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Abstract. On-line monitoring at neonatal intensive care units produces

high volumes of data. Numerous devices generate data at high frequency

(one data set every second). Both, the high volume and the quite high

error-rate of the data make it essential to reach at higher levels of descrip-

tion from such raw data. These abstractions should improve the medi-

cal decision making. We will present a time-oriented data-abstraction

method to derive steady qualitative descriptions from oscillating high-

frequency data. The method contains tunable parameters to guide the

sensibility of the abstraction process. The bene�ts and limitations of the

di�erent parameter settings will be discussed.

1 Introduction

Our application domain is the treatment planning for premature infants at
neonatal intensive care units (NICUs). Many neonates need arti�cial ventilation
for various reasons. Compared to the treatment of adults, mechanical ventilation
of newborn infants is a highly sophisticated task because of the immature struc-
ture of their lungs. While medical knowledge has greatly increased over the past
years [5], the integration of the data produced by today's monitoring devices
into the therapy-planning process still remains an unsolved problem.

Monitoring mechanically ventilated neonates is a clinical, high-frequency do-
main. Various of devices yield a rather high volume of measured data { at a
typical rate of one value per second { which is often faulty. Each measured data
shows only a snapshot of a single aspect of the patient's situation in a particular
moment.

To a physician these snapshots alone are of limited use. What she needs is
an overview over a certain period of time and over various parameters which
together give a more detailed and comprehensible picture of the patient's condi-
tion. Often she thinks in terms like "X is higher than normal for �ve minutes".
Nevertheless some monitoring devices in current use show only the values mea-
sured in the previous seconds or even only the very last one. This leads to a
strong need for facilities to visualize raw data as well as their abstractions.



While the sensors send possibly wrong numbers at high precision that repre-
sent a parameters value at a certain point of time, human users distinguish but
a few di�erent states like very high or medium low in context with a interval of
time during which such a proposition holds. To close this gap we developed an al-
gorithm to obtain maximum intervals during which a parameter stays constant.
As a vehicle to reach this we introduce a statistically motivated representation of
quantitative values, called a spread, which shows both position and uncertainty
of a value at each point of time.

The ultimate goal of the algorithm is to present the information gathered
from various monitoring devices as concise as possible to the physicians in order
to reduce their information overload and improve the quality of care.

Currently we are acquiring and analyzing �ve types of input from various
sources. The ECG gives the heart rate rather reliably. The pulse oximetry gives
both arterial hemoglobin saturation of oxygen in the blood (SaO2) and pulse
rate. Small movements of the patient result in a high volume of erroneous oscil-
lations of these values. Transcutaneous electrodes measure the partial pressure
of oxygen (PtcO2) and carbon dioxide (PtcCO2). We are analyzing data o�-line.
It is envisioned to employ the �ndings obtained thereby in on-line monitoring
and alarming in the future.

In section 2 we show why related approaches do not cover our problem speci-
�cation. Section 3 features the three steps of our algorithm which are elimination
of data errors, clarifying the curve, and qualifying the curve. In section 4 we dis-
cuss the parameters involved in the process. In section 5 we discuss application
and further direction of our work.

2 State of the Art

Temporal dimensions are a very important aspect in the medical domain, partic-
ularly when dealing with the interpretation of continuously assessed data. The
most common methods are time-series analysis [1], control theory, probabilistic
or fuzzy classi�ers. These approaches have a lot of shortcomings, which lead to
applying knowledge-based techniques to derive qualitative values or patterns of
current and past situations of a patient, called temporal data abstraction. Several
signi�cant and encouraging approaches have been developed in the past years.

Haimowitz et al. [2] have developed the concept of trend templates (TrenDx)
to represent all the information available during an observation process. A trend
template de�nes disorders as typical patterns of relevant parameters. These pat-
terns consist of a partially ordered set of temporal intervals with uncertain end-
points. Trend templates are used to detect trends in time-stamped data.

The R�ESUM�E project [11] performs temporal abstraction of time-stamped
data without prede�ned trends. The system is based on a knowledge-based,
temporal-abstraction method, which is decomposed into �ve sub-tasks: temporal
context restriction, vertical temporal inference, horizontal temporal inference,
temporal interpolation, and temporal pattern matching.



Larizza et al. [7] have developed methods to detect prede�ned courses in a
time series. Complex abstraction allows to detect speci�c temporal relationships
between intervals. The overall aim was to summarize the patient's behavior over
a prede�ned time interval.

Keravnou [6] focuses on the periodicity of events derived from the patient
history.

All these approaches are dealing with low-frequency data. Therefore, the
problems of oscillating data, frequently shifting contexts, and di�erent expecta-
tions of the development of parameters are not covered.

Two promising approaches for high-frequency data are the "Time Series
Workbench" [4], which approximates data curves through a series of line-segments,
and the temporal data abstraction module in the VIE-VENT system [8], which
focuses on high-frequency domain of arti�cial ventilation of newborn infants. Its
abstraction module consists of �ve di�erent methods to arrive at uni�ed, context-
sensitive qualitative descriptions: context-sensitive transformation of quantita-
tive data points into qualitative values (context-sensitive schemata for data
point transformation), smoothing of data oscillating near thresholds, smooth-
ing of schemata for data point transformation, context-sensitive adjustment of
qualitative values, and transformation of interval data (context-sensitive and
expectation-guided schemata for trend-curve �tting). VIE-VENT's smoothing
and abstraction methods are a very good starting point. However, these meth-
ods are quite ad-hoc and do not cover in-depth analysis of the data curve over
a longer period of time.

3 The Temporal Abstraction Method

The temporal abstraction method obtains intervals, in which a qualitative value
stays steady, from oscillating raw data. In the struggle for smooth, steady curves
one is confronted with two types of disturbances: errors, noise, and physiological

variations.
Most errors can clearly be distinguished from correct input data. The ab-

solute values of erroneous data points or the di�erence to their neighbors are
beyond well-de�ned limits. Reasons for errors comprise technical details like the
automatic re-calibration of the transcutaneous electrodes every three to four
hours as well as unfortunate circumstances like sensors being badly attached.

Noise consists of small rapid oscillations of the measured values that cannot
be sorted out as errors. They have very di�erent reasons which makes them hard
to handle. Some of them are caused by technical details of measuring devices and
can be considered as small errors. Others are medically explicable phenomena or
symptoms (e.g. variability of the heart rates) which we subsume as physiological
variations and which should not be suppressed by the abstraction process.

It is thus clear that all transformations of the curves need parameters that
control the amount of abstraction or smoothing that is performed. These param-
eters need to be carefully adjusted to the issues of medical practice. In section 5
we will present some observations on this topic.



The following steps of processing and abstracting the data can be distin-
guished:

1. Eliminating data errors. Sometimes up to 40 % of the input data is
obviously erroneous e.g. exceeding the limits of plausible values.

2. Clarifying the curve. Transform the still noisy data into a steady curve
with some additional information about the distribution of the data along
that curve.

3. Qualifying the curve. Abstract qualitative values, like "normal" or "high",
from the quantitative data and join data points of equal values to time
intervals (qualitative description).

The results of each step of processing is displayed to the physician in com-
binations of choice to give her a clear perception of the abstraction process. In
the following we will detail these three steps.

3.1 Eliminating Data Errors

Many errors can be eliminated by de�ning rather strict maximum and minimum
values for each type of input as well as maximum change rates. Furthermore, if
two types of input (SaO2 and pulse) come from the same sensor and one of the
two is invalid, it can be concluded that the other one is not valid either. If two
sensors measure the same value (pulse and heart rate) and their inputs di�er,
then you can discard the less reliable one (or do some adaptation).

Still a number of faulty data points { those which fall just inside the range
of allowed values { and nearly all of the noise will be left after such processing.
They must be handled with in the other steps of the method. See Horn et al.
[3] for a thorough discussion of error detection and correction in the domain of
clinical monitoring.

3.2 Clarifying the Curve

The algorithm presented in the following seeks to derive a smooth, easy com-
prehensible, and stable curve from noisy and error-prone data. For a selected
interval of time, e.g. one minute, we derive an abstraction representing the val-
ues within this interval. Moving along the time axis we shift this interval (time

window) to receive continuous abstractions of the curve.
So for example, if we consider a time window of one minute and a step width

of one second, we do not calculate only one value per minute but for every
second in the whole period of measurement we calculate an abstraction within
that time window. For each time window a linear regression model is calculated
as explained below. Figure 1 shows the abstraction within one time window and
the moving of this window.

Given the fact that not all deviations of data points from the main line can be
considered negligible although many certainly are, it is clear that any abstraction
must not only provide the mean of the curve at a certain point of time but also
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Fig. 1. The calculation of the linear regression is done for a time window of �xed size

sliding over the entire curve in small steps. (a) shows a single time window and the line

calculated from the data points within it. (b) shows a sequence of overlapping time

windows and the resulting lines.

some measure for the certainty with which this abstraction can be done at that
point. Such measures include standard deviation, standard error, quartiles, etc.

All these measures are only one-dimensional. Applying them on the x-coor-
dinates of the data points would presume that the curve is horizontal. Since this
rarely is the case, we �rst must �nd a "common line" of the data points in the
considered interval. Only relative to that line we can de�ne measures for the
closeness of a point to the entity.

Among several candidates we chose the linear regression model as a well-
proven technique for this task [1, 9]. We calculate overlapping lines in user de�ned
steps which can be as small as a second. The length which is also user de�ned
typically ranges from several seconds to one or two minutes. Figure 1 shows some
of the lines in a close zoom.

The calculation yields not only the center of the distribution but also the
inclination of the line optimally �tted through the data points (minimizing their
squared deviations) and the standard deviation. The standard deviation is a very
good measure of uncertainty unless some data points are missing (or removed by
the error detection). Dividing the standard deviation by the square root of the
number of data points used in the calculation gives the standard error. This value
is preferable against the standard deviation since it grows with the decrease of
valid data points re
ecting thus growing uncertainty.

Plotting the standard deviation on the center of the distribution instead of
the standard error gives a much wider band which exactly depicts the average
distance of the data points to the line but is invariant to number of points in-
volved in the calculation. To combine the advantages of both standard deviation
and standard error, we multiply the standard error by the square root of the
maximum number of data points possible within the interval of time considered
and name it adapted standard error.
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Fig. 2. To give an optical impression of the distribution of the data points around

the regression line we vertically plot a measure for their distance like the standard

deviation (SD) on the center of the line. (a) shows the construction of one vertical line

while (b) shows a sequence of them.

Plotting the adapted standard error on the center of the distribution shows
its error bar, which is a well-known means of visualizing statistical data. In the
perfect case, in which all data points within the interval are valid, the width of
the spread equals the (double of the) standard deviation while it will grow with
an increasing number of invalid data points. Figure 2 illustrates the calculation
error bars.

Connecting the upper and lower ends respectively of the error bars found for
all time windows of a curve yields a band of variable width following the raw
data in rather gentle bends which we call a spread. The narrower it is, the more
concentrated the values around their mean. Figure 3 shows the �nal calculation
of the spread.

3.3 Qualifying the Curve

Often the numerical value of a parameter is not itself interesting to the physician,
but its qualitative abstraction like "very high" or "slightly low" or { most im-
portant { "normal". As indicated by the quotes, the exact de�nition of "normal"
depends on the context in which the judgment is done [8].

A second characteristic of qualitative values in addition to being easy compre-
hensible is that they usually last for a longer time period. The resulting intervals
are perceived for example as "SaO2 is high for 5 minutes". This implies that any
short oscillation of the qualitative description must be avoided. While raw data
typically oscillate and thus are not usable as a basis for �nding reasonably long
intervals wherein a qualitative value stays stable, the spread calculated above is
a good ground to start at.

Figure 4 shows an example of a spread crossing borders only according to the
overall tendency of the curve, skipping short-term peaks. Notice that nothing
happens as long as only one margin of the spread crosses a border. Only when
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Fig. 3. Connecting all upper and lower ends respectively of the vertical lines (a) gives

the upper and lower limits of a region containing most of the data points. The polygon

constituted by these lines (b) gives an intuitive impression of the underlying data.

The wider the band, the more uncertainty is involved in the calculation of the vertical

position of the band representing the mean.

the other margin follows, the qualitative value changes. The spread is the wider,
the more uncertainty is involved in calculating the mean of the time window.
Thus changes to another region are less likely there. In contrast, a narrow spread
strongly enforces the qualitative values to closely follow the quantitative value
as it represents a sample of dense, noise free data points.

Retrospective analysis of data allows to select the time point at which the
qualitative value changes. One may chose the intersection of the margin �rst
crossing the border with that border, the intersection of the second margin with
the border or the middle in between these points. In the example in �gure 4 we
have chosen the middle.

Another reasonable point to set the event of change is the intersection of
the middle of the spread (in the value axis) { representing the average of its
surrounding { with the border. Unfortunately, the middle can have several in-
tersections with the border during the interval in question. So we need a rule
which intersection should be taken: the �rst, the last or the middle between the
�rst and the last intersection.

4 Parameters in the Abstraction Process

In the following we discuss the in
uence of di�erent parameters on the abstrac-
tion process.

Length of Time Window. The length of the time window is the most in
u-
ential parameter. It drives the amount of change of the curve which goes
into the abstracted spread. The longer the considered interval, the smaller
the in
uence of insular peaks in the raw data. If you want to get the overall
estimation of a minute, the length of the time windows will be 60 seconds. If



Fig. 4. The thin line shows the raw data. The red (light gray) area depict the spread,

the blue (dark gray) rectangles represent the derived temporal intervals of steady qual-

itative values. Increased oscillation leads to increased width of the spread but not to a

change of the qualitative value. The lower part of the screen shot shows the parameters

used.

a decrease during 5 seconds is considered signi�cant, the length should not
be much longer than 5 seconds.

Permitted Gaps. In real-world situations there is always a certain amount
of data points which are missing or get discarded by the error detection
performed in step 1. If the amount of such points becomes too large, the linear
regression calculated from the remaining points might not be too reliable and
it should be visualized clearly that there is no usable input at that point.
Such a situation happens frequently in daily practice.
To handle such situations we de�ne both a maximum duration of a single
gap in error-free input data, and a minimum percentage of valid data points
within the time interval in which the linear regression is computed. If a gap
in the (error-free) input data exceeds the maximum allowed duration, this
gap is propagated through all levels of abstraction and cannot be closed
by higher level abstractions. If the number of valid data points in one time
window does not reach the required limit, the calculation of the regression
line is skipped. Since the lines usually overlap, a gap only appears if the ends
of neighboring lines do not touch. Still the reduced number of data points
is visible because it leads to an increase in the adapted standard error and
thus in the width of the spread.

Point of Changing the Qualitative Value. As described above the point of
time at which the qualitative value of a parameter is changed can be set at
will within the period in which the spread intersects the border between the
old and the new qualitative value in retrospective analysis.
The point of change can either relate to the margins or to the middle (on the
value axis) of the spread. Since the middle can intersect the border several
times during the period between the �rst margin crossing the border and the
second margin following, we can generally only speak of an interval between
the �rst and the last crossing of the border by the middle of the spread.



For both intervals { de�ned by the intersections of the margins and by in-
tersections of the middle { the beginning, end, and middle of the interval
are possible choices. Among the more plausible ones are the last intersection
of the middle of the spread and the middle between the �rst and the last
intersection of the middle with the border.

Step Width. While as a default the algorithm calculates one linear regression
within the de�ned time window for every data point measured, under many
circumstances this can mean a lot of unnecessary computation. E.g. if the
length of the considered time window is one minute, a step width of 10
seconds will still yield a smooth curve. This example shows that for best
results the step width should always be some fraction of the length of the
considered time window.

Position of the Error Bar. In the above text we silently presumed that it
would be most suitable to visualize the entity of the data points in the
considered by a vertical bar in the middle of the line produced by the linear
regression. This means that one time window of the spread represents x=2
data points before and x=2 data points after the position of the time window
where x is the number of data points involved in the calculation of the time
window.
While this symmetrically smoothes out disturbances in the curve in retro-
spective analysis, it does not properly re
ect the situation of on-line moni-
toring where the values before the actual point of time are not available of
course . In such a situation one would only consider the past and deduct only
from it { the left-hand side of the curve { some abstraction of the data at the
current time point. While the appearance of the spread shows some di�er-
ence between these two modes of visualization, di�erences in the qualitative
intervals abstracted from the two variants are rare.

5 Discussion and Further Development

Abstracting raw data to spreads and deducting intervals, in which qualitative
descriptions hold, is an important step toward better visualization and compre-
hension of high-frequency data. The output of the algorithm presented can be
used for three distinct though related purposes.

1. Visualization of quantitative data. While the raw data when plotted
"as it is" are rather confusing, the spread gives an intuitive impression of
the data by showing both the value - by its position - and the amount of
uncertainty in that value - by its width. It is thus a useful tool for visualizing
the quantitative input itself.

2. Abstracting qualitative descriptions over time intervals. Based on
the need of the practitioners we display the data as a sequence of intervals,
during which the values of a parameter take one qualitative value (e.g. high).

3. Finding suitable therapeutic actions. The qualitative descriptions are
a solid basis for recommending changes of the ventilator settings and for



intelligent alarming. These are nontrivial tasks and need a knowledge base
with sophisticated temporal inference capabilities.

Our future e�orts will be dedicated to the integration of the visualization tool
into the bigger context of a knowledge-based system using the Asgaard frame-
work [10] for temporal planning and developing our tool from a retrospective
analyzing tool towards an on-line monitoring and alarming system.

Acknowledgments. We thank Klaus Hammerm�uller, Robert Kosara and Georg
Duftschmid for their useful comments. This project is supported by "Fonds zur
F�orderung der wissenschaftlichen Forschung - FWF" (Austrian Science Foun-
dation), P12797-INF. We greatly appreciate the support given to the Austrian
Research Institute of Arti�cial Intelligence ( �OFAI) by the Austrian Federal Min-
istry of Science and Transport, Vienna.

References

1. R.K. Avent and J.D. Charlton. A critical review of trend-detection methologies

for biomedical monitoring systems. Critical Reviews in Biomedical Engineering,

17(6):621{659, 1990.
2. I. J. Haimowitz and I. S. Kohane. Managing temporal worlds for medical tread

diagnosis. Arti�cial Intelligence in Medicine, Special Issue Temporal Reasoning in

Medicine, 8(3):299{321, 1996.
3. W. Horn, S. Miksch, G. Egghart, C. Popow, and F. Paky. E�ective data vali-

dation of high-frequency data: Time-point-, time-interval-, and trend-based meth-

ods. Computer in Biology and Medicine, Special Issue: Time-Oriented Systems in

Medicine, 27(5):389{409, 1997.
4. J. Hunter. Knowledge-based interpretation of time series data from the neonatal

ICU. presentation, 1998.
5. Goldsmith J.P. and Karotkin E.H. Assisted Ventilation of the Neonates. Saunders,

Philadelphia, 1996.
6. E. T. Keravnou. Temporal abstraction of medical data: Deriving periodicity. In

N. Lavrac, et. al., editors, Intelligent Data Analysis in Medicine and Pharmacology,

pages 61{79. Kluwer Academic Publisher, Boston, 1997.
7. C. Larizza, R. Bellazzi, and A. Riva. Temporal abstractions for diabetic patients

management. In Proceedings of the Arti�cial Intelligence in Medicine, 6th Con-

ference on Arti�cial Intelligence in Medicine Europe (AIME-97), pages 319{30,

Berlin, 1997. Springer.
8. S. Miksch, W. Horn, C. Popow, and F. Paky. Utilizing temporal data abstraction

for data validation and therapy planning for arti�cially ventilated newborn infants.

Arti�cial Intelligence in Medicine, 8(6):543{576, 1996.
9. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Re-

cipies in C. Cambridge University Press, Cambridge, 1992.
10. Y. Shahar, S. Miksch, and P. Johnson. The Asgaard Project: A task-speci�c frame-

work for the application and critiquing of time-oriented clinical guidelines. Arti�cial

Intelligence in Medicine, 14:29{51, 1998.
11. Y. Shahar and M. A. Musen. Knowledge-based temporal abstraction in clinical

domains. Arti�cial Intelligence in Medicine, Special Issue Temporal Reasoning in

Medicine, 8(3):267{98, 1996.


