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Abstract
Therapy planning benefits from derived qualitative
values or patterns which can be used for
recommending therapeutic actions as well as for
assessing the effectiveness of these actions within
a certain period. Dealing with high-frequency data,
shifting contexts, and different expectations of the
development of parameters requires particular
temporal abstraction methods to arrive at unified
qualitative values or patterns.
This paper addresses context-sensitive and
expectation-guided temporal abstraction methods.
They incorporate knowledge about data points,
data intervals, and expected qualitative trend
patterns to arrive at unified qualitative descriptions
of parameters (temporal data abstraction). Our
methods are based on context-sensitive schemata
for data-point transformation and curve fitting
which express the dynamics of and the reactions
to different degrees of parameters' abnormalities,
as well as on smoothing and adjustment
mechanisms to keep the qualitative descriptions
stable in case of shifting contexts or data oscillat-
ing near thresholds.
The temporal abstraction methods are integrated
and implemented in VIE-VENT, an open-loop
knowledge-based monitoring and therapy planning
system for artificially ventilated newborn infants.
The applicability and usefulness of our approach
are illustrated by examples of VIE-VENT.

1 . Introduction: the Need for
Deriving Temporal Patterns

If one dares to work with monitoring and therapy
planning in real-world environments, one faces a host
of data analysis problems. The available data occur at
various observation frequencies (e.g., high or low
frequency data), at various regularities (e.g.,
continuously or discontinuously assessed data), and at
various types (e.g., qualitative or quantitative data).
The monitoring and therapy planning process has to
cope with a combination of all these data sources.
Additionally, the interpretation context is shifting
depending on observed data, and the underlying
expectations of the development of parameters are
different according to the interpretation context as well
as to the degrees of parameters' abnormality.
Theories of data analysis (Avent and Charlton 1990;
Kay 1993) mostly deal with well-defined problems.
However, in many real-world cases the underlying
structure-function models are poorly understood or not
applicable because of incomplete knowledge and
complexity as well as the vague qualitative data
involved (e.g., qualitative expected trend descriptions).
Therefore statistical analysis, control theory, or other
techniques are often unusable, inappropriate or at least
only partially applicable.
To overcome these limitations, qualitative values or
patterns are derived and used to improve monitoring
and therapy planning. An advantage of using
qualitative descriptions is their unified usability in the
system model, no matter of what their origin. These
derived qualitative values or patterns are used for
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recommending therapeutic actions as well as for
assessing the effectiveness of these actions within a
certain period. Several different approaches have been
introduced to perform data abstraction (e.g.,
(Haimowitz, Le, and Kohane 1995; Shahar and Musen
1993) a detailed comparison is given in Section 2).
However, dealing with high-frequency data, shifting
contexts, and different expectations of the development
of parameters require particular temporal abstraction
methods to arrive at unified qualitative values or
patterns.
We propose context-sensitive and expectation-guided
temporal abstraction methods. They incorporate
knowledge about data points, data intervals, and
expected qualitative trend patterns to arrive at unified
qualitative descriptions of parameters (temporal data
abstraction). Our methods are based on context-
sensitive schemata for data-point transformation and
curve fitting which express the dynamics of and the
reactions to different degrees of parameters' abnor-
malities, as well as on smoothing and adjustment
mechanisms to keep the qualitative descriptions stable
in case of shifting contexts or data oscillating near
thresholds. Our temporal abstraction methods combine
AI techniques with time-series analysis, namely linear
regression modeling. The stepwise linear regression
model approximates vague medical knowledge, which
could be determined only in verbal terms.
Our approach is oriented toward, but not limited to,
our application domain: artificial ventilation of
newborn infants in intensive care units. The temporal
abstraction methods are integrated and implemented in
VIE-VENT, an open-loop knowledge-based monitoring
and therapy planning system for artificially ventilated
newborn infants (Miksch, et al. 1993). VIE-VENT had
been tested and evaluated in real clinical scenarios. The
applicability and usefulness of our approach are
illustrated by an example of VIE-VENT.
In the first part of this paper we will illustrate why
previous methods are not applicable and fail to meet
our requirements. The second part will describe the
application domain by introducing a sample case and
the basic concepts to proceed with our approach. In the
third part we will concentrate on the context-sensitive
and expectation-guided temporal abstraction methods
and illustrate them using our sample case. Finally, we
will describe our experiences within a real-clinical
setting concluding with strengths and limitations of
our approach.

2 . Alternative Approaches and their
Limitations: the Need for New
Data-Abstraction Methods

During the recent years, several different approaches
have been introduced to perform temporal abstraction
tasks. The systems were implemented mainly for

clinical domains. A pioneer work in the area of
knowledge-based monitoring and therapy planning
systems was the Ventilator Manager (VM, (Fagan,
Shortliffe, and Buchanan 1980)), which was designed
to manage postsurgical mechanically ventilated pa-
tients. VM was developed in the late 1970s as one of a
series of experiments studying the effectiveness of the
MYCIN formalism. In recent years the most
significant and encouraging approaches were the
temporal utility package (TUP, (Kohane 1986)), the
temporal control structure system (TCS (Russ 1989)),
the TOPAZ system (Kahn 1991), the temporal-
abstraction module in the M-HTP project (Larizza,
Moglia, and Stefanelli 1992), the Guardian project
(Hayes-Roth, et al. 1992), the TrenDx system
(Haimowitz, Le, and Kohane 1995), and RÉSUMÉ
(Shahar and Musen 1993; Shahar and Musen 1996). A
comprehensive review of temporal-reasoning
approaches and useful references are given in (Shahar
and Musen 1996). In the following we will concentrate
only on the two approaches most closely related to our
approach, pointing out their differences and limitations
for our purpose.
Haimowitz and Kohane (Haimowitz, Le, and Kohane
1995) have developed the concept of trend templates
(TrenDx) to represent all available information during
an observation process. A trend template defines
disorders as typical patterns of relevant parameters.
These patterns consist of a partially ordered set of
temporal intervals with uncertain endpoints. The trend
templates are used to detect trends in series of time-
stamped data. The drawbacks of this approach lie in the
predefinition of the expected normal behavior of
parameters during the whole observation process and
the usage of absolute value thresholds matching a trend
template. The absolute thresholds do not take into
account the different degrees of parameters'
abnormalities. In many domains it is impossible to
define such static trajectories of the observed
parameters in advance. Depending on the degrees of
parameters' abnormalities and on the various contexts,
different normal behaviors are expected. These normal
expectations vary according to the patient's status in
the past. Therefore these thresholds have to be derived
dynamically during the observation period. For
example, the decreasing of transcutaneous partial
pressure of carbon dioxide (PtcCO2) from 94 mmHg to
90 mmHg during the last 25 minutes would be
assessed as "decrease too slow" because the patient's
respiratory status was extremely above the target range
in the past. However, the same amount of change (4
units) from 54 mmHg to 50 mmHg would be assessed
as "normal decrease" during a period where the patient's
respiratory status was slightly above the target range.
RÉSUMÉ (Shahar and Musen 1993; Shahar and
Musen 1996) performs temporal abstraction of time-
stamped data without predefined trends. The system is
based on a model of three basic temporal abstraction
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mechanisms: point temporal abstraction (a mechanism
for abstracting the values of several parameters into a
value of another parameter), temporal inference (a
mechanism for inferring sound logical conclusions
over a single interval or two meeting intervals) and
temporal interpolation (a mechanism for bridging non-
meeting temporal intervals). However, their approach
is not applicable because of the following reasons:
First, RÉSUMÉ covers only limited domain dynamics
(e.g., different classifiers for different degrees of
parameters' abnormalities are not included). Second, it
requires predefined domain knowledge to perform the
temporal interpolation (e.g., gap functions), which is
not available in some domains. Third, it concentrates
on methods to cope with low-frequency observations
which cannot easily be adapted for high-frequency data
due to their different properties. Fourth, different
contexts have to be defined in advance and are not
automatically deduced from the input parameters. Fifth,
the high level abstraction mechanism (pattern match-
ing based on external and internal knowledge) is super-
fluous for therapy planning.
Our approach benefits from using all available
information based on temporal ontologies (time points
and intervals (Allen 1991; Dean and McDermott 1987),
on different granularities (continuously and
discontinuously assessed data) and on various kinds of
data (quantitative and qualitative data). Our temporal
data-abstraction methods cover the different degrees of
parameters' abnormalities caused by shifting contexts
and their corresponding dynamics (e.g., "the higher the
degree of a parameter's abnormality the bigger is the
amount of positive parameter's change which is
classified as normal") as well as expected qualitative
trend descriptions (e.g., "the transcutaneous partial
pressure of oxygen (PtcO2) value should reach the
normal region within approximately 10 to 20
minutes") to arrive at unified qualitative descriptions of
parameters. To keep our qualitative descriptions stable
we apply smoothing and adjustment methods.
Additionally, we do not predefine absolute, time-
dependent expected normal behavior of parameters
during the whole observation process (as in
(Haimowitz, Le, and Kohane 1995)), because the
course of a parameter according to an absolute temporal
dimension (axis) is not known in advance. We derive
schemata for curve fitting in relation to the specific
states of each parameter. The combination of different
parameters' states reflects a particular context.
Improving or worsening of these parameters are
assumed to be best described as exponential functions.
The costs to compare such exponential functions are
reduced by stepwise linearization.

3 . Application Domain and Basic
Concepts

In the following section we will explain our
application domain, specify the input and the output of
our temporal data-abstraction methods, introduce a
sample case, and explain the basic notion of our
concepts "context-sensitive" and "expectation-guided".

3.1 Application Domain: Monitoring and
Therapy Planning of Artificially Ventilated
Newborn Infants in NICUs
Medical diagnosis and therapy planning at modern
intensive care units (ICUs) have been refined by the
technical improvement of their equipment. However,
the bulk of continuous data arising from complex
monitoring systems, in combination with
discontinuously assessed numerical and qualitative data,
create a rising information management problem at
neonatal ICUs (NICUs). We are particularly interested
in the monitoring and therapy-planning tasks of
artificially ventilated newborn infants in NICUs. These
tasks can be improved by applying derived qualitative
values or patterns (temporal data abstraction).
Our temporal abstraction methods are integrated,
implemented, and evaluated in VIE-VENT. VIE-VENT
is an open-loop knowledge-based monitoring and
therapy planning system for artificially ventilated
newborn infants (Miksch, et al. 1993; Miksch, et al.
1995). It incorporates alarming, monitoring, and
therapy planning tasks within one system. The data-
driven architecture of VIE-VENT consists of five
modules: data selection, data validation, temporal data
abstraction, data interpretation and therapy planning.
All these steps are involved in each cycle of data col-
lection from monitors. VIE-VENT is especially
designed for practical use under real-time constraints at
NICUs. Its various components are built in analogy to
the clinical reasoning process.

3.2 Input and Output
VIE-VENT's input data set can be divided into
continuously and discontinuously assessed data.
Continuously assessed data (e.g., blood gas
measurements, like PtcO 2, PtcC O 2, SaO 2, and
ventilator settings, like PIP, FiO2) are taken from the
output of the data selection module every 10 seconds.
Discontinuously assessed data are entered into the sys-
tem on request by the user depending on different
conditions (e.g., critical ventilatory condition of the
neonate, elapsed time intervals, missing monitoring
data). The system output consists in primarily
therapeutic recommendations for changing the
ventilator setting. Additionally, VIE-VENT gives
warnings in critical situations, as well as comments
and explanations about the health condition of the
neonate.
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The input of the temporal data-abstraction methods
includes a set of time-stamped parameters (the
continuously assessed data retrieved every 10 seconds
and the discontinuously assessed data at a particular
time-stamp) and expected qualitative trend patterns
(e.g., "the parameter PtcCO2 is moving one qualitative
step towards the target range within 20 to 30
minutes."). The specific context of the observed
parameters is automatically deduced from the input
parameters, mainly the ventilator settings. The output
of the data-abstraction methods is a set of time-point-
and interval-based, context-specific, qualitative
descriptions. These qualitative descriptions can be a
separate abstraction at a particular time-stamp and/or a
combination of different time-specific abstractions (a
higher level of abstraction, e.g., a combination of
different time-stamped qualitative data-point categories
or a combination of time-point- and interval-based
values called qualitative trend category).

3.3 A Sample Case
Figure 1 shows a sample case of VIE-VENT. In the
following sections this sample case will be used to
illustrate our temporal data-abstraction methods. The
left-hand region shows the blood gas measurements
(transcutaneous CO2, O 2, S a O 2 ) and their
corresponding qualitative temporal abstractions on the
top. The actual ventilator settings (first column, e.g.,
F iO 2  is 38%), and VIE-VENT's therapeutic
recommendations at the current time (second column,
e.g., decrease FiO2 to 30%) are given below. The
upper right-hand region shows two status lines. First,
the combination of different time-specific abstractions
is labeled by "Status" (e.g., "hyperoxemia" is the
combination of the qualitative data-point categories of
SaO2 and PtcO2). Second, additional warnings are
labeled by "Warnings"(e.g., "worsening" means that
VIE-VENT detected, that the respiratory system of the
neonate is worsening). The right-hand region gives
plots of the most important parameters over the last
four hours. Scrolling to previous time periods is
possible by pushing the buttons (<<) for a four-hour
step backward, (<) for an one-hour step backward, (>>)
for a four-hour step forward, or (>) for an one-hour step
forward, respectively. Additional information and
explanations about other parameters, the history, and
the temporal abstraction can be retrieved on users'
request (pushing the buttons <Plot 2>, <History> and
<Trend>, respectively). The therapeutic rec-
ommendations are displayed as red vertical lines in the
corresponding curve of the ventilator setting.

3.4 Meaning of "Context-Sensitive"
The abstraction problem becomes more difficult when
the behavior of a system involves interactions among
components or interactions with people or with the
environment. Under these conditions, correct
abstractions become context-sensitive. It is possible to
determine a priori a set of sensor parameters with their
fixed plausible ranges. However, if the context is
shifting, e.g., one component gets in a critical
condition or a changing of specific phases or protocols
occurs, a capability for dynamic adjustment of
threshold values is needed.
The context is automatically deduced from the set of
input parameters. For example, we monitor the patient
during the whole artificial ventilation process. The
ventilation process can be divided into different phases,
namely an initial phase, a phase of controlled
ventilation (intermittent positive pressure ventilation,
IPPV), a phase of weaning (intermittent mandatory
ventilation, IMV), and a phase of returning to
spontaneous breathing. All phases characterize a
particular context and can be deduced from the current
ventilator setting. In Figure 1 the context "imv" is
shown in the first row of the ventilator settings labeled
by "RESP". The second column gives the current
recommendation of VIE-VENT (i.e., change the
context to "ippv"). The user interface is designed for
physicians. Therefore we used labels which are
meaningful for physicians. We defined context-specific
transformation schemata of time-stamped data as well
as adjustment methods in case of shifting contexts and
data oscillating near thresholds.

3.5 Meaning of "Expectation-Guided"
Usually, the temporal abstraction is either exclusively
based on the observed input parameters (compare
(Shahar and Musen 1993; Shahar and Musen 1996)) or
predefined trajectories of observed parameters are used
(compare (Haimowitz, Le, and Kohane 1995)). The
first neglects available knowledge, in many domains
expectations of parameters' courses are obtainable.
However, trajectories of observed parameters are often
difficult to define in advance. The problem lies in the
lack of an appropriate curve-fitting model to predict the
development of parameters from actual measurements.
Nevertheless, verbal descriptions about expectations of
parameters' developments are attainable from domain
experts. We improved our temporal data-abstraction
process, including expected qualitative trend
descriptions, which are derived from domain experts.
In the next section we will explain our temporal data-
abstraction methods in detail.
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Figure 1: Sample case of VIE-VENT. The left-hand region shows the blood gas measurements, their corresponding
qualitative temporal abstractions on the top and the actual and recommended ventilator settings below. The right-hand
region gives plots of the most important parameters over the last four hours, namely transcutaneously assessed blood
gas measurements and some ventilator settings.

4 . Temporal Data-Abstraction
Methods

The aim of the temporal data-abstraction process is to
arrive at unified, context-sensitive qualitative
descriptions. The data abstraction is based on time
points, time intervals and expected qualitative trend
descriptions within a particular context.
Dealing with high-frequency data, shifting contexts,
and different expectations of the parameters'
development requires particular temporal abstraction
methods to arrive at unified qualitative values or
patterns. Our temporal data-abstraction process consists
of five different methods: (1) transformation of
quantitative point data into qualitative values (context-
sensitive schemata for data-point transformation), (2)
smoothing of data oscillating near thresholds, (3)
smoothing of schemata for data-point transformation,
(4) context-sensitive adjustment of qualitative values,
(5) transformation of interval data (context-sensitive

and expectation-guided schemata for trend-curve
fitting).
The schemata for data-point transformation transform
single observations into qualitative values. To keep the
qualitative values stable in case of shifting contexts or
data oscillating near thresholds, we apply different
smoothing methods. In critical states of the patient we
have to adjust the qualitative values avoiding severe
lung damage (context-sensitive adjustment of
qualitative values). The schemata for curve fitting
represent the dynamically changing knowledge to
classify the observed parameters in combination with
different expectations of the parameters' courses during
time periods. The next sections explain these methods
in detail.
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4.1 Context-Sensitive Schema for Data-Point
Transformation 
The transformation of quantitative point data into
qualitative values is usually performed by dividing the
numerical value range of a parameter into regions of
interest. Each region represents a qualitative value. The
region defines the only common property of the
numerical and qualitative values within a particular
context and at a specific time-stamp. It is comparable
to the "point temporal abstraction" task of Shahar and
Musen (Shahar and Musen 1993).
The bases of our transformation of the blood gas
measurements are context-sensitive schemata for data-
point transformation, relating single values to seven
qualitative categories of blood gas abnormalities
(qualitative data-point categories). The seven numerical
regions of interests are not equal sized. The value range
of an interval is smaller the nearer the target range.
This is an important feature representing the dynamics
related to the different degrees of parameters'
abnormalities. It is extensively used in the schemata
for trend-curve fitting (compare Section 4.5). The
schemata for data-point transformation are defined for
all kinds of blood gas measurements depending on the

blood gas sampling site (arterial, capillary, venous,
transcutaneous) and all different contexts (e.g., "imv").
The different contexts require specific predefined target
values depending on different attainable goals. Figure 2
shows the schema of transcutaneous partial pressure of
carbon dioxide (PtcCO2) during IMV. For example,
the transformation of the transcutaneous PtcCO2 value
of 34 mmHg during IMV results in a qualitative
PtcCO2 value of g2  (“substantially below target
range") whereas during IPPV it would represent g1
(“slightly below target range"). The wi,x values divide
the qualitative regions. The transformation of interval
data is based on these qualitative data-point categories,
which are described later.
In Figure 1 the temporal abstraction of the blood gas
measurements is displayed in the left upper corner. The
qualitative data-point categories are expressed using a
color chart with different gradation (e.g., deep pink
represents values extremely above the target range (s3),
lime green represents values extremely below the target
range (g3)). The above example of the transcutaneous
PtcCO2 value of 34 mmHg during IMV is displayed in
color chartreuse.

13 w1,l [

33 w2,l [
39 w3,l [

44 w4,l [

59 w4,u ]
65 w3,u ]

75 w2,u ]

148  w1,u ]

invalid

g3

g2
g1

normal

s1

s2

s3

invalid

qualitative categories interval order

49 target value normal .. . target range

g1 ... slightly
g2 ... substantially 
g3 ... extremely

s3 ... extremely
s2 ... substantially 
s1 . .. slightly

above the target range

below the target range

Derived  
qualitative data-point categories

Figure 2: Schema for data-point transformation of PtcCO2 during context IMV. On the left-hand side the abbreviations
of the seven derived qualitative data-point categories are used. The labels wi,x indicates the thresholds of the regions of
interests. The square brackets [ and ] show the interval order (e.g., ]75, 148] is a left-side open interval).
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4.2 Smoothing of Data Oscillating Near
Thresholds
To avoid rapid changes of the qualitative categories
triggered by data which oscillate near the thresholds of
the schema for data-point transformation, we apply a
smoothing method. The key idea is to keep the
qualitative categories stable if the quantitative values
cross the border to the next qualitative category just
minimally for a few moments. Our smoothing method
is based on the size of the regions of interests,
predefined ε regions, and lasting time intervals.
Alternative smoothing approaches could use statistical
measurements (e.g., interval of confidence) or fuzzy
sets to classify the parameter values.

The smoothing method:

Let - in contrast to Figure 2, the second index (upper
and lower region) has been eliminated to increase
readability -  at be the actual value at current time t
with at ∈ [ wi, wi+1] , at-1 be the value on time-step
before (with at-1 ∈ [ wi-1, wi] or at-1 ∈ [ wi, wi+1] or
at-1 ∈ [ w i+1, wi+2 ]) , wk be the borders of the
qualitative data-point categories, qual(am) be the related
qualitative data-point categories at time point m, then
if qual(at) ≠ qual(at-1) and

((at ≤ wi + ε) or (at ≥ wi+1 - ε))
then start_smoothing

∀ am, m ∈ [ t, t+x] :
if qual(am) ≠ qual(at-1) and

((am ≤ wi + ε)  or
  (am ≥ wi+1 - ε))  
then qual(am)←  qual(at-1)
else if ((am > wi + ε)  or

     (am < wi+1 - ε))
   then  stop_smoothing

with if |wi+1 - wi| > 3 then ε = 2
else ε = 1

   and [t, t+x] be the lasting time

interval

The smoothing method starts if the current qualitative
data-point category (qual(at)) is not equal to the
previous qualitative data-point category (qual(at-1))
and at is in the ε region. At the starting point, the
actual qualitative category gets the value of the
previous category. During the lasting time interval the
new actual category qual(am) gets the value of the
category at the time point t-1 (qual(at-1)) if the
preconditions hold. The smoothing lasts as long as one
of the following preconditions holds:
(1) predefined time period (e.g., 5 minutes) since the

start of smoothing (t) has not been elapsed and
(2) am is in the ε region
Figure 3 gives an example of our smoothing method.
At time point t the smoothing method is activated,
b e c a u s e  t h e  t w o  p r e c o n d i t i o n s
"qual(at) ≠ qual(at-1)" and "(at ≤ wi +  ε)"
are satisfied. Therefore the shifting of the qualitative

categories starts at time point t. The gray arrows ( )
illustrate the shifting of data values from the qualita-
tive data-point category "s2" to the qualitative category
"s1". At time point t+3 no shifting is necessary
because the qualitative category is the same as at the
starting point of the smoothing. The data smoothing
lasts until time point t+5, because the distance
between at-1 and at+6 is greater ε. In this example,
the predefined time period of 5 minutes has not been
exhausted.

Qualitative 
d ata-point category

Time 
plotted every 30 seconds

t-1 t

s3

s2

s1

at

at-1

wi

wi+1

wi-1

t t + 5 minutes

Parameter value

:

t+1 t+3 t+5 t+7 t+9 t+11 t+13

start end{
smoothing period

normal

t +  2.5 minutes

ε region

{

Figure 3: Example of data smoothing.

4.3 Smoothing of Data-Point
Transformation Schemata
The schemata for data-point transformation are defined
for all contexts (i.e., modes of ventilation: IMV,
IPPV) representing different target values. Changing
context would therefore result in an abrupt change of
the schema for data-point transformation and by this in
a sudden shift of the qualitative category. As a
consequence, this could lead to recommendations for
rather drastic changes of the ventilator settings. To
avoid too-abrupt changes of the qualitative categories,
we smooth the thresholds of the schemata for data-
point transformation within a predefined time period
(three to eight hours depending on the "aggressiveness"
of the user).
For example, if the mode of ventilation is changed
from IPPV to IMV, the thresholds of the schemata for
data-point transformation are changed stepwise during
eight hours in the case of a conservative user. This
results in a slow change of the target range in the next
eight hours, and with respect to the therapeutic
consequences, in a graceful start of the weaning
process.
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4.4 Context-Sensitive Adjustment of
Qualitative Values
For extremely critical or life-threatening situations, the
thresholds defined in the schemata for data-point
transformation are too strict. In such cases we adjust
the qualitative value of a parameter, which is equal to a
shift of the numerical threshold value. The adjustment
of qualitative values holds as long as the precondition
of "life-threatening situation" is true.
For example, the degree of artificial ventilation
determined by values of the ventilator settings can lead
to modification of the transformation process. If the
peak inspiratory pressure (PIP, measured in cm H2O)
is very high, higher PtcCO2 values are tolerated as
better ones in order to prevent extreme pressure
settings. The following rule represents this kind of
knowledge.
if (30 < PIP ≤ 35) and

(PtcCO2 is "extremely below target range")

then

(PtcCO2 is changed to "substantially below

    target range")

4.5 Transformation of Interval Data
(Context-Sensitive and Expectation-Guided
Schema for Trend-Curve Fitting)
Similar to the transformation of numerical data points
to qualitative values, interval data are transformed to
qualitative descriptions resulting in a verbal
categorization of the change of parameters over time.
Physicians' experiences about the expectations for how
a blood gas value has to change over time to reach the
target range in a physiologically proper way are
expressed in verbal terms. For example, "the parameter
PtcCO2 is moving one qualitative step towards the
target range within 20 to 30 minutes". These
qualitative statements are called expected qualitative
trend descriptions. The qualitative classification of the
abnormality of a blood gas value resulted in different
sized qualitative ranges (s3, s2, s1, normal, g1, g2, g3)
as shown in Section 4.1. Combining these qualitative
data-point categories with the expected qualitative trend
descriptions we reach the schemata for trend-curve
fitting. The schemata for trend-curve fitting express the
dynamics of and the reactions to different degrees of
parameters' abnormalities. A physician classifies a
higher degree of a parameter's abnormality as more
severe and classifies a faster positive change of this
parameter as normal. The different sizes of the data-
point categories express this circumstance. The
corresponding dynamically derived trends depending on
the expected qualitative trend descriptions represent
different dynamic changes.
Based on physiological criteria, four kinds of trends of
our 10-second data samples can be discerned:

(1) very short-term trend: sample of data points based
on the last minute

(2) short-term trend: sample of data points based on
the last 10 minutes

(3) medium-term trend: sample of data points based on
the last 30 minutes

(4) long-term trend: sample of data points based on
the last 3 hours

Comparing different kinds of trends is a useful method
of assessing the result of previous therapeutic actions,
of detecting if oscillation is too rapid, and of isolating
the occurrence of artifacts (compare (Miksch, et al.
1994)).
The transformation of interval data into qualitative
values is the last step of the temporal data-abstraction
process. All necessary smoothing procedures are
already done and only validated and therefore reliable
data are involved. In case of missing or invalid
measurements certain criteria of validity to proceed
with the trend-based data-abstraction process are needed.
In a monitoring process, the position of a
measurement in the sequence of time-ordered data
influences the reasoning process: namely, recent
measurements are more important than historical
measurements. Hence, criteria dealing only with an
average distribution of measurements are insufficient.
Due to this precondition we defined two criteria of
validity to make sure that the used trend is actually
meaningful: a certain minimum amount of valid
measurements within the whole time interval, and a
certain amount of valid measurements within the last
20 percent of the time interval. These limits are defined
by experts based on their clinical experience. They may
easily be adapted to a specific clinical situation based
on the frequency at which data values arrive.

4 . 5 . 1 . The Guiding Principle
The guiding principle of our approach is illustrated in
Figure 4. The schema  for trend-curve fitting
transforms the different quantitative trend values (e.g.,
short-term or medium-term trends) into ten qualitative
categories guided by physiological criteria. The x axis
describes the discrete granularity of the representation
in minutes. The y axis shows the PtcCO2 levels and
the corresponding qualitative data-point categories. The
value space of a parameter is divided into an upper and
a lower region by the normal range. The dark gray area
represents the expected qualitative trend description for
a normal change of a parameter in the upper and the
lower region, respectively. The derived qualitative trend
categories are written in bold, capital letters.
Improving or worsening of parameters are fitted by
exponential functions. An appropriate approach
classifying trend data is to transform the curve (borders
of the dark gray area) shown in Figure 4 into an
exponential function and to compare it with the actual
growth rate. To classify the trend data, we used a
dynamic comparison algorithm which performs a
stepwise linearization of the expected exponential
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function to overcome complexity (compare Section
4.5.2).
For example, if a PtcCO2 data point during the context
"IMV" is classified as s1, s2 or s3  (“ ... above target
range") we would expect a therapeutic intervention to
result in an decrease of type A2 (dark gray area) as
"normal" trend.

4 . 5 . 2 The Dynamic Comparison
Algorithm

The dynamic comparison algorithm classifies data
within a time interval to a qualitative trend category
depending on the relative position of corresponding
data points and the expected qualitative trend
descriptions. As an example, Figure 5 gives the
schema for trend-curve fitting of PtcCO2 where we
have reached a value of 85 mmHg after 58 minutes.
The x axis describes the discrete granularity of the
representation in minutes. The y axis shows the
PtcCO2 levels. It indicates the quantitative values of
data points (at thresholds horizontal dotted lines are
drawn). Their corresponding qualitative categories are
listed on the right-hand side. Based on the guiding
principle depicted in Figure 4, we compute the actual
curve for selecting between the different qualitative
categories. The striped area A2 shows the expected
normal development. The qualitative trend categories
are written in bold, capital letters. They determine if an
additional therapeutic action should be recommended
(visualized with light-gray arrows in Figure 5)
The growth rates are calculated and classified for all
kinds of trends (very-short-, short-, medium-, and long-
term). To increase readability, we show only the
principal method and not the results for the four kinds
of trends. The algorithm works the same way for all
trends.

The dynamic comparison algorithm consists of two
steps:

Step one: calculates the actual growth rate ka using the
linear regression model and two thresholds for the
growth rate k1 and k2 depending on the relative
position of the data points; k1 and k2 are used for

discerning the qualitative trend categories A1, A2,
and A3.

Step two: classifies the qualitative trend category
depending on the actual growth ka, on the two
thresholds k1, k2, and on the qualitative region
where the previous data point (at-1) belongs. In
addition to k1 and k2 we use an ε range around zero
to classify a trend as "ZA" and "ZB", respectively.
The ε range is created on physiological grounds in
order to support a wider range for defining "no
change of a parameter".

The results of this algorithm are classifications of all
parameters to one of the ten qualitative trend
categories. The target range of a parameter divides the
qualitative regions into an upper part (A1, A2, A3,
ZA, C) and a lower part (B1, B2, B3, ZB, D) as
explained in Figure 4. The classification process
results in instantiations of qualitative trend descriptions
for each blood gas measurement, for each kind of trend,
and for each activated context.
In Figure 1 the qualitative trend categories are
visualized by colored arrows next to the qualitative
data-point categories. The four arrows show the
directions of the very-short, short, medium, and long-
term trends. For example, all qualitative trend
categories of PtcCO2 during the context "IMV" are
derived as "D" (their directions are down-going and the
color is deep-pink). This expresses a dangerous decrease
of the measurement. Consequently, our therapy
planning module recommends a therapeutic action to
decrease PIP (compare fourth plot on the right-hand
side in Figure 1). The qualitative trend categories for
the short-term trend (second arrow) of PtcO2 and SaO2
are derived as "ZA" (zero change) and "A3" (slow
decrease), respectively. For SaO2 we see a short-term
trend of slow decrease, but a zero change during the last
30 minutes (third arrow) and a dangerous increase
during the last 3 hours (red fourth arrow pointing
upwards). This knowledge is used in our therapy
planning module to recommend therapeutic actions. In
this case a therapeutic action to decrease FiO2 is
recommended (compare third plot on the right-hand side
in Figure 1).
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Figure 4: Schema for trend-curve fitting of PtcCO2. The dark gray area indicates the expected qualitative trend
description of a normal change of a parameter in the upper and the lower region, respectively.
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Figure 5: Example of schema for trend-curve fitting of
PtcCO2.

5 . Applicability and Practical
Usefulness

We have tested the applicability of our approach both
on generated data sets and on real data. The generated
data sets were used to simulate extreme cases. The
results obtained demonstrated the robustness of VIE-
VENT. Real data were obtained from a NICU using
on-line data acquisition. We collected sequences of 16-

28 hours of continuous recording of transcutaneous
blood gas measurements and pulsoximetry.
Discontinuously assessed data were taken from the
computer-based patient records. The evaluation of these
cases demonstrated the applicability of our approach in
the clinical setting.
The usefulness of the qualitative categories and their
visualizations have been manifested in different ways.
First, they support the physicians to get a closer
insight into their medical reasoning process. This has
eased the fine-tuning of our therapy planning
component. Second, the qualitative trend categories
improved our data validations component. Third,
applying the qualitative trend categories for formulat-
ing and assessing therapeutic actions resulted in a
graceful weaning process avoiding too abrupt changes
of therapeutic recommendations. In Figure 1 the
therapeutic recommendations are displayed as red
vertical impulses in the corresponding plot of the
ventilator setting. The therapeutic recommendations
show a very consistent and reasonable picture, except
in cases where the measurements were set invalid (gray
areas between the two horizontal lines in the two upper
plots in Figure 1).
During our evaluation phase we discovered also
limitations of our temporal data-abstraction methods.
First, information about the frequency of temporal
abstractions in the past (e.g., "three episodes of
hyperoxemia during the last 3 hours occurred") would
be very useful for future reasoning processes. Second,
dealing with real data during longer time periods has to
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take into account that more recently observed data are
more important for the reasoning process than data
observed in older time periods. Therefore, the data-
abstraction methods have to include a memory which
weights the time-ordered data.

6 . Conclusion

We demonstrated very powerful temporal data-
abstraction methods, which combine all available
information to perform a context-sensitive and
expectation-guided temporal abstraction process.
Designing our abstraction, we concentrate on
knowledge-based monitoring and therapy planning in
real clinical environments. Dealing with high-
frequency data, shifting contexts, and different
expectations of the development of parameters requires
particular temporal abstraction methods to arrive at
unified qualitative values or patterns. Our temporal
data-abstraction methods incorporate knowledge about
data points, data intervals, and expected qualitative
trend patterns. Additionally, the problem definitions are
not as clear as expected, because the underlying
structure-function models for predicting the time course
of clinical parameters are poorly understood and
incomplete knowledge is involved. Therefore theories
of data analysis are only partially applicable. We
overcome these limitations applying qualitative
statements (called expected qualitative trend
descriptions), which are obtainable from domain
experts. These qualitative statements are approximated
using linear regression models. To keep the qualitative
descriptions stable in case of shifting contexts or data
oscillating near thresholds we apply smoothing and
adjustment methods.
Integrating the temporal abstraction methods in VIE-
VENT results in easily comprehensible and transparent
definitions of the data-interpretation, therapy-planning,
and data validation modules. The data interpretation can
be performed on different levels using data-point and
data-interval (trend) abstractions as well as a
combination of different abstraction categories. The
derived qualitative values and patterns are used for
recommending therapeutic actions as well as for
assessing the effectiveness of these actions within a
certain period. Additionally, the data validation could
be extended using the derived qualitative values and
patterns (applying an assessment procedure based on
qualitative descriptions).
The clinical experiences show that the enhancement of
our temporal data-abstraction methods has improved
our therapy planning component remarkably. They
guarantee a graceful weaning process, avoiding too
abrupt changes of parameters.
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