
Knowledge-based veri®cation of clinical
guidelines by detection of anomalies

G. Duftschmida,*, S. Mikschb

aDepartment of Medical Computer Sciences, University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
bVienna University of Technology, Institute of Software Technology (IFS),

Favoritenstrasse 9-11, A-1040 Vienna, Austria

Received 31 May 2000; received in revised form 21 September 2000; accepted 8 November 2000

Abstract

As shown in numerous studies, a signi®cant part of published clinical guidelines is tainted with

different types of semantical errors that interfere with their practical application. The adaptation of

generic guidelines, necessitated by circumstances such as resource limitations within the applying

organization or unexpected events arising in the course of patient care, further promotes the

introduction of defects. Still, most current approaches for the automation of clinical guidelines are

lacking mechanisms, which check the overall correctness of their output. In the domain of software

engineering in general and in the domain of knowledge-based systems (KBS) in particular, a

common strategy to examine a system for potential defects consists in its veri®cation. The focus of

this work is to present an approach, which helps to ensure the semantical correctness of clinical

guidelines in a three-step process. We use a particular guideline speci®cation language called Asbru

to demonstrate our veri®cation mechanism. A scenario-based evaluation of our method is provided

based on a guideline for the arti®cial ventilation of newborn infants. The described approach is kept

suf®ciently general in order to allow its application to several other guideline representation

formats. # 2001 Elsevier Science B.V. All rights reserved.

Keywords: Clinical guidelines and protocols; Veri®cation; Medical plan management

1. Introduction

Within the last decade, public and private dissatisfaction about the perceived health and

economical consequences of inappropriate medical care has signi®cantly increased [5].

These perceptions stem from many sources including ceaselessly escalating health care

costs, wide variations in medical practice patterns, and recognition that the obvious effect

Artificial Intelligence in Medicine 22 (2001) 23±41

* Corresponding author. Tel.: �43-1-40400-6696; fax: �43-1-40400-6697.

E-mail addresses: georg.duftschmid@akh-wien.ac.at (G. Duftschmid), silvia@ifs.tuwien.ac.at (S. Miksch).

0933-3657/01/$ ± see front matter # 2001 Elsevier Science B.V. All rights reserved.

PII: S 0 9 3 3 - 3 6 5 7 (0 0) 0 0 0 9 8 - 1

of some health services does not justify the efforts invested. Market pressures have further

contributed to complicate the situation by driving medical organizations to increase

productivity and to reduce costs, all without adversely affecting patient care.

One method that has been proposed as an answer to these problems is to adopt standard

practice guidelines. The main goals that are pursued by the application of guidelines are the

improvement of patient care's quality and the reduction of treatment costs. It could be

shown that these desired effects can actually be reached, provided that the guidelines are

properly formulated and followed [8].

In Section 2 we will give an overview of current approaches for the computerization of

clinical guidelines and point out some techniques for their veri®cation. After a short

introduction of the Asbru language for the representation of guidelines in Section 3, we will

present our veri®cation method in Section 4. A scenario-based evaluation of our method

will be provided in Section 5.

2. Related approaches to improve medical care

2.1. Automation of clinical guidelines

Being confronted with the laborious and inherently error-prone manual management

of paper-based clinical guidelines, the interest in a computerized handling of the problem

started to grow within the medical community. First attempts to automate guideline-

based care were able to demonstrate a number of advantages over manual methods

[13,30].

A common strategy among guideline applications is the so-called prescriptive approach,

where an active interpretation of a preselected guideline is generated by the system, e.g.

[6,11,20,25,29,31,32]. Another approach is the critiquing approach, where the system

critiques the physician's plan rather than recommending a complete one of its own [2,33].

Finally, several approaches are based on the hypertext browsing of guidelines via the world

wide web, e.g. [3,13].

2.2. Veri®cation of clinical guidelines

One prerequisite for a broad acceptance and an ef®cient application of guidelines in the

clinical domain is the guarantee of a high level of quality and reliability. However, as has

been shown in numerous studies most clinical guidelines embody different kinds of

semantical errors that compromise their practical value: guidelines are often vague and

incomplete, they show serious omissions and unintentional ambiguities as well as unclear

de®nitions, incompleteness, and inconsistency [15,16,18,26,27,29].

The situation is further complicated by the fact that the process of correcting such errors

within a guideline is not a one-time matter. Rather this task is of repetitive nature as

guidelines are subject to change. Changes may be effectuated by the evolution of a

guideline to implement medical progress in the treatment of individual diseases. Another

reason for the modi®cation of a guideline, which will become effective even more

frequently is addressed in [7±9]: generic, site-independent guidelines, designed to be

24 G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41

sharable between institutions, have to be adapted in most cases when applied by an

individual organization according to the speci®c properties of the organization and of

the patient to be treated. These adaptations may become necessary before the execution

of a guideline due to resource or organizational limitations as well as particular

patient characteristics. They may also become essential during the execution of a

guideline due to unexpected events that arise in the course of patient care. In each of

these cases, it has to be checked that the alterations done to the guideline do not affect

its logical ¯ow.

In contrast to the intensive efforts to develop new guidelines, the issue of providing

mechanisms to ensure their overall correctness has been widely neglected thus far.

However, as is already known from the domain of software engineering, an early

identi®cation of ¯aws within algorithmic knowledge is critically important [1]. In the

domain of software engineering in general and in the domain of knowledge-based systems

(KBS) in particular, a common strategy to examine a system for potential defects consists

in its veri®cation. We use the term veri®cation as proposed in [12]: veri®cation is de®ned as

the sum of all processes, which attempt to determine whether a KBS does or does not

satisfy its purely formal speci®cations. As will be shown in Section 4.2.2, we are concerned

with speci®cations derived from formalizable concepts.

As already indicated within [5,14], approaches concerning the semantical veri®cation of

clinical guidelines are still rather rare. In the following we will give an overview of the few

approaches concerning guideline veri®cation, which have been published yet.

2.2.1. Decision-table techniques

One method for the veri®cation and simpli®cation of guidelines described in the

literature consists in the logical analysis of guidelines by applying decision-table tech-

niques [26,27]. Veri®cation here is limited to two different properties, which are com-

pleteness and consistency of a guideline: a guideline is said to be complete when an action

is de®ned for every possible value-combination of parameters used within the guideline. It

is considered consistent, if each of its rules, consisting of a certain condition and an

assigned action, is unique. If the latter property is violated, the authors distinguish between

the three variants of redundant, contradictory or con¯icting guidelines.

2.2.2. Examination of related tasks

Quaglini et al. [23] described how a guideline may be examined for logical correctness.

As a formal representation model, they organize guidelines as sets of hierarchical tasks,

which amongst others include activation conditions and subtasks. Subtasks may either be

in AND-relation or in XOR-relation, which means that their parent task completes either

after all subtasks have completed (AND), or after one and only one subtask has completed

(XOR). To show a guideline's correctness Quaglini and co-workers check for completeness

and coherence: Merging Shiffman and Greenes's concepts of completeness and con¯ict

[27], Quaglini and co-workers consider a guideline complete, if the activation-conditions

of each set of subtasks in XOR-relation are de®ned in a way that for every combination of

variable values there is exactly one task activated by that combination. Checking a

guideline for coherence means to look for conjunctive subtasks, which exclude each

other because of incompatible activation conditions.

G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41 25

2.2.3. Condition checking based on semantic constraints

In [17] a system called Commander is described, which helps to verify a clinical

guideline by checking its conditions similar to [27]. In contrast to Shiffman and Greenes,

the authors ignore the consistency property in their veri®cation process and exclusively

concentrate on examining the completeness of a guideline. Hereby, they incorporate

semantic constraints to reduce the combinations of variable values to consider.

2.2.4. Dynamic testing methods

In [28] an approach for the dynamic analysis of the ONCOCIN knowledge-base (KB) is

described, the latter being used for the representation of cancer therapy guidelines. By

using the ScriptGen system, the oncologist is given the possibility to generate certain sets

of test cases, which allow for the testing of selected paths within a guideline. Hereby,

instances are searched for in the KB whose behavior deviates from that dictated by the

speci®cation, which is the corresponding cancer therapy guideline. Typical defects are

rules that ®re erroneously, rules that contain errors in parameter domains and missing rules.

2.2.5. Veri®cation approaches in the domain of KBS

Looking for general veri®cation methods from the domain of KBS that may be useful,

we found some parallels to our case: a substantial number of veri®cation approaches in the

®eld of KBS is based on the detection of ¯aws in rule-bases, e.g. [19,21,22,34]. As we will

demonstrate in Section 4.2.1, a relationship can be established between a rule-base and a

clinical guideline. This principally enables the reuse of work done for the veri®cation of

rule-based systems. However, existing work is far from being suf®cient for a profound

veri®cation of clinical guidelines: techniques, which are reusable in our case, are too

generic to allow the incorporation of those guideline-speci®c properties, which we

consider essential for our veri®cation processes.

3. The Asgaard/Asbru project

Most existing approaches for the automation of clinical guidelines suffer from at least

one signi®cant limitation: they require a complete modeling of the guideline up to its

smallest grained components during design time and do not support site- or patient-speci®c

adaptation in response to a changed environment or unexpected events. These approaches

are lacking the types of knowledge, which would be essential for the purpose of guideline

adjustment, or do not provide them in a structured format.

The time-oriented, intention-based plan-representation language Asbru [16], developed

within the Asgaard project [24], offers such support. Clinical guidelines coded in the Asbru

language are organized within a plan-speci®cation library. In the following the term plan is

used to designate a clinical guideline, coded in the Asbru language. By providing a formal

description of a plan's intention, Asbru satis®es an essential demand for ef®cient guideline

transformation [8]: the structured de®nition of a plan's intention allows it to be adapted

while remaining faithful to its original aim.

Our veri®cation approach, presented in Section 4, further supports Asbru's ability of

plan modi®cation: before any plan can be released that has been altered based on

26 G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41

compatible intentions, it must be veri®ed amongst others that it is free of logical

inconsistencies. The subject of determining compatibility of intentions represents another

interesting research issue but is not addressed in this paper.

3.1. Components of Asbru

In Asbru a clinical guideline is modeled as a set of hierarchical plans. Each plan is

identi®ed by a unique name and consists of a set of arguments, including a time annotation

that represents the temporal scope of the plan, and ®ve elementary components. These

components are preferences, intentions, conditions, effects and a plan body. Each plan may

contain any number of subplans within its plan body, which may themselves be decom-

posed into sub-subplans. In the following, we will call such a tree structure of plans,

starting from one root plan down to its leaf plans, a plan hierarchy. During execution time,

the system interpreter attempts to decompose each plan into its subplans until an

undecomposable leaf plan is found. Such atomic plans are called primitive plans and

are transferred to a suitable agent for their execution.

Intentions, world states, actions/plans and effects are durative. Therefore, plan states and

corresponding transition criteria are incorporated in Asbru to cope with the time-oriented

environment. In this paper we will particularly focus on the veri®cation of these transition

criteria, which are expressed by means of the condition component.

3.2. Plan states and state-transition criteria

A set of eight different plan states is used to describe the actual state of a plan during

plan selection and plan execution. Seven different conditions build the state-transition

criteria, controlling transitions between neighboring plan states. Fig. 1 shows Asbru's

model of plan states (MPS), a deterministic, ®nite-state automaton. It illustrates the

sequence of possible states of a plan and the corresponding conditions shown above the

arrows.

Asbru provides seven different conditions:

1. ®lter-preconditions need to hold initially if the plan is applicable, but can not be

achieved;

2. setup-preconditions need to be achieved to enable a plan to start;

3. activate-condition determines if the plan should be started manually or automatically;

4. suspend-conditions determine when an activated plan has to be interrupted;

5. abort-conditions determine when an activated or suspended plan is terminated

unsuccessfully;

6. complete-conditions determine when an activated plan is terminated successfully;

7. reactivate-conditions determine when a suspended plan can be continued.

The plan states, which are stopping the execution of a plan successfully or unsuccess-

fully (rejected, completed, aborted and suspended states), may be propagated in both

directions of the plan hierarchy: the parent plan always propagates these plan states to its

children, whereas a child plan propagates them to its parent plan if the child belongs to its

parent's continuation set (see Section 4.2.1).

G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41 27

4. Veri®cation of Asbru plans

We developed a partial veri®cation method that aims at the identi®cation of ¯aws within

a guideline [4]. Hereby, we reuse existing veri®cation work as the basis of domain-

independent ¯aws, e.g. [21]. We further extend it by incorporating guideline-

speci®c knowledge for the detection of ¯aws, which are characteristic for the domain

of guideline-based care. The required knowledge is assumed to be available in a suitable

KB component (see Section 4.2.3).

4.1. Methodology

Our veri®cation approach examines the components of every Asbru plan and all its

subplans for the existence of several anomalies, which indicate violations of corresponding

speci®cations. The concept of anomalies is adopted from [22], where anomalies are de®ned

as symptoms of probable errors. Our goal is to arrive at meaningful plans instead of totally

correct plans. A plan is called meaningful, if it does not contain any anomalies, which

would violate one of our speci®cations. We distinguish three levels of anomalies according

to their locality (see Table 1).

The described approach is based on the hierarchical organization of clinical guidelines

within the Asbru language. This type of structuring is also common in a wide range of other

guideline representations, e.g. [6,11,23,31,32]. Therefore, our approach may also be

applicable to numerous guideline models, other than the Asbru language.

The properties examined by our veri®cation method are of static nature, which means

that we will not have to execute any Asbru guideline in order to verify them.

Fig. 1. Model of plan states Ð states and transition criteria during plan-selection (left) and plan-execution

phases (right).

28 G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41

4.1.1. Algorithm

The three levels are veri®ed in a bottom-up fashion: ®rst, level 1 is examined, which

means that every single component of a plan is checked for anomalies within its own scope.

The goal of checking level 2 is to detect anomalies, which result from dependencies

between two or more components of a single plan. In level 3, the whole plan hierarchy is

®nally checked for anomalies that may originate from dependencies between two or more

plans of the hierarchy. As guideline adaptations, in response to organizational or contextual

issues, will primarily involve the exchange of whole plans, veri®cation level 3 will be of

particular importance in these cases. Fig. 2 shows an exemplary implementation of our

method that is initiated by sending the message verifyHierarchy () to all root-plans of the

library.

We have shown in [4] that, whereas the complexity of checking levels 1 and 2 grows

linearly with the number of plans, it is exponential for checking level 3 in the general case.

Table 1

Three different levels of plan-veri®cation: detect anomalies within single components (level 1), single plans

(level 2) and whole plan hierarchies (level 3)

Decomposition Detect anomalies within three levels

Level 1 Level 2 Level 3

Plan A

H

Subplan Aa

H
Component A1 H
. . . H
Component Am H

. . .

Subplan Ax

H
Component X1 H
. . . H

Component Xn H

Fig. 2. Two classes with methods, relevant for three levels veri®cation.

G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41 29

We have demonstrated, however, that level 3 can be veri®ed with polynomial effort under

the assumption that the size of examined component sets is limited by a suitable constant.

4.2. Veri®cation of plan conditions

Any kind of guideline or plan, regardless of how it is modeled, needs a mechanism to

control the sequence of its proposed actions. This mechanism is usually implemented

through conditions. In the following, we will practically apply our veri®cation method to

illustrate the examination of Asbru conditions. Our considerations will be based on the

existence of the following three features, incorporated in the Asbru language:

� conditions to control state transitions;

� a generic Model of Plan States;

� a hierarchical organization of plans.

4.2.1. Mapping plans to rule bases

Preece et al. gave a detailed summary of anomalies, that can occur in rule bases [21]. In

the following we will show, how Asbru's Model of Plan States and every single plan can be

transformed to a RB. We can then refer to [21] in formulating the speci®cations for plan

conditions. Some of the anomalies we address, especially those which are more general in

nature, are directly derived from [21]. These existing anomalies have been complemented

with additional ones, which result from speci®cs of the Asbru language and do not have an

equivalent [21].

After some de®nitions, we will ®rst describe the complete and generic RB MPS for the

Asbru's Model of Plan States (see Fig. 1). Its rules specify in which sequence the conditions

of a plan are considered. The RB MPS is preset by the Asbru language, assumed to be

initially veri®ed and cannot be changed by the user. Therefore, it does not have to be

veri®ed further.

The second RB we present is called PC, and contains the plan conditions of all Asbru

plans. It can be divided into rule bases PCi for each plan, thus PC � PC1 [� � � [PCn. All

rules in PC have in common that they may only contain consequences, which are elements

of ConditionSet (see below). As the rule bases PCi are to be implemented by the user, they

will be the target of our veri®cation method.

4.2.1.1. De®nitions. Assume pl and pa are parameters for entities `̀ plan'' and `̀ patient''.

PlanSet � set of all plans in the Asbru library.

PatientSet � set of all patients, to whom a plan may be applied.

ConditionSet � ffilter(pl, pa), setup(pl, pa), activate(pl, pa), suspend(pl, pa), reactiva-

te(pl, pa), abort(pl, pa), complete(pl, pa)} /� correlates with arrows in Fig. 1 �/.
FinalStateSet � frejected(pl, pa), aborted(pl, pa), completed(pl, pa)}.

Rule R � L1 ^ � � � ^ Ln! M; antec1�R� � fL1; . . . ; Lng; conseq2�R� � M.

SSi � set of all subplans of plan i.

1 Abbreviation for antecedent.
2 Abbreviation for consequent.

30 G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41

CSi � continuation set of plan i. This is a subset of SSi, containing all subplans,

relevant for the completion of plan i: if a plan has subplans, some of them may need to

complete as a prerequisite for the completion of plan i itself. The set of relevant

subplans is defined in the parent plan.

A hypotheses H can be inferred from a RB for some environment E, if H is a logical

consequence of supplying E as input to RB, formally: infer (H, RB, E) iff (RB [E) `
H;E 2 PatientSet.

A hypotheses H is inferable from a RB if there is some environment E such that H can

be inferred from RB for E, formally: inferable(H, RB) iff (9 E) infer (H, RB, E),

E 2 PatientSet.

A rule R 2 RB ®res for some environment E, if the antecedent of R is a logical

consequence of supplying E as input to RB, formally: ®re(R, RB, E) iff (9 s) (RB [E)

` antec(R)s, E 2 PatientSet.

A rule R 2 RB is ®reable if there is some environment E such that R ®res for E, formally:

®reable(R, RB) iff (9 E) ®re(R, RB, E), E 2 PatientSet.

4.2.1.2. Rule bases MPS and PC. Table 2 shows the RB MPS. The order of the rules is

important to determine which and when rules will be fired. The choice of rule ordering is

oriented towards the state-transition criteria (compare Fig. 1).

Table 3 gives an example for a simpli®ed version of a certain PCk, a RB for all conditions

of the plan GDM-TYPE II to treat noninsulin-dependent gestational diabetes mellitus in

patients with normal blood-glucose levels.

In order to get a complete model for the execution control of a certain plan i, we have to

unify its conditions base PCi with the generic RB for Asbru's Models of Plan States,

formally MPS [PCi.

To handle the anomalies, which may occur within a RB MPS [PCi, it is ®rst necessary

to outline the speci®c properties of this RB.

� We mentioned that we are going to map all conditions of Asbru plans to rules of the form

L1 ^ � � � ^ Ln! M. As these rules may only contain conjunctive literals, we will have

Table 2

RB MPS representing the generic model of plan states

R1 Considered(pl, pa) /� starting state for each plan �/
R2 Considered(pl, pa) ^ filter(pl, pa) ! possible(pl, pa)

R3 Considered(pl, pa) ^ : filter(pl, pa) ! rejected(pl, pa)

R4 Possible(pl, pa) ^ setup(pl, pa) ! ready(pl, pa)

R5 Possible(pl, pa) ^ : filter(pl, pa) ! rejected(pl, pa)

R6 Ready(pl, pa) ^ : filter(pl, pa) ! rejected(pl, pa)

R7 Ready(pl, pa) ^ : setup(pl, pa) ! possible(pl, pa)

R8 Ready(pl, pa) ^ activate(pl, pa) ! activated(pl, pa)

R9 Activated(pl, pa) ^ abort(pl, pa) ! aborted(pl, pa)

R10 Activated(pl, pa) ^ complete(pl, pa) ! completed(pl, pa)

R11 Activated(pl, pa) ^ suspend(pl, pa) ! suspended(pl, pa)

R12 Suspended(pl, pa) ^ reactivate(pl, pa) ! activated(pl, pa)

R13 Suspended(pl, pa) ^ abort(pl, pa) ! aborted(pl, pa)

G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41 31

to find correct substitutions for the disjunctions, allowed within Asbru conditions. This

will be done by splitting a rule at each disjunction, thereby creating a new rule with

identical consequent for each disjunction. As an example, rule �L1 ^ L2� _
�L3 ^ L4� ! M will be split into two rules L1 ^ L2! M and L3 ^ L4! M.

� The set of possible consequences of rules we have to consider is small: as we mentioned

before, only the rule bases PC is modifiable by the user and only the conditions

C 2 ConditionSet should be addressed by rules within it. This means that PC should

only contain rules R with conseq�R� � C. As Asbru's Model of Plan States defines

seven different conditions, each PCi will usually contain around seven rules with

different consequences, even though the actual number of rules may be slightly lower or

higher: it may be lower, as the conditions are optional plan elements. It may be slightly

higher, as a condition may include disjunctions and would then be split into several

rules. Evidently, it will be easy to guarantee that PC only contains rules referring to valid

Asbru conditions: one might provide some sort of input support to the user or even apply

manual verification due to the small number of rules.

� The amount of rules we have to consider when checking anomalies within one plan is

limited to the scope of the plan's hierarchy: plans of different hierarchies are inde-

pendent, no anomalies can result from relationships between their rules.

� The possible sequences (rule ordering), in which the rules of any PCi are considered, is

preset by the rule bases MPS. In contrary to `̀ general'' RB, we can, therefore include

the order of inference into our considerations. This allows us to include some dynamic

aspects of Asbru plans into our static verification process: although, we will not actually

execute a plan to verify it, RB MPS gives us the opportunity to take the control flow of a

plan during execution into account.

4.2.2. Anomalies

In the following, we will list all anomalies concerning Asbru conditions and the

corresponding speci®cations they violate. The anomalies are organized according to

the levels in which they may occur (compare Table 1). The underlying speci®cations

may be seen as an extension of existing veri®cation work, achieved through the integration

of Asbru speci®c language features such as its Model of Plan States (see Fig. 1).

Apart from their potential occurrence in original, generic guidelines, anomalies may be

caused by inadequate specialization of guidelines: anomalies may be introduced by

adaptation of guidelines to the speci®c characteristics of a receiving patient, e.g. when

tuning certain thresholds of single conditions for a particularly sensitive patient (level 1).

Table 3

RB PCk representing the conditions of plan GDM-TYPE II

Female(pa) ^ Pregnant(pa) ! filter(GDM-TYPE II, pa)

Test_available(glucose-tolerance-test, pa) ! setup(GDM-TYPE II, pa)

Activate(GDM-TYPE II, pa) /� automatic activation �/
Delivered(pa) ! complete(GDM-TYPE II, pa)

State(blood-glucose, high, pa) ! suspend(GDM-TYPE II, pa)

State(blood-glucose, normal, pa) ! reactivate(GDM-TYPE II, pa)

Insulin-indicator(pa) ! abort(GDM-TYPE II, pa)

32 G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41

This may also damage the correct interaction with other conditions within the same plan

(level 2). Level 3 anomalies may be caused by guideline modi®cations due to organiza-

tional limitations: here a typical strategy will be to exchange whole, unsuitable plans with

others that pursue compatible goals. Such replacements may interfere with the correct

interaction with other plans of the same hierarchy.

4.2.2.1. Level 1: unsatis®able conditions. Any single condition being part of a plan must

have a chance to be satisfied during execution of the plan in order to have an influence on

the plan's behavior. Referring to the above rule bases, we equivalently specify that each

rule of PC must be fireable.

Formally: ®reable(R, PC�8R 2 PC.

The violation of this speci®cation is a special case of Preece and co-workers redundant

rule [21]. It may for example originate from medically implausible conditions (e.g. domain

or type violations), corresponding to the illegal attribute values anomaly described in [19].

Another possibility would be a condition that contains a conjunction of incompatible

parameter values.

Example: male�pa� ^ pregnant�pa� ! filter(PlanX, pa).

4.2.2.2. Level 1: redundant parameter-value pairs within conditions. Asbru conditions

may contain conjunctions and disjunctions of parameter-value pairs. Each of them should

check for some additional data, redundant tests would not make sense. This means we

should avoid conditions containing several identical or entailing parameter-value pairs.

A conjunction of entailing parameter-value pairs within a condition is equivalent to the

redundant literal anomaly de®ned in [21]. We stated that each rule is of the form

R � L1 ^ � � � ^ Ln! M.

Then we request formally: : ((Li! Lj� ^ �i 6� j�8�R 2 PC; 1 � i; j � n)).

We mentioned before that a condition consisting of disjunctive parameter-value pairs

would be split into several rules in RB PC, one split for each disjunction. We will, therefore

have to check within each PCi that there is no pair of rules subsuming each other,

corresponding to the subsumed rule anomaly de®ned within [22].

Formally: : ((9 s) (R! R0s�8�R, R0 2 PCi; 1 � i � n)).

Below, a possible representative of this anomaly is shown.

Example: higher(cholesterol, 200, pa�^higher�cholesterol, 220, pa�! filter�PlanX, pa).

4.2.2.3. Level 2: unreachable, valid sequence of plan states. Any sequence of plan states,

which defines a valid path according to Asbru's Model of Plan States, must also statically

be possible within a single plan. Consequently, all conditions belonging to a valid path of

plan states must be satisfiable. Otherwise, one or more states of the plan would not be

reachable.

For every rule contained in every PCi, we demand that there must exist a patient for

whom the rule is ®reable, considering all rules in PCi, which have ®red before for the same

patient. For each rule R in PCi, the set of rules, which must ®re before considering R is

de®ned through MPS. We can, therefore specify that for each plan i there must exist an

environment E, such that each consequence in MPS can be inferred by supplying E as input

to MPS [PCi.

G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41 33

Formally: ((9 s) inferable(conseq(R)s, MPS [PCi�8�R 2 MPS; 1 � i � n)).

If any two conditions of a valid state path happen to be incompatible, the plan state of the

later checked condition cannot be reached, and the plan contains an anomaly.

Example: plan state ready is not inferable for PlanX below.

Rx: male�pa� ! filter�PlanX, pa);

Ry:pregnant�pa� ! setup�PlanX, pa).

4.2.2.4. Level 2: ambiguous state transition. Each time a state transition takes place

during the execution of a plan, it must be clear which will be the target state of the

transition, as a plan may only have one active state at a time. Conditions, that fork the state

path within the Model of Plan States (e.g. the completeÿ, suspendÿ and abortÿ
condition in Fig. 1) are the source of potential problems: if more than one of these

conditions becomes true at the same time, the successor plan state will be ambiguous.

An intuitive solution would be to request mutual exclusion from forking-conditions.

However, this strategy is probably unrealistic: we would impose a too harsh restriction on a

plan designer by demanding that each set of forking-conditions had to be mutually

exclusive. Especially, if the conditions are complex, it will be annoying for the designer

to be forced to design the conditions in a way that they exclude each other. A more relaxed

strategy would be to demand that forking-conditions should be independent in a way that

their concurrent satisfaction is at least not statically foreseeable. In other words we could

specify that the antecedents of forking-conditions must not entail each other. As this

demand does not rule out a concurrent satisfaction of two forking-conditions, we must

provide a heuristic to determine the proper target-state in a con¯ict situation of this kind.

For the purpose of the de®nition of the following anomaly, we will interpret all successor

states of a state path fork as semantic constraint expressions, meaning that their concurrent

occurrence does not make semantic sense (see Section 4.2.3).

ConstraintsSet � f�possible�pl, pa), rejected(pl, pa)), (ready(pl, pa), rejected(pl, pa)),

(suspended(pl, pa), aborted(pl, pa)), (suspended(pl, pa), completed(pl, pa)), (comple-

ted(pl, pa), aborted(pl, pa)), (activated(pl, pa), aborted(pl, pa))}.

In order to avoid statically predictable, ambiguous state transitions, we can request that

there must not be any pair of rules R and R0 in MPS [PCi, such that the antecedent of R

entails the antecedent of R0, and their consequents infer a semantic constraint expression

from ConstraintsSet.

Formally: : ((9 s) (antec(R)s! antec�R0�s� ^ �fconseq�R�s, conseq(R0)sg 2 Con-

straintsSet�8�R, R0 2 MPS [PCi; 1 � i � n)).

This corresponds to the ambivalent rule pair anomaly in [22]. Below, a possible

representative of this anomaly is shown, where it is not clear whether PlanX should be

suspended or aborted if the patient's bilirubin level is greater or equal 15.

Example: Rx: higher(bilirubin, 5, pa� ! suspend�PlanX, pa);

Ry: higher_equal(bilirubin, 15, pa� ! abort�PlanX, pa);

Rz: lower_equal(bilirubin, 1, pa� ! complete�PlanX, pa).

4.2.2.5. Level 3: inability to complete. For the determination of a plan's ability to com-

plete, it is necessary to check whether the complete- condition and all predecessor

conditions can be satisfied for all plans, belonging to the plan's continuation set.

34 G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41

Using the abbreviation CSi for the continuation set of plan i, we specify: for each plan i

there must exist an environment E such that the consequence of rule R10 2 MPS can be

inferred by supplying the same E as input to MPS [PCk for all k 2 CSi.

Formally: ((9 E 2 PatientSet, s) (infer(conseq(R10)s, MPS [PCk, E��8�1 � i � n;

k 2 CSi; R10 2 MPS)).

We distinguish two scenarios that prevent a plan's completion:

� Incompatible conditions within the plan itself: this kind of anomaly has to be checked

for in level 2 and is already covered by the unreachable, valid sequence of plan states

anomaly.

� Incompatible conditions within two or more plans that belong to the continuation set of

thesameplan: all plans, belonging to the continuation set of a certain PlanX, have to com-

plete as a prerequisite for the completion of PlanX. Therefore, no incompatibility must

occur in a set of conditions, required to reach the complete state for all of these plans.

Example: CSPlanA � fPlanAa, PlanAb} /� continuation set of PlanA �/.
Rx: blood-group�pa, A� ! filter�PlanAa, pa);

Ry: blood-group�pa, B� ! filter�PlanAb, pa).

The filter ÿ preconditions of plans PlanAa and PlanAb, corresponding to rules

Rx and Ry, are incompatible and both plans belong to the continuation set of their parent

PlanA. Therefore, PlanA will not be able to complete.

4.2.2.6. Level 3: termination enforced by parent. As explained in Section 3.2, the plan

states rejected, aborted, suspended and completed may be propagated from a plan to

its subplans, thereby stopping the latter. This kind of overruling a plan's actual state should

not be the ordinary case, and it should, therefore be assured, that the relevant conditions

avoid such a situation. As state propagation might be deliberately applied in some cases,

the violation of this specification is not considered an error, but a warning. In terms of our

KB we specify:

SSi � set of all subplans of plan i;

RS � fR3, R5, R6, R9, R10, R13g � MPS: rules with a consequent 2 FinalStateSet;

R11 2 MPS: rule with consequent suspended(pl, pa).

Then we demand for each plan i: whenever the consequent of a rule R from FSR can be

inferred for a certain environment E, then it must also be possible to infer the consequent of

a rule R0 from FSR for each of plan i's subplans for the same environment E. The same

holds for rule R11 from MPS.

Formally: infer(conseq(R)s, MPS [PCi, E� ! infer�conseq�R0�s, MPS [PCk, E�8
�1 � i � n; R, R0 2 FSR; k 2 SSi; E, s).

infer(conseq(R11)s, MPS [PCi, E�! infer�conseq�R11�s, MPS [PCk, E�8�1 � i � n;

E�8�1 � i � n; R11 2 FSR; k 2 SSi; E, s).

In the anomaly below, the abort ÿ conditions of parent PlanA (rule Rx) does not

entail the abortÿ conditions of child PlanAa (rule Ry). Consequently, there is a chance

that the parent will override its child's true state with the state aborted.

Example: Rx: higher(bilirubin, 5, pa� ! abort(PlanA, pa);

Ry: higher(GOT, 22, pa� ! abort�PlanAa, pa).

G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41 35

4.2.3. Functionality of the veri®cation knowledge base

We assume that our veri®cation method has access to a domain-speci®c KB, which can

be queried for the following information:

� Incompatibilityof conditions. TheKBdefineswhich findingscannot occur simultaneously

for the samepatient. Theconceptof incompatibility isequivalent to thesemanticconstraint

expression used in [21]: a semantic constraint expression is an expression fL1; . . . ; Lng,
which is interpreted as meaning that the simultaneous truth of L1 ^ � � � ^ Ln would not

make semantic sense. For example, the set {blood-group-A(x), blood-group-B(x)} says

that, for all x, x cannot have blood-groups A and B at the same time.

� Entailment of conditions. Entailment is not only restricted to conditions concerning the

same parameters. In the medical domain there is a high number of dependencies

between different parameters, that may be the source of non-trivial entailment (e.g.

parameter gender and pregnancy-related parameters).

� Attributes of medical parameters. For each medical parameter that might be used in an

Asbru plan, the KB contains information about its value domain and its type.

5. Scenario-based evaluation

After the theoretical foundation of our veri®cation method has been illustrated, we will

in the following describe a scenario of its application. Object of the analysis will be an

exemplary guideline for the arti®cial ventilation of newborn infants, shown in Fig. 3.

The top-level plan is called infants respiratory distress syndrome therapy

(I-RDS-therapy). It consists of four subplans that are decomposed into further subplans.

Fig. 4 shows an excerpt of these plans, coded in Asbru and including different anomalies.

Fig. 3. Plan hierarchy of guideline for arti®cial ventilation of newborn infants, suffering from infant respiratory

distress syndrome (I-RDS).

36 G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41

Fig. 4. Fragment of I-RDS plans.

G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41 37

Fig. 5 shows an exemplary output for the analysis of the above plan-hierarchy that may

be generated by the veri®er.

6. Conclusion

Within this paper a method has been presented, which allows for the veri®cation of

clinical guidelines represented in a computer-readable format, in a three levels process.

The ability of automated veri®cation strongly supports the adaptation of generic guidelines

to organization- or patient-speci®c characteristics, as the latter process is susceptible to the

Fig. 5. Exemplary output of verifying plan-hierarchy I-RDS-therapy.

38 G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41

introduction of ¯aws in the original guideline's logic. The veri®cation of a clinical

guideline is done by checking it for the occurrence of a certain set of prede®ned anomalies.

In the identi®cation process of these anomalies we oriented on one particular language for

the representation of clinical guidelines, called Asbru. In this work we have focused on

anomalies concerning the Asbru language element condition.

Our approach is reusable in two ways: ®rst, it is applicable for the veri®cation of

numerous guideline-representation formats, other than Asbru. This is due to the fact that

our method is based on a hierarchical organization of guidelines and the usage of

conditions to control the guideline's execution ¯ow. Both concepts are common in most

current approaches. Second, our approach can be ported to other domains than guideline-

based care, as the Asbru language is suitable for several areas of planning [16]. For the

reuse of our veri®cation approach in those other areas, it would only be necessary to

provide the corresponding, domain-speci®c knowledge to adapt our KB component.

Another advantage of our method is given by the fact that it allows a signi®cant

limitation of the computational effort required. Instead of examining the whole guideline

library for the detection of an anomaly, the search can be limited to a single guideline

hierarchy. Besides the computational effort also the veri®cation's complexity is reduced.

This is reached by means of the information hiding process of decomposing a guideline

into its components and performing stepwise, local veri®cation. A ®nal bene®t of our

organization of the veri®cation process into three separate levels is revealed by the fact that

it prepares us for an incremental veri®cation process: adding a new, locally veri®ed plan

(levels 1 and 2) to an already veri®ed plan hierarchy for example only requires the

repetition of level 3 checks within the extended hierarchy.

After outlining the advantages of our approach we will also comment on its weaknesses:

our veri®cation method is designed for the detection of static anomalies within the

guideline code. Although, we include dynamic aspects of Asbru plans into the veri®cation

process by considering the Asbru MPS, our method does not support the analysis of

executing guidelines. A second limitation of our method, which is, however typical for all

veri®cation approaches that rely on anomaly detection, lies in its inability to guarantee a

totally correct guideline. This shortage originates from the fact that the set of anomalies to

be considered are identi®ed in a heuristical process. Therefore, one can never be sure that

really all anomalies that may possibly occur within a guideline have actually been handled.

However, even though we cannot provide a complete list of all different anomalies, it is

undoubtedly useful to know that a certain range of anomalies will be uncovered by the

described veri®cation approach. By applying this strategy, we ®nd ourselves in conformity

with the domain of error-based testing, where the goal of running tests is not to show

that the program is free from all errors but rather that the program is free from certain

well-de®ned types of errors [10].

Acknowledgements

The authors thank Klaus HammermuÈller, Robert Kosara, Andreas Seyfang and

Yuval Shahar, who contribute to the development of the project. We are also grateful

to Michael Balser, Wolfgang Reif, Annette ten Teije and Frank van Harmelen for

G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41 39

their valuable suggestions. The Asgaard project is supported by `̀ Fonds zur FoÈrderung der

wissenschaftlichen Forschung'' (Austrian Science Fund), P12797-INF.

References

[1] Adrion W, Branstad M, Cherniavsky J. Validation, veri®cation and testing of computer software. Comput

Rev 1982;14(2):159±92.

[2] Advani A, Lo K, Sahar Y. Intention-based critiquing of guideline-oriented medical care. In: Proceedings of

the AMIA Annual Symposium 98 Orlando, FL, 1998, p. 483±7.

[3] Barnes M, Barnett G. An architecture for a distributed guideline server. In: Proceedings of the 19th Annual

Symposium on Computer Applications in Medical Care. Philadelphia: Hanley and Belfus, 1995. p. 233±7.

[4] Duftschmid G. Knowledge-Based Veri®cation of Clinical Guidelines by Detection of Anomalies, PhD

Thesis. Vienna University of Technology, Vienna, 1999.

[5] Field M, Lohr K. Clinical Practice Guidelines: Directions for a New Program. Institute of Medicine,

Washington (DC): National Academy Press, 1990.

[6] Fox J, Johns N, Rahmanzadeh A. Protocols for medical procedures and therapies: a provisional description

of the PROForma language and tools. In: Proceedings of the Sixth Conference on Arti®cial Intelligence in

Medicine Europe (AIME), Grenoble, France, 1997, p. 21±38.

[7] Fridsma D. Representing the work of medical protocols for organizational simulation. In: Proceedings of

the AMIA Annual Symposium. Orlando, 1998. p. 305±8.

[8] Fridsma D, Gennari J, Musen M. Making generic guidelines site-speci®c. In: Proceedings of the 20th

Annual Symposium on Computer Applications in Medical Care. Philadelphia: Hanley and Belfus, 1996.

p. 597±601.

[9] Fridsma D, Thomsen J. Representing medical protocols for organizational simulation: an information

processing approach. Comput Math Org Theory 1998;4(1):71±95.

[10] Hamlet R. Special section on software testing. Commun ACM 1988;31:662±7.

[11] Herbert S, Gordon C, Jackson-Smale A, Renaud S. Protocols for clinical care. Comput Methods Progr

Biomed 1995;48:21±6.

[12] Laurent JP. Proposals for a valid terminology in KBS validation. In: Proceedings of the 10th European

Conference on Arti®cial Intelligence (ECAI-92), Vienna, Austria, 1992, p. 829±34.

[13] Liem E, Obeid J, Shareck P, Sato L, Greenes R. Representation of clinical practice guidelines through an

interactive world-wide-web interface. In: Proceedings of the Annual Symposium on Computer

Applications in Medical Care (SCAMC-95). New Orleans (LA), 1995.

[14] McCormick K, Moore S, Siegel R. Clinical practice guideline development: methodology perspectives.

Rockville (MD): AHCPR Publication No. 95-0009, Agency for Health Care Policy and Research, 1994.

[15] McDonald C, Overhage J. Guidelines you can follow and trust: an ideal and an example. J Am Med Assoc

1994;271(11):872±3.

[16] Miksch S, Shahar Y, Johnson P. Asbru: A task-speci®c, intention-based and time-oriented language for

representing skeletal plans. In: Proceedings of the Seventh Workshop on Knowledge Engineering: Methods

and Languages (KEML-97). UK: Milton Keynes, 1997.

[17] Miller DWJ, Frawley SJ, Miller PL. Using semantic constraints to help verify the completeness of a

computer-based clinical guideline for childhood immunization. Comput Methods Progr Biomed

1999;58(3):267±80.

[18] Musen M, Rohn J, Fagan L, Shortliffe E. Knowledge engineering for a clinical trial advice system:

uncovering errors in protocol speci®cation. Bull du Cancer 1987;74(291):296.

[19] Nguyen T, Perkins W, Laffey T, Pecora D. Knowledge base veri®cation. Artif Intell Mag 1987;2(2):69±75.

[20] Ohno-Machado L, Gennari J, Murphy S, Jain N, Tu S, Oliver D, Pattison-Gordon E, Greenes R, Shortliffe

E, Barnett G. The guideline interchange format: a model for representing guidlines. J Am Med Assoc

1998;5(4):357±72.

[21] Preece A, Batarekh A, Shinghal R. Verifying rule-based systems. Knowledge Eng Rev 1992;7(2):115±41.

[22] Preece A, Shinghal R. Foundation and application of knowledge base veri®cation. Int J Intell Syst

1994;9(8):683±702.

40 G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41

[23] Quaglini S, Saracco R, Stefanelli M, Fassino C. Supporting tools for guideline development and

dissemination. In: Proceedings of the Sixth Conference on Arti®cial Intelligence in Medicine Europe

(AIME), Grenoble, France, 1997, p. 39±50.

[24] Shahar Y, Miksch S, Johnson P. The Asgaard project: a task-speci®c framework for the application and

critiquing of time-oriented clinical guidelines. Artif Intell Med 1998;14:29±51.

[25] Sherman E, Hripcsak G, Starren J, Jender R, Clayton P. Using intermediate states to improve the ability of

the Arden syntax to implement care plans and reuse knowledge. In: Proceedings of the Annual Symposium

on Computer Applications in Medical Care (SCAMC-95), New Orleans, LA, 1995, p. 238±42.

[26] Shiffman R. Representation of clinical practice guidelines in conventional and augmented decision tables. J

Am Med Inform Assoc (JAMIA) 1997;4:382±93.

[27] Shiffman R, Greenes R. Improving clinical guidelines with logic and decision-table techniques. Med

Decision Making 1994;14:245±54.

[28] Shwe M, Tu S, Fagan L. Validating the knowledge base of a therapy planing system. Methods Inform Med

1989;28:36±50.

[29] Tierney W, Overhage J, Takesue B, Harris L, Murray M, Vargo D, McDonald C. Computerizing guidelines

to improve care and patient outcomes: the example of heart failure. J Am Med Inform Assoc (JAMIA)

1995;2:316±22.

[30] Tu S, Kemper C, Lane N, Carlson R, Musen M. A methodology for determining patients' eligibility for

clinical trials. Methods Inform Med 1993;32:317±25.

[31] Tu S, Musen M. The EON model of intervention protocols and guidelines. In: Proceedings of the AMIA

Annual Fall Symposium (Formerly SCAMC). Washington (DC), 1996. p. 587±91.

[32] Uckun S. Instantiating and monitoring skeletal treatment plans. Methods Inform Med 1996;35:324±33.

[33] Van der Lei J, Musen M. A model for critiquing based on automated medical records. Comput Biomed Res

1994;24(2):344±78.

[34] van Harmelen F. Applying rule-base anomalies to KADS inference structures. Decision Support Syst

1998;21(4):271±80.

G. Duftschmid, S. Miksch / Artificial Intelligence in Medicine 22 (2001) 23±41 41

