Time proceeds only, if a macro step hap-
pens. The duration between two points in time, t1 and t2 is
calculated as t2 - t1 and is zero if t2 = t1.

Timing intervals can be specified ranging over a number of
micro and macro steps. A timing interval [t1, t2] with t1 < t2
contains the macro step at t1 and all micro and macro steps
from t1 + 1 to t2 - 1, if there are any. A timing interval [t, t]
contains some of the micro steps which happened before the
macro step t. For examples on the duration see Figure 1.

I1 I2 I3I3

duration 0

duration 1

duration t2 − (t1 + 1)

I1 [t1, t1]

I3 [t1 + 2, t2 + 1]

I2 [t1 + 1, t1 + 2]

t1 t2t1 + 1 t1 + 3t1 + 2

Figure 1. Intervals in Asbru

est lst eft lft

interval

Figure 2. Time annotation example

3 Formal Definition of Time Annotations

3.1 Introduction

Figure 2 shows the visualisation of an Asbru time annota-
tion. Asbru time annotations are representations of sets of
intervals. One of the intervals, which is element of the set of
intervals being defined by the time annotation is depicted by
the central horizontal line, marked “interval”. The lower hor-
izontal line represents the minimum length of the intervals
defined by minDu, the upper horizontal line the maximum
length of the intervals specified by maxDu in the time anno-
tation.

As can be seen, the interval is starting within the start-
ing interval (i.e. between the lines marked with EST and
LST), ends within the finishing interval (i.e. between the lines
marked with EFT and LFT) and its length is between the
length of minDu and maxDu. EST is equal to ESS + RP and
so on; see below for details.

In the next section we will start defining time annotation
as well as some predicates necessary to reason about them.

3.2 Formal Definition

Definition (infinite numbers) bZ is the set of integers,

united with positive and negative infinity, bZ = Z ∪ {∞, −∞ }

Definition (interval) An interval is a pair, [a, b], where

a, b ∈ bZ, and a ≤ b. A variable c with c ∈ bZ is element of
an interval, c ∈ [a, b], iff a ≤ c and c ≤ b.



Definition (time annotation) A time annotation is a
four tuple, syntactically written

[ESS, LSS][EFS, LFS][minDu, maxDu] RP

where ESS, EFS ∈ Z ∪ {−∞}, LSS, LFS, maxDu ∈ Z ∪ {∞},
minDu, RP ∈ Z and [ESS, LSS], [EFS, LFS] and [minDu,
maxDu] are pairs. The following functions are defined on time
annotations:

TA .ess = ESS TA .est = ESS + RP (= EST)
TA .lss = LSS TA .lst = LSS + RP (= LST)
TA .efs = EFS TA .eft = EFS + RP (= EFT)
TA .lfs = LFS TA .lft = LFS + RP (= LFT)
TA .maxDu = maxDu TA .sti = [TA .est , TA .lst ]
TA .minDu = minDu TA .fti = [TA .eft , TA .lft ]
TA .refPoint = RP TA .dti = [minDu, maxDu]

Definition (matching) A time annotation defines a set
of intervals, and an interval [a, b] is matched by a time an-
notation TA, written as [a, b] ∈ TA, iff a ∈ TA .sti , b ∈
TA .fti and b - a ∈ TA .dti .

Definition (legal) A time annotation TA is legal, iff the
following holds:

TA .minDu ≤ TA .lfs - TA .ess

TA .efs - TA .lss ≤ TA .maxDu

Theorem (legal-member) A time annotation TA is legal
iff there is an interval I with I ∈ TA.

Comment (legal-member) The predicate legal offers a
simple possibility to determine, whether there is at least one
interval, which is matched by the time annotation. Time an-
notations which are not legal – and therefore have no match-
ing interval – usually indicate a modelling errors, with the
exclusion criteria being to strong.

Definition (normal) A time annotation TA is normal, iff
the following holds:

TA .efs - TA .lss ≤ TA .minDu

TA .efs - TA .maxDu ≤ TA .ess

TA .maxDu ≤ TA .lfs - TA .ess

TA .lfs ≤ TA .maxDu + TA .lss

TA .minDu + TA .ess ≤ TA .efs

TA .minDu + TA .lss ≤ TA .lfs

0 ≤ TA .minDu

Theorem (normal) A time annotation TA is normal, iff
all of the following holds:

For all a ∈ TA .sti , there exists b such that [a, b] ∈ TA.
For all b ∈ TA .fti , there exists a such that [a, b] ∈ TA

For all c ∈ TA .dti , there exist a, b such that
b - a = c and [a, b] ∈ TA

Comment (normal) The theorem normal establishes,
that a normal time annotation is minimal. In Fig. 3, the max-
imum duration maxDu is larger than the difference between
the LFT and the EST. An interval matching the time anno-
tation is required to start within the starting shift (i.e. no
sooner than EST) and to finish in the finishing shift (i.e. no
later than LFT). This way, a duration larger than maxDu’ is
not possible to achieve for a matching interval. In this sense,
the example is not minimal and therefore should not be nor-
mal, which it is not, normal requires the maxDu to be smaller
than LFS - EFS. Typically such situations occur, if the mod-
eller is asked all six values of time annotations independently,
as is suggested in Section 1. Although a maximum duration
is not specified by the modeller, it may be given implicitly
due to constraints regarding the earliest starting point and
the latest finishing point. In such cases it is wanted to write
down a time annotation just as the modeller specified, because
otherwise the constraints would be harder to understand for
humans. At the same time having the time annotation in a
minimal way, as is defined by the predicate normal, allows
for a more efficient execution. The usual mode of operation
is therefore to allow the specification of legal but non-normal
time annotations within Asbru and decision support systems
for an improved understanding, but normalise them for the
use within the decision support or verification system to be
able to use more efficient implementations relying on the min-
imality.

est lst eft lft

maxDu’
maxDu

Figure 3. Example of a non-normal time annotation

Theorem (normal - legal (1)) Any legal time annotation
TA can be rewritten into a time annotation TA’, where TA’

is normal and for all intervals I , it holds that I ∈ TA iff I ∈
TA’.

As a proof for this theorem, we provide a translation scheme
and verify, that for every time annotation TA’, generated by
this translation scheme from a legal time annotation TA, it
holds that TA’ is normal and that for all intervals I, I ∈ TA’
iff I ∈ TA.

TA’ .ess = max(TA .ess , TA .efs - TA .maxDu )
TA’ .lss = min(TA .lss , TA .lfs - TA .minDu )
TA’ .efs = max(TA .efs , TA .ess + TA .minDu )
TA’ .lfs = min(TA .lfs , TA .lss + TA .maxDu )
TA’ .minDu = max(TA .minDu , TA .efs - TA .lss )
TA’ .maxDu = min(TA .maxDu , TA .lfs - TA .ess )
TA’ .refPoint = TA .refPoint

Comment (normal - legal (1)) As stated above, this
translation pattern can be used to normalise legal time an-
notations. Using this pattern in an appropriate way allows to
specify all time annotations in a legal but non-normal way,
which may be better understandable by an Asbru modeller.
At the same time, the efficiency of the implementation of the



verifier or interpreter can be greatly improved, if it is known,
that only normal time annotations have to be dealt with in a
case study.

Theorem (normal - legal (2)) Every normal time anno-
tation is also legal.

Verification of the presented theorems All theorems
and the reduction scheme in this section have been verified
using the interactive theorem prover KIV [7]. During verifica-
tion, errors in the original formulation of the definition normal
were found regarding special cases involving infinite numbers.
Consequently, the definitions were corrected. All theorems can
be verified with the definition of normal and legal as presented
in this paper.

Although the time annotations are used in temporal logic
verification work, we decided to specify the semantics using
first order logic. It seemed to us more fitting to do so, as a
specification using temporal logic would add complexity while
providing no additional benefit, as reasoning about the length
of intervals is very well covered by first order logic.

4 Conditions

Conditions in Asbru are used as guards to internal transi-
tions, evaluated over medical data of the patient. Conditions
come in two flavours. Basic conditions map a state to a truth
value. Complex conditions combine an Asbru condition, called
a conditional, with a time annotation. Complex conditions de-
termine, whether an interval can be found which matches the
time annotation and during which the conditional is evalu-
ated to true. For the evaluation of complex conditions it is
usually necessary to use history variables to keep track of the
past states the system has reached.

In the context of complex conditions, it can be said, that
the conditional is specifying the desired behaviour, while the
time annotation specifies the timing aspects. Evaluation of
the truth value of complex conditions is threefold. A complex
condition is true, iff an interval as described above can be
found. A complex condition is false, iff no such interval can be
found and it can be derived, that expanding the histories into
the future will not result in a situation where the condition is
true. If the condition is currently not true but could become
true in the future, the status of the condition is unknown.

4.1 Example

Assume an infection with measles. After contact with a
measles infected person, inflammation of the mucous mem-
branes is a warning sign for an infection. In cases of such
inflammations, the patient should be quarantined to prevent
a spreading of the disease. In Asbru this could be formulated
as a complex condition with the conditional being “inflamma-
tion of the mucous membranes” and the time annotation

[8 days, 12 days][−∞,∞][0,∞] contact to infected person

It is obvious that prior to the 8th day after the contact to
an infected person, it cannot be decided, whether or not a
measles related inflammation will occur. Therefore, the con-
dition will evaluate to unknown during this period.

During the period of eight to twelve days after the contact,
any occurring inflammation of the mucous membranes will
make the condition true immediately, resulting in a plan to
be started to quarantine the patient and to check for a measles
infection.

Assume, an inflammation starts only one day after the con-
tact to a measles infected person. In that case, it is obvious,
that the reason is not this specific contact to the infected per-
son. Therefore this infection, should it last into the 8/12 day
interval, does not trigger the quarantine. Instead, the require-
ment is, that there is an infection within 8 to 12 days and this
infection started no sooner than 8 days after contact.

Twelve days after the contact to an infected person without
an inflammation of the mucous membranes, it can be decided,
that an infection has not occurred and the condition will eval-
uate to false.

A more cautious approach would be to state, that it is not
necessary for the inflammation to start later than 8 days after
contact, but only to happen then. The time annotation of the
example would then be changed to

[−∞, 12 days][8 days,∞][0,∞] contact to infected person

The decision about the correctness of these time annotations
can only be made in coordination with a domain expert.

4.2 Flank behaviour

In this section we will provide some examples and describe
the effects that may result from a wrong formulation of time
annotations. As discussed in the previous section, certain time
annotations require the behaviour not only to occur, but to
start or stop within a certain interval. If the ESS is not set to
-∞ or the maxDu is set to ∞, a start in behaviour has to be
observed in the starting interval. If the LFS or the maxDu are
not set to ∞ an end of the behaviour in the finishing interval
has to be observed.

As an example, we will use a complex Asbru condition,
where some conditional is paired with the time annotation
[4h, ∞][-∞, 6h][0, ∞] self. Self refers to the start of the plan
containing this time annotation. From the description in the
previous paragraph, it can be seen, that a raising flank in the
beginning is required, because the ESS is set to 4h. A raising
flank is a observed, if the specified behaviour of a condition
could not be observed at one time point, but could be observed
in the very next time point. A trailing flank in the ending is
required, because the LFS is set to 6h. A trailing flank is
defined inversely to a raising flank.

Intervals satisfying this time annotation are all those start-
ing not earlier than 4 hours after the self time and ending not
later than 6 hours after the self time. Some example traces
for this time annotation are depicted in Figure 4. As can be
seen in the first two traces, an interval can be found such that
the interval is member of the time annotation. Also, the flank
requirements are satisfied with these intervals. The third ex-
ample displays a trace, where the condition is not satisfied,
because no trailing flank in the finishing interval can be ob-
served.

From the point of view of a decision support system, it is
also important to determine the point in time, where a time
annotated condition becomes true. This has been visualised
in Figure 5, where two points are marked up, the first, where



self + 4h self + 6h

self + 4h self + 6h

self + 4h self + 6h

Figure 4. Example traces

the conditional, the truth mapping disregarding the time an-
notation becomes true. The second point is the time, where
the condition, that is, the conditional including the time an-
notation, becomes true.

conditional true condition true

Figure 5. Example traces

Obviously, the existence of an interval with an accompa-
nying trailing flank in the end can only be determined after
this flank has been observed. If flanks are not required, a time
annotation has to be found, without ESS, LFS and maxDu
being set. Such a time annotation for the above example is
[-∞, 6h][4h, ∞][0, ∞] self, which requires the conditional to
be true sometime during the interval [self + 4h, self + 6h].

4.3 History variables

To evaluate complex conditions, it is usually necessary to keep
track of the past states a system had reached. For this, history
variables are employed.

Variables may be assigned different values for each micro
step. This has to be reflected in the history variables, such
that all assumed values have to be stored. Additionally, the
order of occurrence has to be stored. All the assumed values
of a variable are stored in a list, ordered by actuality. The last
entry is the most current one before a macro step.

4.4 Formal semantics of conditions

Simple Asbru conditions are first order logic formulas ϕ, map-
ping a state σ to a truth value, ϕ(σ). Complex Asbru con-
ditions are pairs of Asbru conditions, called conditional, and
time annotations. Their truth evaluation is more complex and
requires some additional definitions.

Definition (state) A state σ is a mapping of variables to
values. Each state is time-stamped, where the time stamp of

a state σ can be retrieved using the selector t(σ). The selector
p maps a state σ to a natural number.

Definition (history) A history is a function, mapping a
list of states to a time t, t ∈ Z. The selector h[t] selects the
list of states associated with time t in history h. A state σ is
in a history, iff there exists t such that σ ∈ h[t].

Within a history it must hold for all t, that h[t] is nonempty
and if h[t] = [σ1, σ2, . . . , σn] then for all σi, t(σi) = t and
p(σi) = i.

Definition (successor, predecessor) A state σ2 is the
successor of a state σ1, written as σ1 < σ2, iff t(σ1) < t(σ2)
or t(σ2) = t(σ1) and p(σ1) < p(σ2). σ1 ≤ σ2, iff σ1 < σ2 or
σ2 = σ1.

A state σ2 is the direct successor of a state σ1, written as
succ(σ1) = σ2, iff σ1 < σ2 and for all σi, σi < σ2 it holds
that σi ≤ σ1. A state σ1is the direct predecessor of a state
σ2, written as pred(σ2) = σ1, iff succ(σ1) = σ2.

Definition (eval) The function eval maps an Asbru condi-
tion cond, a history h and a state σ to {true, false, unknown}.
For a simple Asbru condition ϕ, eval(ϕ, h, σ) = true, iff ϕ(σ);
eval(cond, h, σ) = false, iff not ϕ(σ).

Definition (satisfied) Satisfied maps an Asbru condition,
a history and a state to a Boolean value. satisfied((condition
× TA), h, σ), iff there exists states σ1, σ2, such that σ1, σ2 ∈
h, [t(σ1), t(σ2)] ∈ TA, σ1 < σ2 ≤ succ(σ) and for all σn, σ1≤
σn and σn < σ2 eval(condition, h, σn) = true, if σn ∈ h.

If TA .ess is not set to −∞ or TA .maxDu is not set to
∞, furthermore eval(condition, h, pred(σ1)) = falseand if
TA .lfs or TA .maxDu are not set to ∞, eval(condition, h,
σ2) must be false and σ2 ≤ σ.

Definition (satisfiable) Satisfiable is a predicate mapping
an Asbru condition, a history and a state to a Boolean value.
satisfiable((condition × TA), h, σ), iff there exist states σ1,
σ2, such that σ1 ∈ h or σ < σ1, σ2 ∈ h or σ < σ2, [t(σ1),
t(σ2)] ∈ TA, σ1 < σ2 and for all σn, σ1 ≤ σn and σn < σ2

and σn ≤ σ, eval(condition, h, σn) = true.
If TA .ess is not set to −∞ or TA .maxDu is not set to

∞, it must hold that eval(condition, h, pred(σ1)) = false or
pred(σ1) < σ. If the TA .lfs or TA .maxDu are not set to ∞,
eval(condition, h, σ2) must be false or σ < σ2.

Definition (complex-eval) Given a history h, a state σ

and an complex Asbru condition cond, eval(cond, h, σ) =
true, iff satisfied(cond, h, σ), eval(cond, h, σ) = false, iff
not satisfiable(cond, h, σ), eval(cond, h, σ) = unknown, iff
satisfiable(cond, h, σ) but not satisfied(cond, h, σ).

5 Discussion and Conclusion

The temporal dimension of CGPs is receiving increasing at-
tention.

GLIF3, (New)GUIDE, PRODIGY, PROforma [2] and
GLARE [8] handle time like other values in conditions. This is
a suitable solution for simple cases in low-frequency domains.
However, combining several constraints on a single interval



leads to complex conditions. Also efficient monitoring as de-
scribed in [9] is not possible.

The time annotation used in Asbru is based on work of
Dechter et al. [10] and Rit [11]. Being a primary element of
the language, it is handled completely different than value
descriptions which refer to the value of measurements. This
yields two advantages: The interpreter can schedule the mon-
itoring efficiently, avoiding ”busy wait”; and clarifications
concerning the interdependencies of different temporal con-
straints become part of the core language semantics.

In this paper we described the same, together with impor-
tant resulting properties. This will clarify their usage and pro-
vide a sound basis for future models of guidelines and proto-
cols using Asbru.

REFERENCES

[1] AAP: American Academy of Pediatrics, Provisional Com-
mittee for Quality Improvement and Subcommittee on Hy-
perbilirubinemia. Practice parameter: management of hyper-
bilirubinemia in the healthy term newborn. Pediatrics 94
(1994) 558–565

[2] Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes,
R., Hall, R., Johnson, P., Jones, N., Kumar, A., Miksch, S.,
Quaglini, S., Seyfang, A., Shortliffe, E., Stefanelli, M.: Com-
paring computer-interpretable guideline models: A case-study
approach. JAMIA 10(1) (2003)

[3] Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project:
A task-specific framework for the application and critiquing
of time-oriented clinical guidelines. Artificial Intelligence in
Medicine 14 (1998) 29–51

[4] Seyfang, A., Kosara, R., Miksch, S.: Asbru 7.3 reference man-
ual. Technical report, Vienna University of Technology (2002)

[5] Balser, M., Duelli, C., Reif, W.: Formal semantics of Asbru
– an overview. In: Proceedings of IDPT 2002, Society for
Design and Process Science (2002)

[6] A. Benveniste, G.B.: The synchronous approach to reactive
and real-time systems. In: Another Look at Real-time pro-
gramming. Proceeding of IEEE (1991)

[7] Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.:
Formal system development with KIV. In Maibaum, T., ed.:
Fundamental Approaches to Software Engineering. Number
1783 in LNCS, Springer-Verlag (2000)

[8] Terenziani, P., Carlini, C., Montani, S.: Towards a compre-
hensive treatment of temporal constraints in clinical guide-
lines. In: Proc TIME 2002. (2002) 20–27

[9] Votruba, P., Seyfang, A., Paesold, M., Miksch, S.:
Environment-driven skeletal plan execution for the medical
domain. In: Proc ECAI 2006. (2006)

[10] Dechter, R., Meiri, L., Pearl, J.: Temporal constraint net-
works. Artificial Intelligence 49(1-3) (1991) 61–95

[11] Rit, J.F.: Propagating temporal constraints for scheduling.
In: Proc AAAI 1986), Morgan Kaufmann (1986) 383–388


