Clubmixer: A Presentation Platform for MIR
Projects

Alexander Schindler and Andreas Rauber

Department of Software Technology and Interactive Systems
Vienna University of Technology
{schindler,rauber}@ifs.tuwien.ac.at

Abstract. Evaluating solutions to many music IR problems — such as
playlist generation, music similarity — in absence of formal evaluation
measures frequently requires user studies to establish the benefits of one
solution over the other. Building an according application framework to
deploy and test user responses is a cumbersome and complex task. We
present Clubmixer - an advanced client-server based audio system that
could serve MIR researchers as presentation and prototyping platform.
The project aims at providing a software framework that minimizes the
effort of creating MIR based solutions. The open architecture and the use
of open standards provide high flexibility for several MIR related areas
(e.g. content based retrieval, collaborative retrieval, etc.). We describe
the current state of the system and outline the main functionality as
well as the advantages of Clubmixer for MIR research.

Keywords: MIR systems and infrastructure, user interfaces and music
access

1 Introduction

Although the discipline of music information retrieval (MIR) has matured since
the early 1990s, MIR technology is not yet as widely used as research would like
to see it. One part of the challenge may lie in the gap between the availability of
sophisticated algorithms and research results in the prototype stage that promise
superior performance and advanced features, and the evaluation in how far these
promises live up to their expectations and meet user demands. The challenge,
in most cases, lies in the fact that the approaches resulting from sophisticated
research need to be deployed within a real system environment offering a rather
large number of — by now standard — features expected by users in addition
to the functionality offered by the research prototype. Building and deploying
such a complex system constitutes a significant challenge on its own, putting a
significant burden on researchers in music IR.

Examples of publicly available MIR, solutions are still rather limited. Nowa-
days computers already have the appropriate resources to analyze average sized
private music collections with state of the art MIR technologies - Yet there are

2 Alexander Schindler and Andreas Rauber

virtually no software audio players, nor plugins for commonly available soft-
ware implementing MIR technology, despite the existence of a significantly large
number of research prototypes.

To gather broader acceptance and recognition outside the research commu-
nity, new solutions have to be presented and made available in a commonly
acceptable form. Prototypes should provide user interfaces that correspond to
the look and feel of commonly available audio software.

To meet these goals we present Clubmizer, a cross platform client-server
audio jukebox system that can serve as a presentation platform for MIR research
prototypes. It offers a number of features that are expected by users as default
requirements, both on the functional as well as user interface level. Combined
with a flexible architecture, existing MIR solutions can be plugged in, offering
a sophisticated basis for the evaluation and deployment of MIR solutions in a
setting acceptable by consumers.

The remainder of this paper is organized as follows: Section 2 presents related
work on MIR systems, Section 3 describes the Clubmixer system followed by
some example scenarios how to implement MIR solutions in Clubmixer in Section
4. Section 5 presents our conclusions.

2 Related Work

A good summary of music information retrieval systems is presented by Typke et.
al [9]. Several prototyping frameworks have been introduced, like the well known
C++ software framework CLAM [1]. It offers tools and repositories, as well as
visual components, which can be used to rapidly develop research prototypes
in the audio and music domain. The rapid prototyping environment ChucK [2]
is a high-level programming language for music and sound synthesis including
content analyzing and learning frameworks. Jmir [5] is a free and open-source
software suite for automatic music classification, including audio, symbolic and
Web content feature extractors. These projects generally focus on providing al-
gorithmic components, whereas Clubmixer aims at providing a representative
user interface combined with an open framework where further solutions can be
easily integrated. Kurth et. al [3] presented SyncPlayer - a client-server based
framework for multimodal presentation of audio and associated music-related
data, which is conceptually similar to Clubmixer. The multiuser concept, used
by Clubmixer was also introduced by [6] and [8] for collaborative playlist gen-
eration. These projects focus on collaborative balanced playlist generation with
little or no use of content based retrieval techniques.

Songbird! is a cross-platform media player built on the Mozilla application
framework. [4] gives a brief introduction into Songbird and details how to write
add-ons by the example of the automatic playlist generation and music library
visualization add-on Soundbite for Songbird.

! http://www.getsongbird.com/

Clubmixer: A Presentation Platform for MIR Projects 3
3 Clubmixer Framework

The Clubmixer framework is a cross platform audio jukebox system based on a
client-server architecture. The chosen architecture provides the major advantage
that common MIR related tasks such as processing intensive calculations or time
consuming feature extractions, can be executed on a powerful computer while
presentations or evaluations are carried out remotely over the network.

The framework provides also a client user interface that is aligned to the look
and feel of currently available software audio players. This benefits rapid proto-
typing. Clubmixer client and server are both built on the Java Plugin Framework
(JPF) and provide several points, where the software can be extended.

Further the possibility to spawn multiple distributed clients for a single
server instance accounts for research areas related to collaborative information
retrieval. Clubmixer is based on open standard Web technologies and protocols,
which provides a maximum of flexibility for researchers in building or integrating
client solutions on nearly every platform (e.g. on mobile phones, Web pages).

Music Information Retrieval is highly dependent on musical information that
is extracted from multiple sources and stored as metadata. Clubmixer provides
a predefined set of song metadata and uses a solid database system for data
storage. MIR prototypes can access and extend the initial database schema and
attach their extracted metadata directly to the media library. Though there
are several Java implementations of audio content extraction algorithms !!!ZI-
TATE!!!, Clubmixer is not limited to Java based solutions only. Clubmixer pro-
vides a console mode with full database access and a predefined command set.
This set can be extended and provides a convenient way to write small commands
that are sparsely executed and don’t need a full integration into the framework
(e.g. test or data import routines).

3.1 Clubmixer Server

Clubmixer Server is the main component of the framework with an intended
usage as standard software audio player or jukebox system. Played back audio
files (currently only MP3 and WAV audio are fully supported) have to be locally
available on the hosting computer. The files are automatically imported from
user-specified directories and the extracted metadata is stored in the media
library. The standard import routines can be extended to extract any kind of
metadata that is needed for a certain MIR prototype (see Section 3.1).

In accordance with the computational requirements of MIR research proto-
types, the server could be hosted on a high-performce server. The application
hides to the system tray and can even be run in a headless terminal. Only for
launching the configuration window (see Fig. 1) a window manager is needed.

The following sections describe the subcomponents of Clubmixer Server.
Some of these components provide extension points - defined program sections
that can be functionally extended by plugins. Brief descriptions of these points
as well as their benefits for MIR research are given.

4 Alexander Schindler and Andreas Rauber

(it @EE
e [Player [About [Audio Settings | Impart songs| Plugins |

“ | [[Queuecontols pedia players | General]

[| RP-based Queue 0.1.1 Standard Queue

Control panel for Standard-Queuecontrol
[/] Standard Queue 0.1.1

Control panel for Standard-Queuecontrol Version: 0.1.1
Date: 2009-06-07

Author: Alexander Schindler

[usarbased 7.
Cllemocionn Homepage: www.slychief com

A colisborative queue control

Description:

The Standard-Queuccontrol simply plays all songs
contained in the Clubmixer Library without
grouping or sorting.

Properties] [Deinstall]| Activate

Fig. 1. Clubmixer Server Configuration Window

Data Storage. Clubmixer uses a Hibernate? persistence layer with a Hyper-
SQL? (HSQL) database as data storage. This overcomes the commonly reported
performance degradation on comparable audio software with huge song collec-
tions. The intermediate persistence layer additionally provides the advantage
to exchange the underlying database system and to extend the initial database
scheme by plugins. This gives developers the opportunity to store their data
directly in the applications database.

Configuration properties (e.g. database connection settings) are stored sepa-
rately utilizing the Java Preferences API, which stores these properties according
to the underlying operating system (Windows Registry on Windows systems,
config-files on Linux systems).

Communication. Communication is based on standard Web service technol-
ogy. Three communication channels (see Fig. 2) are implemented as SOAP Web
services. The first Web service provides standard audio player functionality (play,
stop, next, add to playlist, etc.). The library service provides an extended search
interface, with filters on multiple song attributes. All inputs are wildcarded to
enable searching for keywords.

— Control - provides standard access controls for audio playback and playlist
handling.

— Library - provides restricted access to the media library.

— Plugin Communication Channel - enables communication for plugins.

2 http://www.hibernate.org
3 http://hsqldb.org

Clubmixer: A Presentation Platform for MIR Projects 5

> Clubmixer Client

c

o

3 ° - c

= € o T

° o o =]

zZ O] o

<

9]

>

1 .)
Player Library Plugin
Queue

Clubmixer Server

Fig. 2. Clubmixer Communication Channels

Special attention has been set on plugins, because they can also be split
into a client and a server part. To enable intra-plugin communication, a custom
Plugin Communication Channel (PCC) - a lightweight distributed middleware
- has been introduced. The standard invocation of remote server-methods re-
quires clients to wrap primitive parameters into sets of key-value pairs (e.g. in
a HashTable). This approach provides best compatibility for non-Java clients.
A special generic invocation technique is accessible if the parameters of the re-
mote methods are JAXB* annotated data objects. Such objects can be directly
marshaled into XML which in addition is passed on to the Web service. Further
protocols (e.g. REST, JSON) are currently not supported, but can easily be
added through plugins.

To propagate state change events (song change, playlist change) Clubmixer
Server uses an Apache ActiveM(Q message queue. Clients can subscribe to this
queue and invoke Web service methods to synchronize their states accordingly.
For example, if the client receives a ’song changed’ event, it calls the Web service
method getCurrentSong() to get the currently playing song.

Queue Control. A queue control is an extended automatic playlist generator.
The general requirement is to provide a constant queue of songs. The standard
queue, which just loads a randomized list of all songs in the library, enqueues
each played song at the end of the playlist. The queue control is a defined
extension point and a perfect starting point for MIR researchers to implement
their solutions.

User Management. Clubmixer is a multiuser system which implements user
management and access controls. Users can be assigned several access rights
(e.g. start/stop the server, skip songs, etc.). This could offer a guest in a bar the
possibility to search and enqueue a certain song but prevent him from stopping

* http://jaxb.dev.java.net/

6 Alexander Schindler and Andreas Rauber

the server. An integrated user management enables plugins to store user prefer-
ences. This can be addressed by MIR topics like playlist generation, collaborative
filtering and relevance feedback.

Extension Points. Extension points are predefined points of the application,
where the main functionality can be extended by plugins. Currently the following
extension points are implemented:

— General - general functionality (e.g. opening sockets, running tasks)

— Importer - if the plugin requires additional data (e.g. audio feature vectors),
a custom importer can be added.

Persistence - extends the standard database schema by simply providing
further JPA® annotated entity classes.

Queue Control - provides a new queue control.

— Console - extends the standard command set of the console mode

A player extension point to exchange the current Java based player with
native audio player implementations is planned. This will provide more flexibility
and will overcome known issues concerning the Java audio libraries (Javalayer®
and Tritonus?).

Annotation based dependency injection is used to provide all necessary func-
tionality within plugins (e.g. database access, player control, etc.). Listing 1.1
gives an example of how to use annotations to get the references to the required
components.

Console Mode. The console mode provides partially access to functions and
services of Clubmxer server without the requirement of a fully running system. It
further implements a set of commands to invoke certain parts of the server (e.g.
loading plugins into the environment, starting the database). This command set
can be easyly expanded - the provided interface invokes the ccommands and
provides the supplied parrameters as string array - this is similar to standard
main-methods of common programming languages.

3.2 Clubmixer Client

A Clubmixer Client acts only as a frontend to the server. It can be used to
control the server and search for songs in the library. The aim is to provide a
user interface that implements the average look and feel of currently available
audio software. The default Clubmixer Client is a Java Swing client (see Fig. 3)
which provides commonly known features of an audio software player. It can be
used to control the playback of recordings, query for songs, manipulate playlists
and display additional information about songs and artists.

® Java Persistence API, http://java.sun.com/javaee/technologies/persistence.jsp
5 http://www.javazoom.net /javalayer /javalayer.html
" http://www.tritonus.org

Clubmixer: A Presentation Platform for MIR Projects 7

1LAIl 03:11

I« H > bl

Fig. 3. Clubmixer Client

To enable fast development of client side plugins and to provide a common
look and feel, several GUI elements are provided in a custom GUI components
library - the Common GUI Elements. It provides among others, components to
display song metadata with an albumart image, popup menus and diverse event
handlers. Clubmixer Client currently provides three extension points, that can
be used by plugins to add components for displaying data or to trigger server
side methods.

Creating a Custom Client. Due to the open standards and libraries (SOAP,
ActiveMQ) clients for Clubmixer Server can be implemented on almost every
platform in almost any programming language. There are already initial imple-
mentation for Windows Mobile and JavaME. Plugin projects that are intended
to provide information to non-Java clients should refrain from using complex
data types as method parameter, due to the constraints described in Section 3.1

3.3 Clubmixer Library Editor

Clubmixer Library Editor (see Fig. 4) is intended to be the central place for
querying and editing every information that is stored in the library. It provides
a file system browser and displays imported metadata for MP3 files.

OO~ Uk W~

8 Alexander Schindler and Andreas Rauber

Fig. 4. Clubmixer Library Editor

4 Creating a new MIR based Clubmixer Plugin by
Example

This section gives a brief overview of how to implement MIR projects as Club-
mixer plugins. The exemplified scenario describes the common task of calculat-
ing song similarities. A content based solution has been applied which requires
a plugin that takes advantage of several extension points.

The main component of a Clubmixer plugin is represented by a class that
directly extends from the JPF-class Plugin. Listing 1.1 shows an example imple-
mentation of the fully operational plugin. It provides database access as well as
a storage container for configuration properties.

(M

public class MirPlugin extends Plugin {

@CommunicationChannel (pluginname = "MirPlugin")
private ICommunicationChannel com;

@ServerLibrary
private ClubmixerServerLibrary 1lib;

@Preferences
private ClubmixerPreferences prefs;

public MirPlugin() {
}
public List<Song> findSimilar (Song s) {

// MIR based algorithms

Listing 1.1. Example Plugin Implementation

O~ Uk WN -

Clubmixer: A Presentation Platform for MIR Projects 9

To provide content based similarity calculations, further information has to
be extracted from the audio files. Thus, the plugin has to provide a custom
importer that extracts feature vectors and calculates the similarity matrices. To
store this data efficiently, the the preexisting database schema has to be extended
by a set of new entity classes.

The previous two paragraphs outlined all relevant code that has to be imple-
mented at the server side. In order to display the extracted results, client side
extension points have to be addressed. Fig. 5 a) shows a standard popup menu
that is provided by the Common GUI Elements library. This popup menu can
be linked to several song-related components and offers standard actions for the
related song. It can be easily extended by adding further menu items. Fig. 5 b)
shows the menu extended by the entry ’find similar’ which offers to search for
songs similar to the selected one. Listing 1.2 depicts the entire source code for
this extension. The custom menu uses the Plugin Communication Channel to
invoke the server side method ’findSimilar’ from Listing 1.1, which processes the
request and returns a list of similar songs. The retrieved result is passed on to
a client component which is responsible for updating and displaying the search
result table.

a) b)

Fig. 5. Image a) shows the standard popup menu that is provided by the Commons
GUI Elements library. Image b) shows the menu with an additional item that has been
added by a plugin.

Figure 6 depicts the architecture of the plugin, which consists of the previ-
ously described components, required external libraries and the plugin descrip-
tion file. The latter advices the plugin framework, which libraries to load and
which components correspond to which extension points.

public class Menultem extends JMenultem implements IMenuSong {

@CommunicationChannel (pluginname = "MirPlugin")
private ICommunicationChannel com;

@SearchresultHandler
private SearchResultHandler srh;

private Song currentSong;

10 Alexander Schindler and Andreas Rauber

Plugin
Main
Class Importer
Entity l’\I/:znmu
Classes

‘ Required Libraries ‘

‘ Plugin Descriptor File ‘

Fig. 6. Architecture of the Example Plugin.

public MenulItem() {

ActionMap map = ApplicationContext.getActionMap ();
this.setAction(map.get("getSimilarSongs"));
this.setText ("Find Similar");

}

@0verride // from interface IMenuSong
public void setSong(Song song) {
this.currentSong = song;

}

@Action
public Task getSimilarSongs() {

// get reference to server method
GenericRemoteMethod<List<Song>, Song> findSimilar =
com.getGenericRemoteMethod ("findSimilar");

// invoke remote method
List<Song> similarSongs = findSimilar.invoke (currentSong);

// output result list
srh.fireSearchResultChanged (similarSongs);

Listing 1.2. Extending the Standard Popup Menu

5 Conclusion and Future Work

The proposed Clubmixer framework is a solid and easy to extend audio player
software, that has been developed in consideration of being used for music in-
formation retrieval research. It combines a good architecture with an appealing
graphical user interface.

Clubmixer: A Presentation Platform for MIR Projects 11

We have demonstrated how a MIR project can be turned into a Clubmixer
plugin by only a few steps. Thus, new algorithms can be presented in an audio
framework that incorporates the standard look and feel of currently available
audio software.

There are various areas of application that are currently being investigated
and evaluated:

— Combining the SOMejB Music Digital Library Project [7] and Clubmixer by
integrating SOMejB as a customized plugin.

— Extending the Library Editor with analytical functions to statistically ana-
lyze extracted audio features.

6 Software and Source Code

Clubmixer is hosted as SourceForge project. Software installer packages and
project source code can be found at http://sourceforge.net/projects/clubmixer/.

References

1. Xavier Amatriain, Pau Arumi, and David Garcia. A framework for efficient
and rapid development of cross-platform audio applications. Multimedia Systems,
14(1):15-32, jun 2008.

2. Rebecca Fiebrink, Ge Wang, and Perry Cook. Support for mir prototyping and
real-time applications in the chuck programming language. In 9th International
Conference on Music Information Retrieval, 2008.

3. Frank Kurth, Meinard Miiller, David Damm, Christian Fremerey, Andreas Rib-
brock, and Michael Clausen. Syncplayer - an advanced system for multimodal music
access. In ISMIR, pages 381-388, 2005.

4. Steven Lloyd. Automatic playlist generation and music library visualisation with
timbral similarity measures. Master’s thesis, Queen Mary University of London,
August 2009.

5. Cory McKay and Ichiro Fujinaga. jmir: Tools for automatic music classification. In
Proceedings of the International Computer Music Conference, 2009.

6. Kenton O’Hara, Matthew Lipson, Marcel Jansen, Axel Unger, Huw Jeffries, and
Peter Macer. Jukola: democratic music choice in a public space. In DIS ’04: Pro-
ceedings of the 5th conference on Designing interactive systems, pages 145154, New
York, NY, USA, 2004. ACM.

7. Andreas Rauber, Elias Pampalk and Wolfdieter Merkl. The SOM-enhanced Juke-
Box: Organization and Visualization of Music Collections based on Perceptual Mod-
els.

8. David Sprague, Fuqu Wu, and Melanie Tory. Music selection using the partyvote
democratic jukebox. In AVI ’08: Proceedings of the working conference on Advanced
visual interfaces, pages 433-436, New York, NY, USA, 2008. ACM.

9. Rainer Typke, Frans Wiering, and Remco C. Veltkamp. A survey of music informa-
tion retrieval systems. In IN ISMIR, pages 153-160, 2005.

