
Asbru, a Plan-Representing Language Modelling

Time-oriented, Skeletal Plans in Sport

Silvia Miksch and Klaus Hammerm�uller

Vienna University of Technology, Institute of Software Technology,

Favoritenstra�e 9/E188, A-1040 Vienna

<silvia,klaus>@ifs.tuwien.ac.at

Abstract. Workout planning is a very time-consuming task, where lots of interactions be-

tween di�erent exercises have to be observed. The available knowledge is partly very large

but incomplete and cannot automatically be transfer to the current situation of an individ-

ual athlete. There are di�erent problems in this area: the transfer of available knowledge,

individual adaptation, and e�ective evaluation of intended e�ects after the planned exercises

were performed.

Skeletal plans are a very powerful way to tackle these problems. These plans are as well

human readable and support automated processing of the gathered knowledge. It is a huge

step from \free text" representation to a notation where a computer may help a coach

e�ectively. We try to split this big step into some smaller steps by looking at the speci�c

tasks which are performed in workout planning and evaluation. These tasks are supported

by a set of \problem solving methods" which can be implemented independently based on

a common plan representation we called \Asbru".

1 Introduction

To support workout planning; sport-speci�c concepts, plans for homogeneous groups of athletes
and example plans are established in many areas of sport; following we call them \guidelines".
Generally speaking, they are represented as free texts, tables, or diagrams. These documents
are very important to transfer knowledge between di�erent coaches, they tell the athlete what
to do and enable a supervised development of a team; but these documents are also far from
perfect, because they do not integrate the input from di�erent sources to a consistent workow
participating di�erent actors. Moreover, they do not allow automatical support for veri�cation or
quality assessment.

Currently a guideline is available in some text-version. However in practice planning work
maybe done using a spreadsheet, which is used to handle the real-work data produced by the
athlete's performance. Neither the planning world itself nor the connection to the execution of these
plans are supported. These problems are very familiar to planning domain. In the Asgaard/Asbru1

project [1, 8] a number of methods are being developed to deal with the problems of clinical therapy
planning in medicine. During this project we have explored many analogies to other time-oriented
planning domains like workout planning in sports, and we try to transfer these domain-speci�c
solutions to a more general concept.

Looking at the planning process itself, we have three major phases outlined in Figure 1:

{ Planning the actions based on future projections of the intended e�ects, which are related to
the goal of the plan;

{ Executing the plan in reality and maybe adapting the plan supporting the high-level goals of
the workout performance;

{ Analyzing the performance by compared intended e�ects and realized e�ects by the processed
exercises.

1 In Norse mythology, Asbru (or Bifrost) was the bridge from our world to Asgaard, the home of the gods.

Time

Fig. 1. Intertwinedness of the Plan Process

This process is continuously iterating and evolves over time. A better model of this might be
a screw which would improve during circulating round its center; we call this \intertwinedness".
There are three clearly distinguishable phases: planning, executing and analysis, that are connected
very strongly with each-other. To support one phase e�ectively an e�cient information-transfer
from the other phases has to be established. This is the major gap in the actual state of the
planning work: We have no free and compatible ow of information to perform the tasks at this
process e�ectively.

To make our methods supporting these tasks usable for the actor (like a coach) there is the
need for an intuitive visualization, discussed in [5]. This part of the Asgaard project is named
\AsbruView" and will be part of the example in section 4. (We don't think that a coach should
handle Asbru in its \native" form which we present in this paper.) Asbru itself is a language used
for representing plans in a LISP-like syntax which is outlined in section 2. The description about
the problem speci�c task support with Asbru is added in section 3. An overview about related
work on di�erent kinds of plan-representations is given in section 5. Future aspects and drawbacks
are discussed in conclusion in section 6.

2 Concepts of Asbru

The Key features of Asbru are

{ Hierarchical decomposition of Plans, that means we can start with a very simple plan, saying
e.g. \we want the athlete to run faster" and adding re�ning sub-plans to this high-level plan;

{ A powerful concept of temporal annotations, which allow handling complex dimensions and
interactions of di�erent time-lines;

{ Every plan is structured into di�erent components: Preferences, Intentions, Conditions, E�ects
and Plan Layout, which model speci�c important parts of the collected knowledge like the
\intended" goal of the plan.

2.1 Time-Oriented, Skeletal Plans

The various elements of a skeletal plan is outlined in Figure 2. On the one hand a plan consists of
di�erent components: Preferences, Intentions, Conditions and E�ects. An Intention for example,
describes the goal which should be maintained or avoided. On the other hand, every plan can be
decomposed into sub-plans or atomic actions. An atomic action is a plan which does not hold any
sub-plans anymore.

Time

P
la

n
s

CONDITIONS

INTENTIONS

PREFERENCES

PLAN AA

EFFECTS

PLAN A1

CONDITIONS

EFFECTS

PLAN A2

A

C D
E

F

B

EE

EFFECTS

CONDITIONS

INTENTIONS

PREFERENCES

G

H I

E

Fig. 2. Outline of a Hierarchical Skeletal Plan

The idea behind the \skeletal" property of the plan is to make some general guidelines in order
to deal with a speci�c problem, such as the workout-plan for an athlete after some kind of illness
or a general plan in a regular training process. The point is, these plans are not individual plans
but reusable concepts which orient on certain situations or conditions of the athletes. Once such a
plan is selected for an particular athlete it may be adapted in order to �t to the individual needs
according to the current conditions.

In Figure 3 the general idea of the use of skeletal plans is described. Assuming there are two
di�erent plans, A and B, we are looking at the real-world states represented in the available real
data; and we are selecting the plan which \�ts" better to the actual situation. As the Asgaard
framework is an open system integrating the actor, in this point we try to give some decision-
support for selecting a plan.

Plan A Selection

Plan B Start New
Knowledge &

Plans
Adaptation

t0 tx tE
Design Execution Analyse Time

initialize

Real Data

Fig. 3. Using Skeletal Plans

The next step is to initialize the plan (t0) with the available data. A plan may consist of di�erent
sub-plans; starting to execute the selected plans, we will start with some subset of sub-plans and

actions performing workout exercises.
During the execution of such a workout plan the real-world state may change, new data about

the condition of the athlete are available and the chosen plan is \�lled" with this information.
During this process the di�erent components of a plan are monitored, e.g. if the intended aim of
the workout plan stays achievable or not.

If at some point in time (tx) the selected plan doesn't �t to the real-world process any more,
an other plan has to take place to achieve the intended aims. What happened here is that e.g.
an illness of the athlete makes it impossible to continue with executing the plan and the Asgaard
framework supports this change in the \real-world-environment".

After the plans are completed (te) a retrospective analysis of the history is possible. The
plans with their intentions, the criteria for selecting a workout-plan, the processed exercises as
well as information about the athletes results are available in a homogeneous representation. The
retrospective analysis may result in revising existing workout plans or adding new workout plans.

2.2 Time Annotations and Temporal Pattern

As human being we all handle time very intuitively. For computer and the power of semantic
languages like Asbru the notation of time is a crucial point. Using time-stamps is the most simplest
but also the least powerful way solving this problem.

Describing actions in sports we normally do not know exactly how long e.g. regeneration takes
place and when there is the optimal time for the next exercise in a individual cases. However, we
have to handle this problem to produce useful statements and therefore we have a very powerful
notation we outlined in Figure 4.

Reference ESS LSS EFS LFS

Definition: [[ESS, LSS], [EFS, LFS], [MinDu, MaxDu], Reference]

MaxDu

MinDu

Fig. 4. Notation of Time Annotations

A time-annotation is a set of relative time-shifts to a speci�ed reference point, describing
earliest (ESS) and latest starting shift (LSS) as well as earliest (EFS) and latest �nishing shift
(LFS) and a minimum (MinDu) and maximum duration (MaxDu) of a plan.

For Example: \starts 24 to 30 hours after the last exercise, ends 25 to 32 hours after the
last exercise, and lasts 1 to 2 hours." would look like: [[24 HOURS, 30 HOURS], [25 HOURS,

32HOURS], [1 HOURS , 2 HOURS], LAST-EXERCISE].

The de�nition does not necessarily need to be complete speci�ed, the framework will handle
incomplete time-de�nitions as far as possible. Time-annotations are the backbone of Asbru, talking
about \values"; we like to connect these \values" with its abstraction [6] (e.g. in a de�ned context
a pulse may be \high", not \140") and a representation of time. We call this \Temporal Pattern",
which consists of:

1. A parameter proposition: a parameter (or its abstraction), context, and time annotation or
2. a combination of multiple parameter propositions or
3. a plan-state associated to an instantiated plan (plan pointer) and a time annotation.

A simple example: for a special kind of interval-workout the pulse should be low for 5 to 7
minutes before starting the next interval:

(STATE(pulse) LOW WORKOUT [[0 MIN, 0 MIN], [_, _],[5 MIN, 7 MIN], INTERVAL])

2.3 Meaning of \Intention-Based"

Going more into details of Asbru, we have a look at the \components" of this language. We will
discuss here only one component, the \Intentions". A more complete description of all components
is published in [4].

De�nition: Intentions are temporal patterns of actions or states, to be maintained, achieved,
or avoided.

{ Intermediate state: The state(s) that should be maintained, achieved, or avoided during the
applicability of the plan;

{ Intermediate action: The action(s) that should take place during the execution of the plan;

{ Overall state pattern: The overall pattern of states that should hold after �nishing the plan;

{ Overall action pattern: The overall pattern of actions that should hold after �nishing the plan.

For example: \The speed of an athlete shall be increased by 0,5% in a period of time between 5
and 7 weeks." This information itself makes a valid plan in our representation language Asbru. A
more detailed plan may de�ne: \You have to increase the extent of your workout by 4%". Maybe
the athlete has not this additional amount of time but may achieve the goal by adding some
speci�c strength exercises. If this modi�cation of the plan ful�ll the intention, the plan has been
processed successfully.

As we de�ned before, a plan consists of a set of di�erent components, like this intentions. Not
every plan or sub-plan has to de�ne all of these components. As Asbru is a hierarchical language,
missing components are propagated through this hierarchical structure. Maybe even an expert
will not be able to de�ne all the components of the plan-details, but in the end the question \Is
the athlete faster?" will be answerable. Of course, the more detailed the de�nition of the di�erent
components are, the more precise and helpful can the Asgaard framework support the actors.

3 The Asgaard Framework: Tasks Supported by Asbru

3.1 Task-speci�c Problem-Solving Methods

We think about planning as an open loop, integrating the actor into the process. Some planning
tools in computer science have a di�erent point of view: They try to replace the human actor in
speci�c tasks which are performed; we have an other strategy. The Asgaard framework tries to
support the actor by the performance of the di�erent tasks, and wants to help to focus on the
main purpose of the work.

As you can see in Figure 5 the computer shall support the user applying task-speci�c problem-
solving methods, \PSM" using workout concepts or guidelines which are acquired at \design time"
and time-oriented input data from the athletes workout at \execution time". Additionally, these
information are collected in a sharable plan-speci�cation library to enable the re-use of collected
knowledge.

The output of these PSM is a set of processed procedures like plan-monitoring (is the execution
of the plan on track in reaching the intended aims), Critiquing and other high level information.
As outlined before, we distinguish between design-time, when the future actions are planned and
execution-time when planned actions are performed in real world [3].

 & TASKS

Abstraction
Visualization

INPUT
Time-Oriented

Sharable
 Plan-Specification

Library

Recommendations

OUTPUT
Time-Oriented

Explanations

?
?

Clinical
Guidelines

Raw Data

Patient Data

Raw Data

Critiquing Plan Modification

Future Projection Evaluation

Task-Specific
PSMAthlete

Workout
Concepts

Fig. 5. The Asgaard / Asbru Concept

3.2 Methods Supported at Design Time

{ Plan Generation: �ts suitable skeletal plans together;
{ Advanced Plan Editing: is an editor guided by the knowledge-roles to give full access to expert
users, who tune features of the knowledge roles;

{ Domain-Speci�c Annotations: supplies structured support to write domain assumptions or
domain functions;

{ Plan Veri�cation: examines the correctness of interrelated skeletal plans by a three-level de-
tection of anomalies (method semantics);

{ Plan Validation: compares the intended states against the prescribed actions and intended
plans (domain semantics);

{ Plan-Scenario Testing: applies scenarios of protocols to test their functionalities and their
course of activities; it is partly included in the plan visualization;

{ Plan Visualization: is a graphical editor to design and to browse the topological and the
temporal views of the connected plans.

3.3 Methods Supported at Execution Time

{ Plan Selection: chooses applicable skeletal plans from the plan library according to the ath-
letes's state, the plan's overall intentions, and plan e�ects;

{ Plan Adaptation: adjusts the parameters of a skeletal plan according to the athletes's state
and the medical environment;

{ Plans Execution: performs according to the execution-plan's prescribed actions;
{ Plans Monitoring: oversees and administers whether the executed plans are still applicable at
the particular time of execution at the sampling frequencies given in the temporal patterns;
executed plans can be suspended and reactivated;

{ Plan Modi�cation / Alternatives: chooses alternative actions or plans, which are relevant at
this time for achieving a given intention

{ Plan Critiquing:
1. recognition of intentions: Why is the executing agent executing a particular set of actions,

especially if those actions deviate from the skeletal plan's prescribed actions;
2. critique of the executing agent's actions: Is the executing agent deviating from the pre-

scribed actions or intended plan? Are the deviating actions compatible with the author's
plan and state intentions?

{ Plan Evaluation: examines retrospectively, if the executed skeletal plans achieved the desired
e�ects according to the patient's state, intentions, executed actions, and plan e�ects;

{ Executed Plan Visualization: visualizes, which plans have been executed (when and how);
{ Plan Rationale / History: bookkeeping of events, states, intentions and performed actions; gen-
erates on-line help information and explanations about plan selection, adaptation, execution
states, success and failure of plans integrating the domain-speci�c annotations.

4 Example

Figure 6 shows an medical example how a user face the Asbru language. We call this tool \Asbru-
View" [5] and it shall help to design the general outline of a plan.

Fig. 6. Screenshot of the AsbruView Prototype

What you see here in the upper-half of the screenshot is the hierarchical decomposition of a
plan in its sub-plans. We are using metaphor graphics to give an easy access to the huge amount of
details of such a plan. Each one of these \running tracks" is a sub-plan which has to be processed
at execution-time. The tra�c signs represent the conditions of the plan, a special component of
Asbru. The tracks are ordered by di�erent means, visualizing that some things have to happen
sequentially, parallel or any other order.

On the lower half, the temporal dimension (see section 2.2) of the plans are decomposed to
enable an exact manipulation of the time-dimensions and its uncertainties. We also work intensively
with colors and textures to annotate the additional dimension: question-marks identify optional
sub-plans and the grayed time-annotations represent uncertain de�nitions.

5 Related Work

During the past 15 years, there have been several e�orts to create automatic reactive planners
to support the process of protocol-based care over signi�cant periods of time. In the prescriptive

approach, an active interpretation of the guidelines is given; examples include ONCOCIN [9] in
the oncology domain, T-HELPER [7] in the AIDS domain, and DILEMMA [2], and the European

PRESTIGE Health-Telematics project, as general architecture.
In the critic approach, the program criticizes the physician's plan rather than recommending a

complete one of its own. This approach concentrates on the user's needs and assumes that the user
has considerable domain-speci�c knowledge. A task-speci�c architecture implementing the criticiz-
ing process has been generalized in the HyperCritic system [10]. Task-speci�c architecture assign

well-de�ned problem-solving roles to domain knowledge and facilitate acquisition and maintenance
of that knowledge.

None of the current guideline-based systems have a sharable representation of guidelines that
has knowledge roles speci�c to the guideline-based task, is machine and human readable, and
allows data stored in an electronic record to invoke an application that directly executes the
guidelines logic and related tasks, such as critiquing. Such a machinereadable language and the
task-speci�c problem solving methods need to solve that problem described in [8]. However, a
much more detailed comparison between di�erent planning concepts is given in [3].

6 Conclusion

There are very familiar tasks to be done in the medical domain as well as in the world of sports
or other time-oriented planning domains, which we demonstrated in the list of tasks in section 3.

Thinking about Asbru itself, we try to model patterns (see Intentions at section 2.3) and work
with qualitative abstractions of values [6] to make knowledge portable between di�erent athletes.
We also handle the complex task of time with a very powerful representation (see section 2.2).

Asbru's Drawbacks:

{ Acquisition of the temporal patterns and time annotations needed is still di�cult, temporal
dimensions are often vague or unknown;

{ Troublesome to cope with all possible orders of plan execution and all the exception conditions
that might arise. Coaches use a lot of background knowledge, which is hard to acquire and to
represent as a skeletal plan.

Asbru's Bene�ts

{ Transfer of knowledge between coaches as well as between coach and athletes;
{ Veri�cation and validation of the plan itself;
{ Evaluation of workout plans and the possibility to produce new knowledge retrospectively;
{ Support of di�erent knowledge roles;
{ The possibility to describe and process complex temporal dimensions;
{ Reuse of existing knowledge and acquired plans;

{ To establish quality assurance in workout practice.

In conclusion we think the use of a time-oriented descriptive planning language like Asbru
can �ll the gap between future plan projections and exible executions of these plans in order to
perform e�cient workout planning and execution. Automated support may help coaches to focus
on their primary work: treating athletes and enabling them a high-level knowledge-transfer as well
as quality assurances during the process of workout.

Acknowledgements

We wish to thank Robert Kosara, Katharina Renath and Andreas Seyfang for valuable suggestions
and discussions and for the chance to work with them. This project is supported by \Fonds zur
F�orderung der wissenschaftlichen Forschung" (Austrian Science Foundation), P12797-INF.

References

1. The Asgaard-project: http://www.ifs.tuwien.ac.at/asgaard/.

2. S. I. Herbert, C. J. Gordon, A. Jackson-Smale, and J.-L Renaud Salis. Protocols for clinical care.

Computer Methods and Programs in Biomedicine, 48:21{6, 1995.

3. S. Miksch. Plan Management in the Medical Domain. AI Communications, 4, 1999.

4. S. Miksch and R. Kosara. Communicating Time-Oriented, Skeletal Plans to Domain Experts Lucidly.

In 10th International Conference of Database and Expert Systems Applications (DEXA99), 1999.

5. S. Miksch, R. Kosara, Y. Shahar, and P. Johnson. AsbruView: Visualization of time-oriented, skeletal

plans. In Proceedings of the 4th International Conference on Arti�cial Intelligence Planning Systems

1998 (AIPS-98). Carnegie Mellon University, AAAI Press, June 7{10 1998.

6. S. Miksch, A. Seyfang, W. Horn, and Popow C. Abstracting Steady Qualitative Descriptions over

Time from Noisy, High-Frequency Data. In Proceedings of the Joint European Conference on Arti�cial

Intelligence in Medicine and Medical Decision Making, AIMDM'99, Berlin, 1999. Springer. in print.

7. M. A. Musen, C. W. Carlson, L. M. Fagan, S. C. Deresinski, and E. H. Shortli�e. T-helper: Automated

support for community-based clinical research. Proceedings of the Sixteenth Annual Symposium on

Computer Applications in Medical Care (SCAMC-92), pages 719{23, 1992.

8. Y. Shahar, S. Miksch, and P. Johnson. The Asgaard project: A task-speci�c framework for the

application and critiquing of time-oriented clinical guidelines. Arti�cial Intelligence in Medicine,

14:29{51, 1998.

9. S. W. Tu, M. G. Kahn, M. A. Musen, J. C. Ferguson, E. H. Shortli�e, and L. M. Fagan. Skeletal-plan

re�nement on temporal data. Communications of the ACM, 32:1439{55, 1989.

10. J. Van der Lei and M. A. Musen. A model for critiquing based on automated medical records.

Computers and Biomedical Research, 24(4):344{78, 1991.

