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Abstract. Monitoring devices in intensive care units deliver

enormous streams of data in the form of snapshot measure-

ments. In contrast, physicians use high-level abstractions in

reasoning about the parameters observed.

Standard data abstraction algorithms can only handle data

which are more regular than many variables observed in

medicine. A typical example is the ECG in intensive care,

where electric currents are measured at the skin surface and

displayed ampli�ed in order to detect problems in the con-

duction system of the muscular contraction pattern.

We developed an algorithm to transform a curve consti-

tuted by a series of data points into a set of bends and lines

in between them. The resulting qualitative representation of

the curve can be expressed as a list of objects each describing a

bend. In this format, it can easily be utilized in a Knowledge-

Based System (KBS).

In addition, in the case of rhythmical data, comparing se-

lected bends in all cycles of the oscillation yields new informa-

tion. This comparison can be done by plotting derived data

as separate graph beside the original one or by encoding the

knowledge behind the reasoning in rules in the KBS.

Our algorithm performs best on curves which are rhythmi-

cal but too irregular to be analyzed by Fast Fourier Trans-

formation or other standard methods aiming at describing

regular patterns.

We demonstrate our approach by displaying heart rate and

Q-S-distance graphically aside of ECG-data (to detect im-

peded conduction) and by showing example code for rules

detecting pathological deviations from the standard based on

the qualitative representation of the curve.

1 Introduction

In all �elds of medicine one is confronted with rhythmical3

data. By rhythmical we mean data which show repeated pat-

terns which slightly vary from instance to instance but still

have enough in common to make it interesting to compare

them, like ECG.

If such patterns are strongly regular, they can easily be an-

alyzed by Fast Fourier Transformations (FFT) [6], a widely
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used and fairly exploited method. The result of such a trans-

formation is a spectrum of frequencies, describing the har-

monics of an oscillation. While meaningful in some �elds of

applications, like music or signal processing, this type of in-

formation by itself may not be meaningful for medical experts

because of the complexity of the results and the post hoc type

of analysis and because the data available in medical domains,

are rarely regular enough to yield useful results when analyzed

by FFT.

In many domains, like ECG, there is a long tradition in

analyzing graphs and thus a lot of { in part informal { knowl-

edge about the appearance of a graph and the health status

of the corresponding patient. The way a graph appears to an

expert depends on the kind and pattern of the bends it makes

(sharp or smooth), the direction and straightness of the lines

in between them (steep, 
at, up, down), and the relative posi-

tion of characteristic points in the graph within one oscillation

cycle.

These types of characteristic features are far away from

conventional tools for the analysis of oscillating data, since

they focus only on the mathematical aspects of the data like

frequencies or other highly abstract parameters. It is nearly

impossible to transform the experiences of human experts in

analyzing a graph in their mind and the way they formulate

their constraints into such a mathematical set of parameters.

To bridge this gap, we developed a method to abstract char-

acteristics similar to those used by human experts from a

graph. In particular, we decompose the graph into a series of

repeated patterns. Each pattern is described by a set of bends

and lines in between. A bend is a (typically short) section of

the graph where it changes its direction. It has a position and

a "sharpness" de�ning how rapid the change takes place. A

line is placed in between each pair of bends in order to rep-

resent the data points in between. Its most important feature

is its inclination.

There are two characteristics of a bend, its sharpness {

which is necessary to consider it signi�cant { and the min-

imum distance of neighboring bends { which is required to

distinguish them from noise. These abstracted characteristics

can be visualized as bar charts or graphs. They can also be

used to match the graphs with the conditions of rules in a

knowledge-base like "If the ascent of the �rst line exceeds that

of the third then . . . " or "If the distance of the 2nd and 3rd

corner decreases by more than 50 % during the �rst minute

of measurement, then . . . ".

Thus, existing knowledge about the interpretation of graphs

can be utilized with signi�cant less e�ort on information



transformation compared to the use of conventional tools

which require highly abstract input.

Of course, such abstractions can be done retrospectively

at best. If on-line, a signi�cant delay between the time of

measurement and the time of calculation since considering a

suÆciently large time interval is indispensable for thorough

analysis.

In section 2 we show how our approach di�ers from other

work. In section 3 we explain our approach in depth. In sec-

tion 4 we describe the application of the generated data for

both building a bridge between monitoring and knowledge-

based systems on the one hand and to give the user compact

information on the other hand.

2 Related Work

On-line monitoring at Intensive Care Units (ICUs) produces

a high volume of high-frequency data generated by monitor-

ing devices. These data need to be analyzed and interpreted

to reduce the information overload of the medical sta� and to

guarantee quality of patient care. The interpretation of time-

series is a very challenging task. The temporal properties are

very important aspects in the medical domain, particularly

when dealing with the interpretation of continuously assessed

data. The most common methods are time-series analysis

techniques [2], control theory, probabilistic or fuzzy classi�ers.

However, these approaches have a lot of shortcomings, which

lead to apply knowledge-based techniques to derive qualita-

tive values or patterns of the current and the past situations

of a patient, called temporal data abstraction. Several signi�-

cant and encouraging approaches have been developed in the

past years (e.g., TrenDx [9], R�ESUM�E [18, 19], VIE-VENT

[16], Larizza et al. [13], Keravnou [12], Belazzi [3]). A com-

prehensive selection of various approaches in intelligent data

analysis in medicine can be found in [14].

These approaches rely on prede�ned qualitative descrip-

tions or categories of temporal data abstractions. For exam-

ple, the R�ESUM�E project [18, 19] recommends to apply state,

gradient, rate, and simple pattern abstractions, Larizza et al.

[13] are using basic and complex abstraction, and the tem-

poral data abstraction module in the VIE-VENT system [16]

tries to arrive at uni�ed, context-sensitive qualitative descrip-

tions applying smoothing techniques of data oscillating and

expectation-guided schemata for trend-curve �tting. In con-

trast, Calvelo et al. [4] seek to separate stable patients at an

adult ICU from such in a critical situation by applying ma-

chine learning methods.

A comprehensive study about various approaches of intelli-

gent data analysis for medical diagnosis using machine learn-

ing and temporal abstraction techniques can be found in [15]

However, we are going one step back and want to explore,

which kinds of temporal data abstractions are needed for

rhythmical data. We are demonstrating a way to acquire com-

plex data abstraction methods to arrive at qualitative de-

scriptions, like "the variability of the PQ-distance increase

signi�cantly during the last 2 hours" which directly indicate

medically relevant facts like { in this case { a problem in the

excitation conduction from the atria to the ventricles.

A similar technique is the "Time Series Workbench" [11],

which approximates data curves with a series of line-segments.

However, we are going beyond the approximation by line-

segments and take the particular characteristics of a graph

into account, like the "sharpness" of a curve.

3 The Algorithm

While mathematicians might be horri�ed by the notion

of a graph being a series of bends connected by rather

straight lines this resembles the cognitive model most non-

mathematicians use when looking at a graph. But how can

we �nd a formal de�nition of such an informal entity as a

bend?

There are two indications for bends in a curve: First, the

second-order derivative of the curve shows a minimum in

places where the original curve does a "bend to the right",

i.e. changes from increase to decrease, and a maximum, where

the original curve does a "bend to the left", i.e. changes from

decrease to increase.

Second, we calculate linear regressions for a time window

sliding over the curve as described in [17]. In places where

the curve shows a bend, reducing the length of the interval

will lead to a decrease in the standard error of the resulting

linear regression. In places where there is no signi�cant bend,

shortening the time window will not decrease the standard

error.

We will �rst explain both approaches in detail and then

discuss which of them is more suitable for which type of data.

3.1 Using the Changes of the Derivative

Figure 1 shows an abstract example. A bend in the curve

is characterized by a change in its derivative. The bigger the

change in the derivative, the sharper the bend { and the bigger

the absolute value of the second-order derivative.

time

time

time
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value

second-
order
derivative
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order
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Figure 1. Abstract demonstration of bends in the original
graph and its second-order derivative: In places where the original
graph shows a bend, the �rst-order derivative's changes, which

causes a peak in the second-order derivative.

While this notion is perfectly true for small derivatives,

looking at changes in the absolute value of the derivative

will overemphasize relatively small changes in places of high



derivative. If e.g. a derivative of 10 changes by 2, this might

not seem too signi�cant to an observer while a change from

0 to 2 certainly will. The second-order derivative is 2 in both

cases. So its value will not re
ect the users estimations. Figure

2 shows an example of a peak in the second-order derivative

where a human would not see a signi�cant change.

a b

Figure 2. The topmost graph shows the original data. In the
middle the gray graph (that with the bigger extrema) shows the
absolute value of the �rst derivative and the black graph shows
the angle of inclination. At the bottom, the derivatives of both

graphs in the middle are shown. (The more moderate, black one is
the derivative of the moderate one in the middle). While the

change in absolute value of the �rst-order derivative is biggest in
(a), the change in the angle associated with the derivative is
biggest in (b). Human spectators seem to prefer (b) over (a) if

asked to de�ne the signi�cant corner at this portion of the graph.

Using relative changes in the derivative only works for steep

slopes and will overemphasize changes in 
at regions of the

curve. Instead, we are using the angle of the derivative. So

instead of the derivative itself we calculate the angle � as

tan� = �y

�x
and use the derivative of this function as an

indicator of signi�cant changes in the curve.

Figure 3 shows an example, where this function nicely re-


ects human perspective. The curve slightly but constantly

turns up. So it is diÆcult to say, where a single corner should

be. The derivative of the derivative's angle (i.e. the angle of

inclination of the original curve) is constantly but slightly in-

creasing at that part of the curve, re
ecting the indecision of

the observer.

In practical applications, calculating the derivative as the

di�erence in the y-coordinate of two neighboring data points

(divided by the di�erence in their x-coordinate) does not work

on noisy input data, because the small erroneous oscillations

of the curve might result in the derivative oscillating enough

to hide the overall tendency of the curve. Comparing each

point with the point following n points later instead of the

ultimate neighbor (and placing the result in the middle be-

tween the two points) often yields suÆciently smooth graph

for the derivative without the need to smoothen the original

curve. The number of intermediate points n should be bigger

then the typical wave length of erroneous oscillations or { for

nondeterministic noise { simply big enough to suppress the

gradual changesignificant change

Figure 3. At gradual turns of the original curve (at the top),
were a human observer has diÆculties in pointing at the exact
position of a single corner, the indication function (below) is

trapezoidal re
ecting the her indecision.

portion of noise in the result of

calculated derivative =
n � real derivative+ noise

n

= real derivative+
noise

n

where noise is the average distant between a measured value

and the real value, real derivative is the derivative of the ideal

graph drawn from the real values (which is not known, of

course) and calculated derivative is the value resulting from

this calculation.

3.2 Using the Length of the Regression
Line

The algorithm presented in the following seeks to detect bends

in the graph by �rst calculating a linear regression for short

sections of the graph and then checking whether reducing the

size of the section reduces the standard error of the regression

line.

The reason for applying linear regression lies in its ability

to give an abstract representation of a set of data points and

at the same time an estimate, how will this abstraction repre-

sents the actual data (by the standard error). If the regression

line does not �t to the curve because it make a bend, then

cutting the ends of the line results in a signi�cantly reduced

standard error. If the regression line does not �t the curve be-

cause the curve is noisy, a shorter regression line will have an

equally high standard error as the original (full length) one.

This distinction can be exploited to detect bends in a graph.

As illustrated by �gure 4, we slide a window of consideration

(time window), which is of �xed size over the time axis of the

curve in small steps. For each instance of the time window, we

calculate a linear regression for the data points contained in it.

As opposed to [17], for this application the step width should

equal the rate of data points (if there is one measurement per

second, step width should be one second) and the length of

the time window should be short enough to follow signi�cant

bends but much longer than erroneous oscillations.

So, for example, if the sampling rate is 1 measurement per

second and the oscillations caused by noise show a wave length

of up to 5 seconds, the step width will be one and the size of
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Figure 4. The calculation of the linear regression is done for a
time window of �xed size sliding over the entire curve in small

steps. (a) shows a single time window and the line calculated from
the data points within it. (b) shows a sequence of overlapping

time windows and the resulting lines.

the time window will be between about 7 and 10 seconds. We

will thus receive one regression line per data point, calculated

from its 7 to 10 neighbors.

The standard error of a linear regression line shows, how

well the points, which are represented by that line �t together

respectively to that line. The bigger the average distance, the

bigger the standard error.

For each regression line, we take a look at its ends (see �gure

5). On each end, there might be some neighboring points on

the same side of the line. If a smooth curve takes a bend

they will be numerous, if the graph is rather straight, but

oscillating around the line, there will be very few points at

the same side of the line.

original time window

time

value

reduced time window

original regression
line

line
reduced regression 

second calculation
points skipped in

reduced time window
time
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value

Figure 5. If the graph shows a bend in the interval under
consideration (example on the left-hand side), there is a

considerable number of data points on each end of the regression
line which lie on the same side. Skipping them in the recalculation
of the regression reduces the standard error to which the skipped
points contributed signi�cantly. If there is no bend (example on
the right-hand side), skipping the few points on the ends does not

reduce the standard error.

Next we shrink the time window to skip those groups of

points on both ends which altogether lie on the same side of

the curve and recalculate the linear regression for this second,

smaller time window. If the distance of the skipped points

exceeds the average distance of all points in the (�rst) time

window to the (�rst) regression line, the standard error of the

second regression line will be smaller than that of the �rst one.

In this case we can assume that the deviation of the points

on the ends of the line are not just an incident, but caused by

a bend in the curve.

The di�erence in length between the �rst and the second

time window as well as the decrease of the standard error

are measures for the "sharpness" of the curve. Thus both

of them can be used as indication function. Both only give

positive values. The direction of the curve can be derived from

the side of the regression line, on which the skipped data

points lie. So we assign minus to bends to the right and plus

the bends to the left and supply the absolute value of the

indication function with this sign to produce an indication

function compatible with the one described in section 3.1.

3.3 Common Issues of Both Approaches

In both cases (second-order derivative and length of the re-

gression line) a bend in the curve will not yield only one high

value at a single position on the time axis, but a more or less

signi�cant peak. Especially, bends with bigger radius result

in a series of peaks or a long 
at "hill" in the second-order

derivative respectively a "valley" in the curve showing the

length of the regression line.

To suppress such concurring peaks one can simply de�ne a

minimum distance (along the time axis) and only chose the

highest peak out of several of them if their distance is below

this threshold.

A better way is to consider both of two neighboring peaks

only if they are separated by a local minimum of a certain

depth. To see the di�erence to the above strategy consider

the following cases: First, two sharp bends close to each other

and second, a long slight bend.

Two sharp bends produce two high peaks with a clearly

distinguishable minimum (of the absolute value) in between.

If you only consider the distance on the time axis of the two

peaks, you will have to ignore one of them, if you consider

the minimum between them, you will accept both peaks to

be signi�cant.

A long slight bend results in a series of peaks with nearly

no minimum between them. If you consider the distance along

the time axis, the �rst and the last minor peaks might be far

enough from each other to let both of them seem justi�ed. If

you look at the minima between them, you will ignore all but

one of them.

Many curves of real data show small opposite bends which

should be considered as a single straight line. A small thresh-

old for the absolute value of the indication function does this

job.

3.4 Matching the Two Approaches

The �rst approach { the change in the angle of inclination { is

very intuitive if applied on smooth graphs. Applied on noisy

input data, the graph of its indication function can get too

distorted to be usable.

The second approach { the length of the regression line {

is harder to compute than the �rst one. The outstanding ad-

vantage of linear regression is that it minimizes the in
uence

of noise on the result. If the original graph shows numerous

random peaks, they can fool the second algorithm because

they might inhibit proper reduction of the regression line.

In such cases, a combination of both approaches performs

best: The indication function is the change in the ascent of

the regression lines.

1. The regression lines are calculated as described in section

3.2.

2. For each of them, the angle of inclination is calculated.



3. Then the resulting values are merged to a new function

(replacing the �rst derivative in the �rst approach)

4. The derivative of this function is calculated as the indica-

tion function for detecting bends.

To summarize, given smooth input data, the �rst approach

performs better. The more smoothing is necessary before or

while calculating the derivative, the smaller this gain becomes.

3.5 The Resulting Representation

As results of the transformation of the discrete data points

into bends and lines, we obtain three streams of di�erent types

of data: The bends, the corners of the original curve at those

places where bends were detected, and the lines in between

the bends.

3.5.1 Bends

By the term bend we subsume the abstract aspects of a turn in

the original graph. Each bend is described by the position of

its middle along the time axis, the height of the corresponding

peak in the indication function (second-order derivative or

length of regression line) and the area of the peak measured

from one intersection with the zero-line to the next.

3.5.2 Corners

By the term corner we describe the position in which the

lines neighboring a bend would meet. The x-coordinate of

the corner clearly equals the middle of the bend. The y-value

can be the y-coordinate of the nearest point in the original

curve. To reduce the in
uence of noise, in most cases it is

necessary to take the average of some of its neighbors into

account too. Integrating too many of them in the calculation

will distort the result towards the inner side of the bend. Thus,

this parameter needs careful optimization.

3.5.3 The Lines in Between

The lines between the bends represent the data points of the

original graph between two neighboring bends. They can ei-

ther be drawn just as connections of the corners of the curve,

or they are calculated as a linear regression of the points of

the original curve between the bend.

3.6 Relating the Cycles in Oscillations

In many cases, looking at only one oscillation alone is not

suÆcient, but tendencies developing through a possibly long

series of oscillations as well as deviations from the standard or

average are interesting. To arrive at this, the following steps

are performed:

1. Corresponding bends are found.

2. Their position relative to the start of the oscillation is cal-

culated.

3. The data calculated in step 2 are related to the average of

the previous instances of the oscillation.

4. Optionally, slope and standard deviation within a sliding

time-window [17] is calculated for any of the values created

in step 2 and 3.

5. Optionally, values calculated in steps 2 to 4 can be trans-

formed into qualitative i.e. symbolic representation.

3.6.1 Relating Cycles within an Oscillation

First, for each cycle, a reference point must be found. This

should be a point which is known to be invariant itself. A well-

tried method is to take a position where the value changes

rapidly and steadily, forming a steep slope. In the middle of

this section of the graph, its value is chosen as a threshold. The

point, where the graph of each oscillation intersects with the

horizontal line of the threshold is the reference point of that

oscillation. This way, the reference point is most invariant,

even in oscillations with varying cycles.

To properly assign corners to groups, just looking at their

ordinal number in the stream of corners constituted by each

oscillation is not enough. Too often a corner is missing, be-

cause it was too small to exceed the threshold, or it is doubled

due to errors in the data or the underlying data is simply ir-

regular at that position.

Looking for nearest neighbors suÆces only for curves, in

which the positions of the same instance of a corner (e.g. the

�rst one) do not change over time. If they do, it is useful to

extrapolate the expected position of the next instance of a

corner from the previous ones. For this purpose, both the x{

and the y{coordinate are considered separately and a linear

regression is calculated for each of them.

Often one coordinate (x or y) of a corner is much more

regular than the other. In this case, weighting the deviations

when looking for near neighbors (with or without extrapola-

tion) helps to improve the result. The more regular coordinate

is multiplied by a bigger weight than the other.

3.6.2 Numerical Absolute Values

For each bend, the above abstraction yields the following data:

� The corresponding maximum in the indication function

shows how sharp the bend is.

� The area of the corresponding peak shows how signi�cant

the change of the original graph is.

� The x{coordinate shows the position of the corner on the

time{axis.

For each line, its inclination is computed.

3.6.3 Numerical Relative Values

Each of the above values is measured against the average of

previous instances in an interval of time de�ned by the user.

The deviation is given both absolute and relative.

3.6.4 Qualitative Values

The quantities computed in the two steps above can be qual-

i�ed using a set of tables. For each parameter, a table lists

all qualitative values it can take and the numerical limits in

between.

4 Fields of Application

In the following, we give some examples of how the data ob-

tained in the previous section can be used.



4.1 Interfacing Knowledge-Based Systems

To bridge the gap between data analysis and knowledge-based

systems (KBS) [7], we transform the output into clauses com-

patible with those use by a KBS.

4.1.1 Symbolic Representation of Features

The values describing bends, corners or lines can be expressed

in a list to make them accessible to symbolic reasoners like

knowledge-based systems or machine-learning tools.

To improve readability of the output, each corner and each

line can be assigned a symbolic name (e.g. P, Q, R, S and T

in an ECG) instead of its ordinal number to denote it in an

intuitive fashion.

The following example describes a graph consisting of a line

increasing by 20 degrees for 100 seconds followed by a narrow

bend to the right and 30 seconds of decrease in Clips-Syntax

[1]. In this example we omit the corners for clarity.

(graph-features(line (100sec up 20))

(bow (right narrow))

(line (30sec down 30)))

4.1.2 Applying Rules to Detect Patterns in Monitored
Data

In the following, we show how knowledge about the interpre-

tation of ECG [8] can be translated into rules and how the

data abstracted as described before can be matched with such

rules.

Q TSP Q TSP

R R

Figure 6. Idealized ECG. The features are labeled by letters.
They are explained in Table 1.

Feature Causality

P wave excitation of the atria
QRS complex excitation of the ventricles

RR distance instantaneous heart rate

PQ distance excitation conduction from
the atria to the ventricles

QS distance excitation of the ventricles
prolonged in case of impeded
conduction (heart block)

Table 1. Relation between features of the ECG and underlying
causalities.

Figure 6 shows an idealized ECG. Table 1 compares some

aspects of an ECG with underlying aspects of the heart and

its possible problems. Figure 7 shows some rules in CLIPS [1]

(defrule ventricular-conductivity

(distance (from Q)

(to S)

(value ?value):&(> ?value 55))

(patient (age ?age):&(and (< ?age 2)

(>= ?age 1))))

=>

(assert (diagnosis (ventricular-conductivity

bundle-branch-block)))

Figure 7. CLIPS-rules applied on the symbolic representation
of an ECG. Note that we measure the distance from peak Q to
peak S and not the duration of the QRS-complex as a whole,

which is approximately 15 msec longer.

to detect bundle branch blocks and AV-blocks on a symbolic

level.

A more detailed analysis of ECG pathology in this setting

remains speculative { except for the detection of (ventricular)

extrasystoles { because the monitoring ECG is usually not

derived under standardized conditions.

4.2 Visualization

The abstraction methods described above produce both quali-

tative and quantitative information, both on the level of single

bends and as attributes of a cycle within the oscillation. In

addition to these two dimensions, some features described are

relatively rare, e.g., abnormalities in an ECG, others form a

steady stream of data, calculated for every instant in time

during measurement, e.g. the heart rate.

Sparse events and qualitative information tend to be visu-

alized symbolically, e.g., as bars or markers, while qualitative

information is commonly displayed as graphs. For a deeper

discussion of visualization aspects see [20, 5].

In the following, we give some examples, namely the dis-

play of bend as bars, plotting features of an oscillation over a

relatively long period of time and using markers to represent

qualitative information.

4.2.1 Displaying Bends as Bars

Bends are features located at a certain position along the time

axis and have several abstract attribute, the most important

being sharpness and signi�cance. These are derived from the

height of the peak in the indication function and the area

delimited by the graph indication function and the time axis.

Thus, it seems intuitive to visualize each bend with a sig-

ni�cance above a certain threshold as a bar which is equal in

height and area to the peak in the indication function.

Figure 8 illustrates this approach applied on data from er-

gonomic studies in rowing.

4.2.2 Displaying Relative Positions as Graphs

For each corner in the original curve, its position relative to

the start of the oscillation or its distance to another corner in

the same oscillation can be displayed as a graph.
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Figure 8. Starting at the top, we show the original graph, the
indication function and the bars representing the signi�cant

bends. a) shows an example of an irregularity in the curve which
a human could also dedect if concentrating on every detail: the

bend in the right-most oscillation is not as sharp as the
corresponding one in the other oscillations. b) draws our attention

to a feature not perceptible by looking at the raw data: the
long-spread bow to the left of the second oscillation from the right
is not as sharp as the others as indicated by inferior height of the
bar. The corresponding part of the original curve does not seem
di�erent by itself. The signi�cance of the features found in a) and
b) depends on the domain knowledge about the data represented

by the curve.

Figure 9 gives an example from ECG monitoring. For

demonstration purposes, we display the heart rate and the

QS distance below the very condensed ECG graph.

Figure 9. Two minutes ECG sample from an eight hours
polygraphic recording of a two years old child. The �rst graph

shows the condensed ECG. The second graph gives the

instantaneous heart rate derived from the RR distance. The third
graph gives the instantaneous QS distance. The apparent

variability is caused by digitization inaccuracies (resolution is
200 Hz).

4.2.3 Displaying Qualitative Information along the

Time Axis

Both the qualitative information derived from lookup-tables

as described in section 3.6.4 as well as the results from

knowledge-based reasoning as described in section 4.1.2 can

be visualized graphically along the time axis.

For rare deviations in the data hinting at signi�cant events,

markers in di�erent colors and shape, which are lined up below

the original data, are most appropriate.

For continuous information, like qualitative status informa-

tion, coloring a stripe below according to the values (e.g., blue

for low, red for increased, green for normal) yields a dense and

intuitive information representation.

Another way to visualize state information is the use of a

set of symbols in di�erent colors to represent two or three di-

mensions in one place. Such a technique has been successfully

employed in the VIE-VENT-system [16] for instantaneous sta-

tus information.

5 Conclusion

We have presented several methods to capture complex rhyth-

mical curves by transforming them into series of bends, cor-

ners, and lines, based on the observation that a bend in the

curve is synonym to a change in its inclination.

Our approach is applicable to data where Fast Fourier

Transformation fails, because the oscillation is not regular

enough for such a strictly numerical algorithm. Furthermore,

a frequency spectrum is a less intuitive representation of a

curve than series of corners and lines in many medical do-

mains.

The abstraction of characteristics from a stream of raw data

points o�ers the following opportunities:

Compact Visualization. Displaying only the important

features of a graph in an abstract form in addition to the

original graph allows for easy detection of trends and out-

liers which otherwise would be buried in the overwhelming

impression of countless oscillations.

Bridge to Knowledge Representation. The abstracted

characteristics extracted by our algorithm can be matched

against conditions in a rule base. So the curves can be

tagged according to a set of classi�cations stored in a

knowledge base. This aspect is crucial for the integration of

high-frequency data and symbolic systems such as symbolic

machine learning, knowledge-based systems for intelligent

alarming and a guideline execution system like as developed

in the Asgaard project.

The algorithms described have been implemented in

JavaTM in an experimental setting to allow their evaluation.

Future work will be devoted to the acquisition of rules for

the automatic interpretation of clinical data and in the im-

plementation of several modes of graphical display to meet

the practical requirements under various settings.
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