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Abstract

Monitoring and therapy planning in real-world

environments highly depend on good patient-

disease models. The improvement of the tech-

nical equipment in modern intensive care units

enables a huge number of on- and o�-line data,

which results in an information overload of

the medical sta�. Additionally, the underlying

medical structure-function models are poorly

understood or not applicable due to incomplete

knowledge. We have developed an on-line iden-

ti�cation scheme, which utilizes a priori knowl-

edge as well as on-line measurements to identify

the parameters of a disease model for mechan-

ically ventilated newborn infants. The scheme

bene�ts from an exponential weighting function

to classify more recent measurement values as

more important. We have evaluated our iden-

ti�cation scheme with real medical data sets

showing the bene�ts and drawbacks of our ap-

proach.

1 Introduction

How do we obtain good procedures for patient care?

There are many answers to this question. However,

when the therapy consists of decisions for how to tune

the knobs of a machine connected to the patient based

on on-line measurements from the patient, it is natural

to think of the problem as a multi-stage decision prob-

lem. Depending on your background you may attack this

problem e.g., using ideas from Arti�cial Intelligence (AI),

and/or Control Theory, which both have their roots in

Cybernetics [Wiener, 1948]. The main di�erences be-

tween the two approaches is how the measurement data

is mapped into models, what types of models are used,

and how the decisions are made based on these models.
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What is then the most appropriate type of model? This

highly depends on

� What is the model going to be used for? In case the

model is going to be used for qualitative reasoning it

may not be necessary to have as a detailed model as

may be necessary if the model is going to be used to

implement a quantitative Kalman-�lter or Wiener-

predictor.

� How accurate can the model be made? This usually

depends on the quality of the measured data. The

more information is present in the data the more de-

tailed the model can be made. This often depends

on what experiments can be made, which in medi-

cal applications sometimes are constrained by safety

requirements for the patient.

� How time-consuming is it to obtain the model? This

often depends on what technical equipment is avail-

able to record the data and to process it. It also

depends on how sophisticated algorithms are used

for processing the data.

The latter two considerations usually imply that only

certain sub-sets of what need to be modeled can be made

detailed, e.g., in the form of di�erential equations or dif-

ference equations. How these models connect to one-

another can then be modeled in a qualitative way ap-

plying particular approaches from AI, e.g. knowledge-

based techniques and qualitative reasoning. It should be

made clear that the challenge from medicine on compu-

tations for data analysis and therapy planning is much

greater that the challenges from many other �elds [Bell-

man, 1983]. Hence it is not surprising that a multi-

disciplinary approach is a good idea.

The scope of this paper is to show how system iden-

ti�cation techniques, see e.g. [Johansson, 1993], which

have their roots in Control Theory, can be used to iden-

tify a so called \patient-disease model" for mechanical

ventilation. The model is in terms of a di�erence equa-

tion that describes the real world with some degree of

accuracy. This type of models has been used extensively



in medical applications of mathematics [Bellman, 1983].

It is especially useful in case Control Theory is going to

be used to synthesize the therapy planning. However,

it can also be used to derive qualitative models suitable

for AI approaches. For example, a qualitative simula-

tion is based on the derived qualitative descriptions to

predict the outcome of therapeutic actions; or the quali-

tative descriptions are used to structure skeletal plans, in

the context of medicine named clinical protocols, which

are used to support plan generation and execution. The

experience gathered by physicians can be expressed as

inequality constraints on the parameters in the model.

The only thing that remains to do in order to obtain

a good patient-disease model is to decide what parame-

ter values are the correct ones for a certain patient. The

idea is to do this based on on-line measurements by solv-

ing a convex optimization problem at each sample time.

The quality of the obtained model highly depends on the

quality of the measurement data. System identi�cation

with no constraints or just equality constraints on the

parameters has been treated in textbooks [Johansson,

1993], but the case with more complicated constraints,

such as inequality constraints, is still an active research

area, see e.g., [Boyd et al., 1994]. The data used in the

identi�cation scheme is weighted exponentially in time in

order to take into account that more recently observed

data are more important for the model than old data.

This is a standard approach in system identi�cation.

The remaining part of the paper is organized as fol-

lows. In Section 2 background material and related ap-

proaches are described. In Section 3 the model will be

given and rewritten to �t into the identi�cation scheme

to be described in Section 4. Then in Section 5 the iden-

ti�cation scheme will be evaluated on real data, and in

Section 6 concluding remarks and perspectives on future

research will be given.

2 Background and Related Approaches

Medical monitoring and therapy planning at modern

intensive care units (ICUs) have been re�ned by the

technical improvement of the equipment. Neverthe-

less, the care of critically ill patients with respect to

real-world medical environments entails non-trivial data

analysis problems: �rst, the number of continuously and

discontinuously assessed data acquired by di�erent de-

vices creates a rising information-management problem

at ICUs. The available data occur at di�erent obser-

vation frequencies and in various types such as qual-

itative and/or quantitative data. Second, the under-

lying medical structure-function models|the patient-

disease models|are poorly understood or not appli-

cable due to the incomplete knowledge and complex-

ity of the pathophysiological mechanisms. Third, the

projections of various signals are context-dependent,

e.g., according to the degree of a signal's abnormal-

ity, and they are di�cult to represent in a formal way.

Therefore it is not possible to rely only on classical

theories for data analysis [Avent and Charlton, 1990;

Kay, 1993].

However, the need to retrieve adequate patient-disease

models to treat critically ill patients is evident. During

the last years, di�erent approaches were proposed to de-

rive domain-dependent models in general [Hamscher et

al., 1992]. Fewer encouraging approaches are available

for identi�cation of durative models, e.g., the temporal-

abstraction module in the M-HTP project [Larizza et

al., 1992], the temporal resource management in the

Guardian project [Hayes-Roth et al., 1992], the trend

detecting mechanism based on trend templates in the

TrenDx project [Haimowitz et al., 1995], the temporal-

abstraction module in the VIE-VENT project [Miksch

et al., 1996], the R�ESUM�E project [Shahar and Musen,

1996], and the T-IDDM project [Bellazzi et al., 1996].

Currently, the problem of automating the data analysis

has grown steadily under the labels knowledge discov-

ery in databases (KDD) and data mining [Fayyad et al.,

1996]. Nevertheless, these approaches are based on the

assumption that there exists a particular domain model,

which only need to be customized for the particular pur-

pose. This assumption is not always applicable in a real-

world environment.

We are particularly interested in the treatment of me-

chanically ventilated newborn infants. Mechanical ven-

tilation has greatly contributed towards the improve-

ment of the mortality and morbidity of prematurely new-

born infants [Goldsmith and Karotkin, 1993]. Enhanced

knowledge about the pathophysiological mechanisms of

barotrauma and oxygen toxicity led to the development

of patient-tailored strategies of mechanical ventilation

and helped to reduce harmful side e�ects of respirator

therapy. However, the bulk of available data and the

vague de�nitions of causal and functional dependencies

about the interactions of signals over a period of time

still cause problems to retrieve an appropriate durative

patient-disease model.

Knowledge-based system technology may appropri-

ately represent and organize the practical and theoretical

knowledge of experienced specialists [Shortli�e, 1991].

During the past decade, several projects were initiated

to support clinicians with their information processing

needs [Uckun, 1993]. These systems range from sim-

ple, intelligent alarming systems to sophisticated sys-

tems for knowledge-based monitoring and therapy man-

agement. The pioneering work was the Ventilator Man-

ager (VM), [Fagan et al., 1980], which was designed to

manage post-surgical mechanically ventilated patients.

On the one hand, there are applications which assist pa-

tients with adult respiratory distress syndrome (ARDS),



like VM [Fagan et al., 1980], VentPlan [Rutledge, 1995],

and COMPAS [Sittig et al., 1990]. On the other hand,

projects were developed to support the treatment of

newborn infants, like VMS [Boyarsky, 1987] and SI-

MON [Uckun et al., 1993]. From the practical point

of view, the usability of all these systems is limited con-

cerning their data used and their reaction time. They

mainly used invasively determined blood gas measure-

ments for monitoring and therapy planning, which are

only discontinuously and infrequently available. Such

approaches are applicable to adults, but are not suit-

able for neonates. Newborn infants still have premature

organs and the treatment needs to be based on more

frequently and continuously sampled data, namely the

trans-cutaneously assessed measurements, to guarantee

immediately in-time reactions to life-threatening health

conditions of the infants.

Developing VIE-VENT [Miksch et al., 1996], an open-

loop, monitoring and therapy planning system for me-

chanically ventilated newborn infants, we tried to over-

come these limitations. VIE-VENT was especially de-

signed for practical use under real-time constraints at

neonatal intensive care units (NICUs). Experiences from

the development of the VIE-VENT system [Miksch et al.,

1996] indicated non-trivial data analysis problems. How-

ever, the performance and the acceptance of VIE-VENT

could be improved signi�cantly by incorporating a more

sophisticated on-line identi�cation of the patient-disease

model, in particular, a model for mechanically ventilated

newborn infants.

In a �rst step, the experiences with VIE-VENT and

medical textbook knowledge were incorporated in an

\open-patien" model [Gutmayer, 1995]. The main pur-

poses of this approach were to structure the vague causal

and functional domain knowledge and to develop a train-

ing system for inexperienced physicians. The primary

drawback was that the available knowledge was still too

incomplete to apply qualitative reasoning techniques for

therapy planning. In this paper it will be shown how

this model can be improved using on-line measurements.

In the long term, the �nal objectives will be a system,

which will regularly obtain data from a patient, cus-

tomize its disease model to the individual patient, and

deliver appropriate advice about management of the pa-

tient's health condition.

3 Model

In this section the model for the ventilation will be given

and rewritten to �t into the identi�cation scheme of the

next section. The model utilizes the experiences and

the knowledge gathered from the development of VIE-

VENT [Miksch et al., 1996] and of the "open-patient"

model [Gutmayer, 1995]. This a priori knowledge was

acquired in cooperation with expert physicians. We dis-

cussed di�erent medical histories and visualized partic-

ular sample cases to structure the necessary elements.

The a priori knowledge describes the relationship be-

tween the blood-gas measurements, e.g. PO2 (partial

pressure of oxygen), PCO2 (partial pressure of carbon

dioxide), and the ventilator settings, e.g. FiO2 (frac-

tion of inspired oxygen), PEEP (positive end expiratory

pressure). The blood-gas measurements can be sampled

at di�erent sites, namely arterial, capillary, venous, and

trans-cutaneous. Studies showed a piecewise linear re-

lationship between the di�erent kinds of blood-gas mea-

surements depending on the sampling site [Marsden et

al., 1995; Horn et al., 1996]. The model is formulated us-

ing the arterial measurements, e.g. PaO2 (arterial partial

pressure of oxygen). In the evaluation we are using the

on-line, continuously-assessed measurements, e.g., PtcO2

(trans-cutaneous partial pressure of oxygen). Beceause

of the piecewise linear relationship it is possible to pre-

process the data to take this into account.

It is fairly straightforward to see from [Gutmayer,

1995] that the partial pressure of oxygen, PaO2 obeys

the di�erence equation

PaO2(k + 1) = WQs
WDconst

WK

�
PaO2(k)

+ WFiO2
(k) +WPEEP (k) +WV T (k)

�

where

WFiO2
(k) = 500 [FiO2(k)� FiO2(k � 1)]

WPEEP (k) = gP (PEEP (k))

WV T (k) = gV (V T (k))multV T (f(k); Ti(k))

V T (k) = C [PIP (k)� PEEP (k)]

and where gP and gV are known piecewise linear func-

tions, multV T is a known piecewise bilinear function,

and where V T (k) is the tidal volume, f(k) is the ventila-

tory frequency, Ti(k) is the inspiratory time, and PIP (k)

is the peak inspiratory pressure. The constants WQs
,

WDconst
, WK , and C are, based on physicians knowl-

edge, known to be in the intervals

WQs
2 [0:1; 0:97]; WDconst

2 [0:25; 0:9]

WK 2 [0; 1]; C 2 [0:05; 1:5]

Speci�cally, it should be noted that for x in a small in-

terval

gV (x) = �x+ �

where

� 2 [0:8; 4]; � 2 [�5; 12]

De�ning

a = WQs
WDconst

WK



b1 = b2 = a

b3 = a�C

b4 = a�

and

y(k) = PaO2(k)

u1(k) = WFiO2
(k)

u2(k) = WPEEP (k)

u3(k) = multV T (f(k); Ti(k)) [PIP (k)� PEEP (k)]

u4(k) = multV T (f(k); Ti(k))

it follows that

y(k+1) = ay(k)+ b1u1(k)+ b2u2(k)+ b3u3(k)+ b4u4(k)

with the following constraints on the parameters

a = b1 = b2 2 [0; 0:873]; b3 2 [0; 5:238]

b4 2 [�4:365; 10:476]

For measured data the model will not �t exactly. To this

end the model is augmented with the so called regression

error "(k) to

y(k + 1) = ay(k) + b1u1(k) + b2u2(k)

+ b3u3(k) + b4u4(k) + "(k)

This equation is now in a form such that it is possible

to apply the identi�cation scheme described in the next

section. Notice that the knowledge of gV is not included

in this model. However, all other knowledge is. This is

what has to be sacri�ced in order to rewrite the model

in the above form.

4 Identi�cation Scheme

In this section the identi�cation scheme will be de-

scribed. It will be seen how it can be cast as a so called

Linear Matrix Inequality (LMI) problem, see [Boyd et

al., 1994].

Before de�ning the optimization problem that will

yield the identi�ed parameters, the model will be rewrit-

ten as a linear regression. With

'(k) =

8
>>>>>:
y(k � 1) + u1(k � 1) + u2(k � 1)

u2(k � 1)

u3(k � 1)

9
>>>>>;

� =

8
>>>>>:

a

b3
b4

9
>>>>>;

it holds that the model reads

y(k) = 'T (k)� + "(k)

with constraints �l: � �: � �u, where

�l = ( 0 0 �4:365 )T ; �u = ( 0:873 5:238 10:476 )
T

It is natural to try to �t the parameters of the model

such that they obey the above constraints and such that

they minimize the quadratic loss function

V (�;N) =

NX

i=1

�N�i"2(i)

where � 2 (0; 1] is the so called forgetting factor. Typi-

cally � is taken greater than 0.9. For these values, with

M = 1=(1� �), it holds that �M � 0:35. Hence the rule

of thumb is that only the last 1=(1��) samples inuence
the loss function. Now de�ne

Y =

8
>>>>>>>:

y(1)
...

y(N)

9
>>>>>>>;
; � =

8
>>>>>>>>>>:

0

'(1)
...

'(N � 1)

9
>>>>>>>>>>;
; E =

8
>>>>>>>:

"(1)
...

"(N)

9
>>>>>>>;

Then E(�) = Y � ��, and with � = diag0
k=N�1

(�k) it

holds that V (�;N) = ET (�)�E(�), and hence the opti-

mization problem can be written

min
�
l
:��:��u

ET (�)�E(�)

It can be shown, see [Boyd et al., 1994], that this problem

is equivalent to

min t

s:t:

8
>: I

p
�(Y � ��)

(Y � ��)T
p
� t

9
>; � 0

�l: � �: � �u

The �rst inequality constraint says that the matrix

should be positive semi-de�nite. Notice that the matrix

is symmetric and linear in the variables � and t. Hence

this constraint is an LMI. The second constraint is also

linear in the variable �, and it can also be rewritten as

an LMI. This shows that the optimization problem is a

so called LMI-problem that can be solved with highly

e�cient algorithms, see e.g., [Boyd et al., 1994].

In case there are no constraints on � it can be shown

that there is an explicit solution to minimizing V (�;N)

in terms of a set of linear equations:

�T��� = �T�Y

Notice that there is a unique solution if and only if �T��

has full rank. Typically this condition is easier to ful�ll



the more the signals ui are varying [Johansson, 1993].

Hence good identi�cation without any a priori knowl-

edge about the parameters is only possible if the input

signals are varying enough. The other extreme is that

one has very good knowledge about the parameters be-

fore the identi�cation starts, and then less variations in

the input signals are needed in order to get a good model.

This a prior knowledge is of crucial importance to apply

on-line identi�cation of patient-disease models, because

highly varying ventilator settings might be harmful to

the newborn infants.

5 Evaluation

In this section the identi�cation scheme developed in

the previous section will be evaluated on real data.

The continuously-assessed data available did not con-

tain measurements of the partial pressure of oxygen but

the trans-cutaneous ditto. However, the relationship is

piecewise linear [Marsden et al., 1995; Horn et al., 1996]

and it was possible to pre-process the data to compen-

sate for this. The sample interval used was h = 10 min.
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Figure 1: Measured signals and simulated signal.

In Figure 1 is seen how the measured data together

with simulation results for the identi�ed model look like.

The parameters in the identi�cation scheme were � = 1

and N = 1092. This means that all N samples made

an impact in the loss function. The optimal estimated

parameters were a = b1 = b2 = 0:5956, b3 = 3:1044,

and b4 = 10:4760. These are the parameter values used

in the simulation, which was performed by iterating the

model equation with y(0) = 0 and "(k) = 0 for k � 0. It

should be noted that the input signals ui do not vary very

much, and hence it is not to be expected that the model

obtained should be very good. However, this is not the

only contribution to the di�erence in the simulated signal

and the measured signal. The peak at about 3 hours is

most likely related to a measurement error, which the

model cannot capture. Actually anything that cannot

be related to changes in the ventilator settings cannot be

expected to turn up in simulations based on the model,

such as e.g., the negative trend between 3 and 6 hours.

However, it is seen that the model does capture some of

the behavior in the measured signal, and especially what

is related to changes in the ventilator settings.

Since the residuals are very big it would be tempting to

try to adapt the model as time goes on, i.e. to do on-line

identi�cation and to forget old data using a value of � less

than one. With on-line identi�cation is meant that the

model is re-identi�ed whenever new measurement data

is available, i.e. V (�;N) is minimized at every sample

instant. In this way a sequence of optimal estimated

parameters �(N) is obtained. If old data is forgotten

using � < 1 the model is said to be adapted. The result

is presented in Figure 2 for � = 0:9, which implies that

only the last 1=(1�0:9) = 10 samples are remembered in

the loss function. Here prediction results are shown, i.e.
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Figure 2: Measured signal and predicted signal with expo-
nentially weighted forgetting (� = 0:9, 10 samples are re-
membered)

the model equation is iterated using �(N) as parameter

starting at k = N = 400=h = 40 with y(N) equal to the

measured value at that time and "(k) = 0 for k � N . It is

seen that the prediction captures the change in the trend

of the measured signal, and predicts it fairly correctly for

30 minutes.



6 Bene�ts, Drawbacks, and Future

Developments

Applying our identi�cation scheme to real medical data

sets showed particular bene�ts and problems. As illus-

trated in Figure 1, our identi�cation scheme �ts very sat-

isfactorily to the real developments of the signals, except

for measurement errors and e�ects which are not caused

by changes of input signals. The exponential forgetting

of old signals makes it possible to adapt the model to

changes in the environment. The problems mainly lie in

the vague a priori knowledge and the bad quality of the

data sets. The identi�ed model could be improved by

� High quality data sets: The data sets should include

all signals of the model and with accurate temporal

correlation. For example the signal V T was not rep-

resented in the available data set, and we really did

not know exactly at what time any of the ventilator

settings ware changed, since the data logging was

done partly manually. Also the more the ventila-

tor settings are varying, the more information they

contain, and the better the model can be made.

� Good a priori knowledge: More o�-line experiments

(using continuously-assessed data for analysis in

retrospect) should be designed to get better gen-

eral causal and functional dependencies about the

patient-disease model. Ideally the only thing that

should be estimated on-line is what makes di�erent

patients di�erent.

Our on-line identi�cation scheme shows the �rst step

to perform e�ective monitoring and therapy planning.

In the next step, we will customize the patient-disease

model to an individual patient and prove how to apply

control techniques to perform therapy planning.
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