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Zusammenfassung 
Der Global Democracy Award ist eine zum Zeitpunkt des Schreibens dieser 
Diplomarbeit im Entstehen begriffene Auszeichnung. Diese soll jährlich an das 
Land verliehen werden, das die größte Verbesserung seiner Demokratiequalität 
aufzuweisen hat. Die Messung der Demokratiequalität und deren jährliche 
Änderung liegt im Forschungsbereich der Politikwissenschaften und ist nicht 
Thema dieser Arbeit; ausgehend vom "Pilot Ranking", einem ersten Modell zur 
Bewertung von 100 demokratischen Ländern nach allgemein zugänglichen 
Kriterien und Indikatoren, wird mit Hilfe von Kohonen's Self-Organizing Map 
Algorithmus die Struktur dieser Daten untersucht. Dabei geht es vor allem 
darum,ob die Resultate mit den zu erwartenden übereinstimmen. Da die 
erhobenen Daten des Pilot Ranking durchaus verschiedene 
Erwartungshaltungen implizieren, wie beispielsweise "die Demokratiequalität 
von Schweden und Norwegen ist sicherlich höher als die von Liberia", können 
die Ergebnisse der Self-Organizing Map mit diesen Annahmen verglichen 
werden. 
Es liegt ein besonderer Schwerpunkt auf der Darstellung und Präsentation der 
Karte, zu diesem Zweck werden eine Reihe von Visualisierungsmethoden kurz 
vorgestellt und angewandt.  
Weiters wird die Self-Organizing Map mit den ihr ähnlichen Verfahren aus 
angrenzenden Bereichen, wie Vektor-Quantisierung und Vektor-Projektion, 
verglichen. Diese Gegenüberstellung verdeutlicht die Vorzüge und auch die 
Grenzen dieses Algorithmus. Außerdem werden aufbauend auf der trainierten 
Karte gängige Methoden der Clusterana lyse angewandt, wodurch die Karte in 
homogene Bereiche gegliedert wird, was unter anderem durch die Analogie zu 
politischen Ländern zu sehr schönen Ergebnisse führt. Es werden unter 
anderem auch Verfahren besprochen, die die fehlenden Werte der Datentabelle 
behandeln. 
Zuletzt werden die Daten nach bestehenden Gesichtspunkten untersucht, zum 
Beispiel nach der Verteilung der NATO-Länder auf der Karte. Außerdem wird 
ein Maß zur Bewertung der Demokratiequalität auf diese Karte angewandt, das 
auch eine feinere Bewertung nach Gesichtspunkten wie "Qualität des 
Gesundheitssystems" oder "Bildungswesen" zuläßt.  
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Abstract 
The Global Democracy Award, which is developed at the time of this writing, 
is a prize to be awarded annually to the country that achieves the biggest 
improvement of its democratic quality. Measurement of this democratic quality 
and its annual change lies within the research field of political sciences and is 
not within the scope of this work; starting from the "Pilot Ranking", which is a 
first model to evaluate and rate 100 democratic countries by publicly accessible 
indicators and criteria, the structure and internal properties of this data 
manifold is investigated with the aid of Kohonen's Self-Organizing Map 
algorithm. The emphasis lies on novelty detection and comparison of results 
with expectations and bias on the data set. Since the data manifold from the 
Pilot Ranking implies certain anticipations, for example "the democratic 
quality of Sweden and Norway surely is better than Liberia's", it can be 
investigated whether the results from the Self-Organizing Map match these 
expectations. 
The presentation techniques of the findings of the map will be another 
emphasis of this thesis. A range of  visualization methods will be introduced 
and applied to the Democracy map.  
Then, the Self-Organizing Map will be compared with algorithms from related 
fields, like vector quantization and vector projection. This will show the 
advantages as well as the limitations of this method. Also, the already trained 
map will be subjected to well-established clustering methods, so it is 
partitioned in homogenous regions, which leads to very nice results partly due 
to the analogy of the samples being political countries. Also, different methods 
of filling missing data points in the original data table will be discussed. 
At last, the data set will be investigated by means of real-world considerations, 
for example by the distribution of the NATO-countries on the map. Also, a 
measure for democratic quality will be applied to the map. This measure allows 
evaluation at fine levels of detail by measuring criteria like "quality of the 
health care system" or "educational system".  
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1. Introduction 

1.1. Overview 
The initial idea behind this thesis is applying the Self-Organizing Map 
algorithm to a real-world data set. This data set is part of a project that 
measures and directly compares the democratic quality of countries based on a 
number of indicators, the "Pilot Ranking" [Cam02, Cam03] of the Global 

Democracy Award1. While the Democracy Award aims at comparing the 

annual differences between the rankings and determining a winner country that 
has increased its democratic score by the largest amount, this thesis intends to 
examine the data set from a data mining point of view. At the time of the 
writing of this document, the GDA is still under development. The ranking is 
made up of 100 countries that are characterized by 60 indicators organized in 6 
categories (Political System, Health, Environmental Sustainability, Economics, 
Gender Equality, and Knowledge). The selection of these variables has been 
performed by David Campbell and Miklos Sükösd and is still subject to further 
research in the area of political sciences (for a comprehensive list of these 
indicators, see Appendix A). The ranking can be viewed as a 100-by-60 table 
with several missing values, which is the basis for further computation and 
analysis. 
The actual scope of this thesis is to discuss what can be learned from the 
Democracy data set with the help of the Self-Organizing Map. Particularly, 
various post-processing techniques will be discussed, with further emphasis on 
recent developments and extensions to the SOM algorithm. "Post-processing" 
means the interpretation of an already trained map. Since the SOM, as any 
other a neural network, does not have any inherent visualization, but can be 
visualized in very meaningful and intuitive ways because of its map- like 
structure (hence the name), several methods to perform this will be discussed. 
Another way to post-process the SOM is to cluster the resulting map into 
compact regions of similar data.  
The SOM is a very versatile method, it is related to very diverse fields of 
research like vector quantization, vector projection, artificial neural networks, 

                                                 
1
 http://www.global-democracy-award.org 
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and unsupervised learning. The SOM can be compared to either of these; some 
of its properties will be discussed in Sections 3.1 and 3.2.  
Interesting insights can be obtained by comparing the experimental findings 
from the various SOM techniques with the results from the Pilot Ranking.  
These attempts to compare the SOM model and the statistical ranking approach 
will be performed whenever they are applicable. For example, the issue of 
dealing with missing value is addressed by the Democracy Award with an 
averaging scheme described in Section 3.6, while the SOM provides its own 
interpolation method. Also, since one of the main advantages of the SOM is to 
group similar things together, it is interesting to compare the regions on the 
map with real-world categories like geographical location of the countries. 

1.2. Related Work 
Since the Democracy Award is a novel attempt to measure the quality of 
democracies based on indicators, there are currently very few comparable  
works available. However, data mining techniques like the SOM or multi-
dimensional scaling have been applied successfully to all categories the 
Democracy data set consists of (like Health, Environment, etc.). Also, distantly 
related are studies of text collections with political contents, which have been 
analyzed with the SOM, especially the CIA World Factbook, on which parts of 
the Pilot Ranking indicators rely on, as has been investigated in [Mer98]. 

Another comparable piece of work is the Poverty Map2, an application of the 

SOM that also shows a map of the world based on mostly economic indicators 
[Deb98].  
Figures 1 and 2 show the resulting map as a Self-Organizing Map and a world 
map colored with values obtained from the SOM evaluation (the SOM 
algorithm will be described in Chapter 3). The Poverty Map was obtained by 
39 indicators selected from the World Bank Development Indicators 
[WBDI01]. The same source was used for many of the Pilot Ranking variables, 
see Chapter 2. 

                                                 
2
 http://www.cis.hut.fi/research/som-research/worldmap.html 
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Figure 1: World Poverty SOM 

 

Figure 2: World Poverty Map 
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1.3. Software and tools used in this thesis 
Most of the calculations described in this thesis have been performed with 

Mathworks' Matlab 6.53, a software tool and computer language for scientific 

computing. It was also used for the plotting the figures. For the most part, the 

SOM toolbox for Matlab4 [Ves99] has been used. The results found in this 

thesis rely heavily on this package and its strong visualization capabilities. For 
computation and visualization of the smoothed data histograms described in 

Section 4.7, the SDH toolbox5 was used. Section 5.5 was written with the help 

of the GHSOM toolbox6.  

1.4. Organization of this thesis 
The rest of this thesis is organized as follows: 

• Chapter 2 ("The Data Sets") provides an introduction to the 
Democracy data set, which will be the basis for the rest of this work. It 
presents an overview of the countries that are evaluated in the 
Democracy Award Pilot Ranking and the indicators that measure their 
democratic value. Several ways to categorize the countries will be 
shown, like grouping by continent. Another very important concept will 
be introduced, namely the distance metric that measures how similar or 
dissimilar two countries are, taking the relative importances of the 
indicators into accound. Also, a benchmark data set, the Iris data set, is 
presented, which is a commonly used in data mining literature. The Iris 
data will be applied to introduce the different methods used to analyze 
and visualize the data, because it is by far less complex than the 
Democracy data set. 

• Chapter 3 ("The Self-Organizing Map") introduces the Self-
Organizing Map (SOM), the unsupervised learning algorithm the 
Democracy data is analyzed with. Several ways the SOM can be 
parameterized are explained. The SOM will be compared to similar 

                                                 
3
 http://www.mathworks.com 

4
 http://www.cis.hut.fi/projects/somtoolbox 

5
 http://www.oefai.at/~elias/sdh 

6
 http://www.ai.univie.ac.at/~elias/ghsom 
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methods that perform either vector quantization or projection. Also, the 
way missing values in the data set are handled by the SOM will be 
discussed. Finally, a summarization is presented of how exactly the 
Democracy SOM is computed (including all parameterizations etc.) 

• Chapter 4 ("Visualization of the SOM") will present a wide range of 
common and recently developed visualization methods that can be 
applied to the SOM. These will be introduced by means of the 
relatively simple Iris SOM, and then applied to the more complex 
Democracy map. Visualizations include distance matrices, component  
planes, several labeling methods, hit histograms, smoothed data 
histograms, and codebook projections of the codebook vectors. 

• Chapter 5 ("Clustering of the SOM") presents several commonly used 
clustering methods. Using clustering as a post-processing method 
divedes the SOM into coherent regions. These partitions can then be 
visualized in a meaningful way, such that similar areas on the map are 
revealed. Also, quality measures for different clustering methods are 
presented, so the validity of the partitions can be analyzed and 
compared. This chapter also describes a recently developed variant of 
the SOM that uncovers hierarchical structure in the data, the Growing 
Hierarchical SOM. 

• Chapter 6 ("In-depth discussion of the Democracy SOM") describes 
a series of experiments that are a direct application of the visualization 
and clustering techniques introduced in the previous two chapters. 
Visualizations are proposed that exploit the unique characteristics of 
this data set, like the high correla tion between the variables, a-priori 
knowledge about the countries (like membership of a certain treaty), or 
reduction of several similar (in terms of interpretation from the 
Democracy Award) variable dimensions to a single component. Also, 
an attempt to approximate the score of the Pilot Ranking is proposed, 
and several visualization methods are linked and displayed in the same 
plot to provide interesting insights into the structure of the data set. 

• Chapter 7 ("Conclusion") summarizes results and findings made in this 
thesis, and provides an outlook for further investigations and work. 
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2. The Data Set 

2.1. The Countries 
The data set introduced in [Cam03] covers 100 countries which are examined 
for their democratic quality. These have been chosen by the Global Democracy 
Award (GDA) as a basis for the initial ranking. The countries regarded by the 
GDA have to be classified as either "Free" or "Partly Free" by the Freedom 
House (in the publication that covers the years from 1997 to 2001) [FH01]. 
Countries that are classified "Non Free" are not considered, since its aim is to 
rank democracies and not any other kinds of regimes. Also, small countries 
(with a population of 1 million people or less) are excluded because it would be 
problematic to compare them to the rest of the countries based on the same 
indicators. Further, countries that are not included in the World Development 
publication in [WBDI01] (like Macao or Taiwan) are not considered, which are 
mainly countries that are not recognized by the majority of the global 
community, or countries that are classified as "related territories" (like Hong 
Kong or Puerto Rico). For the complete list of countries, see Appendix A. 
In the later chapters of this thesis, it will be interesting to compare the results 
from the SOM algorithm to real-world categories, thus the following 
classifications are used: 

• geographical category: grouped by continent 

• political category: membership of economic and military treaties 
 
The treaties that will be investigated are: 

• APEC - Asia-Pacific Economic Cooperation 

• AU - African Union 

• CE - Council of Europe 

• EU - European Union (15 countries, before May 2004 enlargement) 

• NATO - North-Atlantic Treaty Organization 

• OAS - Organization of American States 

• OECD - Organization for Economic Co-operation and Development 

• OIC - Organization of the Islamic Conference 

• OSCE - Organization for Security and Cooperation in Europe 
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2.2. The Variables 

2.2.1. Overview 
To describe the democratic quality of the countries that are covered by the pilot 
ranking, several indicators (variables) have been selected. The authors of the 
Democracy Award ranking describe the task of selecting these indicators in 
[Cam02]. Among others, the following criteria have to be met: "Minimizing 
Ideological Bias in the Indicator Selection" and "Minimizing Cultural Bias in 
the Indicator Selection". Finally, the pilot ranking consists of 60 variables from 
the following categories: 

• Politics (P, 8 indicators ): describing political rights and civil liberties, 
such as how often changes of government take place. This is by far the 
most important category. 

• Gender Equality (G, 13 indicators ) (Educational and Economic): 
indicates the degree of equal distribution of opportunities for 
individuals who live in that society. Most of the variables in this group 
directly compare male/female indicators from educational and 
economic categories. 

• Economy (E, 9 indicators ): a competitively performing economy is 
sometimes regarded as a necessity for a working democracy, and 
expresses a functioning interaction between politics (government) and 
the economy. Indicators from this group include unemployment rate, 
budget deficit, and GDP per capita. 

• Health (H, 10 indicators ): variables from this group provide an 
overview of health care, which is considered a prerequisite for modern 
democracies and effectiveness of a social policy. Indicators include life 
expectancy, health expenditure, and hospital beds (per capita). 

• Knowledge (K, 15 indicators ): express the "maturity" of a democratic 
society or how "advanced" the society is. Indicators from this group 
include school enrollment, illiteracy rate, and R&D expenditure. 

• Environmental Sustainability (En, 5 indicators ): criteria in this 
category emphasize criteria of sustainability and, more specifically, the 
long-term effectiveness of a government policy. Indicators include CO2 
omission and energy use. 
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Each of these categories has a different number of indicators (between 5 and 
15). These have been selected to provide the basis for a qualitative ranking, so 
their intention is to provide a score that reflects how "good" or "bad" e.g.  
Albania's economic system performs. However, it is not the scope of this thesis 
to provide a qualitative measure of democracies, but rather to detect similarities 
between them; therefore, the original raw data will be used. This is also a 
fundamental difference to the pilot ranking, which computes a "score" from the 
data set through a series of (mostly linear) transformations and calculations, 
whereas the algorithm used in this thesis is primarily used to analyze the 
internal structure of the data. 
The data can be organized as a 100-by-60-matrix, where the row vectors 
represent 100 individual countries (in alphabetic order) and the column vectors 
contain the 60 indicators (variables) that will be addressed by the category's 
abbreviation followed by the index within this category, e.g. "G3" refers to the 
third indicator in the "Gender" category, which is "Employees, services, 
female". For a comprehensive list of the indicators, see Appendix A. 

2.2.2. Characteristics of the data matrix 
Since not all of the required indicators are available for each country, the data 
matrix contains missing values (MV). The number of MVs varies strongly 
between the indicators and ranges from 0% to 56%. However, the SOM can 
deal with MVs very efficiently, as described in Section 3.6, where it is 
compared to the pilot ranking approach. One additional problem is that less-
developed countries tend to have more missing values than for example 
European countries. This leads to the situation that the countries in the lowest 
third of the scale are more dependent on the interpolation me thod that is used 
to fill MVs. 
As mentioned in the previous section, the indicators have been selected to 
reflect how "good" a country performs in a specific category. The Democracy 
Award assigns a score to each of the variables (ranging from 0 to 100), where a 
higher score always means "better". To achieve this, a linear transformation is 
performed, either assigning a score of 100 to the country with the highest raw 
data value and the lowest 0 (the higher, the better), e.g. H7 (life expectancy at 
birth) or the other way around (the lower, the better), e.g. H8 (mortality rate, 
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infant). This is, however, not the way that data is handled in this thesis, rather 
the variables are normalized to zero mean and unit variance, because this is a 
more common approach taken in data analysis applications. 

2.2.3. Weights and different influence of individual 
dimensions 
To achieve a meaningful overall impression of the quality of democracies, the 
indicators have to be weighted individually to reflect their relative importance. 
This weighting is performed in two steps: 

• based on category : the "Politics" category (P) is the most important 
with an influence of 50 %; the other 5 categories all have an influence 
of 10 % each. Thus, the indicators have to be weighted in a way that the 
number of indicators within a category does not influence the 
importance of the category itself, so indicators within a category with a 
total of 5 indicators are weighted higher than variables within a 
category of 10 indicators. 

• based on dimension: within a category, indicators can be of different 
importance, e.g. in the "Health" category, H7 (life expectancy at birth) 
is the single most important characteristic, so it is counted as 50% of 
Health's total influence (thus, the other 9 indicators share the rest of the 
overall influence). 

 
Category Name Abbreviation Number of 

Indicators 
Weight (as % of 
total) 

Politics (Political 
System) 

P 8 50 % 

Gender Equality 
(Educational and 
Economic) 

G 13 10 % 

Economy E 9 10 % 
Health H 10 10 % 
Knowledge K 15 10 % 
Environmental 
Sustainability 

En 5 10 % 

Table 1: Categories of indicators 

Each dimension is computed according to these two steps. For example, K6 
("Daily newspapers - per 1,000 people") is in a category with 15 dimensions; 
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thus, its influence is one fifteenth within this category. The "Health" category's 
overall influence is 10 %, resulting in K6's weight of 0.67 %. 
The weights play an important role in the distance metric that reflects the 
proximity of two countries. The most commonly used metric is the Euclidian 
Distance  

2

1

( , ) ( )
n

E i i
i

d u v u v u v
=

= − = −∑ , (1) 

with u, v vectors of dimension n. The rest of this thesis will assume a modified 

version of Ed  which takes the individual importance of the variables into 

account: 

2
,

1

( , ) ( )
n

E w i i i
i

d u v w u v
=

= −∑ ,  (2) 

where iw  is the weight of variable i . 

2.3. Benchmark Data Set 
The Iris data set is a popular multivariate data set which was introduced by R. 
A. Fisher as an example for discriminant analysis [Fis36]. It is much simpler 
than the Democracy data set and will be used to introduce the complex 
concepts in the later chapters, before these concepts are applied to the 
Democracy data. The Iris data reports on four characteristics of the iris flower, 
"sepal length", "sepal width", "petal length", and "petal width"; these 
characteristics are the variables of this data set, thus it is 4-dimensional; in 
contrast to the Democracy data set, which has a dimension of 60, it is much 
more convenient to demonstrate the SOM visualization techniques with the Iris 
data first, before they are applied to the Democracy SOM. 
The data set contains 50 samples for each of the three species ("Setosa", 
"Virginica" and "Versicolor"), with a total of 150 samples. Setosa iris flowers 
are clearly different from the other two species, while Virginica and Versicolor 
are harder to distinguish. Furthermore, the values for the petal variables (width 
and length) are highly correlated. 
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3. The Self-Organizing Map 

3.1. Vector Quantization 
The task of finding a suitable subset that describe and represent a larger set of 
data vectors is called vector quantization (VQ) [Gra84]. In other words, VQ 
aims at reducing the number of sample vectors or at substituting them with 
representative centroids. Figure 3 shows the principle of VQ methods, reducing 
the original set of 8 samples to 5 samples. 
The resulting centroids do not necessarily have to be from the set of samples 
but can also be an approximation of the vectors assigned to them, for example 
their average. VQ is closely related to clustering, which is a very important, 
far-reaching topic, so there is a whole chapter (5) dedicated to it, and one of the 
most important vector quantization techniques (k-means) will be discussed 
there. 
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Figure 3: Schematic overview of vector quantization 

Obviously, the SOM performs VQ since the sample vectors are mapped to a 
(smaller) number of prototype vectors, which will be explained in Sections 3.3 
to 3.6. Due to its other capabilities like vector projection, the SOM has the 
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following disadvantages from the viewpoint of VQ which distort the 
distribution among the prototype vectors as side effects from the neighborhood 
relation: 

• Border effect: Neighborhood is not defined equally on the map, the 
units on the edges and in the corners do not have the same number of 
neighbors, but usually cover a much larger Voronoi region (in input 
space) than the ones in the center of the map. This leads to the 
phenomenon that the border units are selected more often as BMU, 
resulting in a concentration of the samples in these areas (this can be 
visualized by hit histograms, see Section 4.4). 

• Interpolating units: If the data cloud is widely separated, the neurons on 
the map between regions that are highly different (in input space) are 
therefore updated through the neighborhood kernel of these units. It this 
case it is possible that some neurons are not targeted by any samples at 
all and do not represent any data vectors. 

Apart from the SOM and k-means, another notable example for VQ is neural 
gas [Mar93]. 
To measure the quality of a VQ algorithm (and of course of the SOM), the 
quantization error of a prototype vector m 

( )
m

q
x C

e m x m
∈

= −∑ , (3) 

is introduced. It is found by calculating the difference between the sample 
vectors and their corresponding cluster centroids; Cm  denotes the set of samples 
that are mapped onto prototype vector m (this concept will be discussed in 
Section 3.4). Thus, the quantization error indicates how accurate the data is 
represented by the codebook vectors. If the SOM is initialized in a linear way, 
the quantization error usually declines during training (as opposed to 
topographic error, which increases, see next section). The quantization error is 
also important as a validity measure for partitionings found by clustering 
algorithms and for an extension to the SOM that will be described in Section 
5.5. 
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3.2. Vector Projection 
Visualization is very important for data mining, and directly plotting a set of 
data can provide insights into its structure and underlying distribution that 
inspection of the numerical data table can not. However, data sets cannot be 
visualized on a sheet of paper or on a monitor if the dimensionality is higher 
than 2. There are ways to provide information by the use of colors or different 
shapes and sizes of the objects to be plotted; for the Iris data set, it would be 
theoretically possible to include the third and fourth dimension like this, but it 
would be hard to understand and imagine such a plot. For the 60 dimensions of 
the Democracy data set, plotting these simultaneously on a 2-dimensional 
space is outright impossible. 
Vector projection (VP) aims at reducing the input space dimensionality to a 
lower number of dimensions in the output space, and mapping vectors in input 
space to this lower dimensional space; the "lower dimensional space" is usually 
2-dimensional for visualization on a monitor or for printing to paper. Figure 4 
shows the principle of VP, reducing a data set from dimension 7 to dimension 
4. However, when compared to Figure3, where the resulting set of samples can 
be obtained by simply discarding obsolete ones, this can not be done with 
variables in vector projection; the resulting variables are usually obtained by 
complex algorithms. 
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Figure 4: Schematic overview of vector projection 

However, vector projection inevitably leads to loss of information in almost all 
cases. The VP mapping should occur in a way that the distances in input space 
are preserved as good as possible, such that similar vectors in input space are 
mapped to positions close to each other in output space, and vectors that are 
distant in input space are mapped to different coordinates in output space. Most 
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VP algorithms emphasize on the preservation of distances of vectors that are 
close to each other, while not necessarily preserving relatively large distances 
(as long as two samples that are far apart in input space are not placed next to 
each other in output space, it does not really matter just how far apart they are 
in output space). More generally speaking, the term "topology preservation" 
refers to this emphasis on local dis tances. Furthermore, VP methods can be 
categorized as performing either linear or non-linear mapping (NLM). Linear 
mappings are generally geometric projections to a plane (in the 2-dimensional 
case). NLMs try to uncover more complex structures in the data set. Usually, 
NML algorithms are less susceptible to outliers, but harder to compute and 
evaluate, since many of this category of algorithms include non-deterministic 
optimization techniques. 
The SOM is of course also a VP method. It performs a non- linear projection by 
assigning the sample vectors to the units (BMUs) on the (usually) 2-
dimensional grid. Other than the rest of the methods discussed in this chapter, 
the SOM is not a VP algorithm that maps to a continuous axis, but rather to a 
discrete number of map units. The SOMs Vector Projection qualities and 
limitations are discussed in more detail in [Fle97]. 
Some of the most prominent examples of VP are described here, with 
visualizations for the Iris and the Democracy data sets. Dimensionality 
reduction is performed from input dimension 4 to output dimension 2 for the 
Iris data, and 60 to 2 for the Democracy data. The plots for the Democracy data 
do not provide labels for all of the countries, since there is not enough room for 
this; only labels for 12 significantly different countries are shown: Argentina, 
Brazil, Hungary, India, Japan, Malaysia, Nepal, Norway, Russian Federation, 
South Africa, Turkey and the United States. Plots for the Iris data set show the 
iris flowers colored according to their category, where the blue squares stand 
for Setosa, green ("+") for Versicolor, and red ("o") for Virginica. 
1. Metric Multidimensional Scaling (MDS): 
MDS is widely used in psychology, the field it was originally developed for, by 
Torgerson [Tor52], his work extending that of Richardson [Ric38]. MDS tries 
to minimize pair wise distances of vectors, with error function 

2

1 1

( ' )
N N

MDS ij ij
i j

E d d
= =

= −∑∑ , (4) 



 15 

where ij i jd x x= −  in a suitable distance metric in input space, and 

' ' 'ij i jd x x= −  the distance of the projected vectors in output space. This is 

achieved by moving the data points along the gradient of the error function.  
2. Sammon's Mapping 
Sammon's mapping [Sam69] was originally created as a non- linear alternative 
to Principle Component Analysis (see below). Of the VP algorithms presented 
here, Sammon's Mapping is computationally the most complex one. Given the 
error function 

2

1 1

( ' ) /
N N

Sammon ij ij ij
i j

E d d d
= =

= −∑∑ , (5) 

a solution can be computed iteratively with a gradient descent algorithm. The 
results for the Iris and Democracy data sets are shown in Figure 5. 
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Figure 5a, b: Sammons Projection of Iris data (a) and Democracy data (b) 

3. Principal Component Analysis (PCA): 
PCA is a very prominent member of linear projection. It is based on eigenvalue 
decomposition and related to singular value decomposition (SVD). It algorithm 
rotates the input data such that the maximum possible variability is projected to 
the axes. PCA is computationally very fast since eigenvectors can be calculated 
very efficiently (it only requires solving a system of linear equations). The 
decomposition occurs in a way that the projections are ordered by their relative 
importance, with an output dimension up to the original input dimension. This 
is done by ordering the eigenvalues of the input data set (in a decreasing 
manner), and using their corresponding eigenvectors as axes for the projection. 
The sum of the eigenvalues used expresses the amount of the total variance of 
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the data set that is explained by the axes used so far. Thus, the output 
dimensions are also ordered by decreasing importance. 
Figure 6 shows the results for both data sets using PCA. In case of the 
Democracy data set, the first axis (in this example, the x-axis) of the projection 
explains 43.8 % of the variance, the second (y-) axis only 11.04 % (thus, the 
first two axes explain more than 50 % of the variance in the data manifold). 
The first 18 axis explain more than 90 % of the variance, and the last 20 axes 
explain less than 1%; Figure 7 shows the decrease of variance explained, where 
the i-th value on the x-axis refers to the i-th most important axis in output 
dimension. The y-axis shows the relative importance (between 0 and 1) of the 
corresponding x-value. The values on the y-axis have a sum of 1 (100 %). It is 
also important to mention that the resulting axes of the projection (which can 
be up to the original dimension) do not have any human-readable meaning 
anymore. Particularly, the variables of the Democracy data set do of course 
have a meaning, like "P1" referring to the political rights. The projected values 
can be achieved through linear transformations from the original variables, and 
are thus composite axes. If the number of dimensions of input and output space 
are the same, it is even possible to reverse this transformation, this means to 
project a vector from output space back to input space. It is, however, not 
possible anymore to assign a meaning to the axes anymore, other than that they 
represent a certain variance of the original data cloud. 
PCA is especially important to this thesis in two ways: 

• It will be used to project the codebook vectors of the SOM, which is a 
way of interpreting the map once it has been calculated 

• For linear initialization of the map, PCA is applied to the training data, 
and the model vectors are initialized along the first and the second axis 
(which are the eigenvectors with the two largest eigenvalues). This is 
applied to the training of the Democracy Map, thus its initial state looks 
very similar to Figure 6b. 
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Figure 6a, b: Principal Component Analysis of Iris data (a) and Democracy data (b) 
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Figure 7: Decrease of variance explained in planes (PCA) 

3.3. Introduction to the SOM 
The Self-Organizing Map (abbreviated "SOM", also "Self-Organizing Feature 
Map" or "Kohonen Map") is a very popular artificial neural network (ANN) 
algorithm based on unsupervised learning. The SOM has proven to be a 
valuable tool in data mining and the larger field of Knowledge Discovery in 
Databases (KDD). It has been originally developed by Teuvo Kohonen 
[Koh01] and is mostly used for the visualization of nonlinear relations of 
multidimensional data. It has been subject to extensive research and has 
applications ranging from full text and financial data analysis, pattern 
recognition, image analysis, process monitoring and control to fault diagnosis; 
for a comprehensive list of references, see [Oja03, Kas98]. The original SOM 
algorithm has been extended in numerous ways [Fri94, Koi94], one of which 
will be discussed in Section 5.5. The SOM training algorithm is very robust; 
although there are some choices to be made regarding training length, map size 
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and other parameters, these do not influence the results too heavily. Once a 
SOM has been trained, its results have to be post-processed. A large variety of 
post-processing methods exists, most notably the visualization methods (will 
be described in Chapter 4). The trained SOM can also be used for local 
modeling, segmentation (or "clustering", which will be discussed in Chapter 5), 
novelty detection, or classification of samples that are not part of the training 
set. Many of these features will be described and applied in this thesis. 

3.4. SOM Training 
The Self-Organizing Map learning algorithm is computationally extremely 
light, and with the Batch SOM algorithm [Koh01], which is described at a later 
point in this section, a substantial boost in performance has been achieved. 

 

Figure 8a, b: Hexagonal and rectangular lattices 

The SOM consists of a low-dimensional grid (or lattice) that contains a number 
M of neurons. In this thesis, only the 2-dimensional grid will be considered, 
since grids of higher dimensions are hard to visualize. The neurons are usually 
arranged either in a hexagonal or in a rectangular way (Figures 8a, b), other 
topologies exist but will not be discussed. The hexagonal lattice is the basis for 
most of the experiments with the Democracy and the Iris data sets, only in 
Section 5.5, which describes the Growing Hierarchical SOM, rectangular grids 
will be used, but its topology differs in many other ways from traditional 
lattices. The position of the neurons in the grid, especially the distances 
between them and the neighborhood relations, are very important for the 
learning algorithm. Each neuron has a so-called prototype vector (also "model" 
or "codebook" vector) associated to it, which is a vector of the same dimension 
as the input data set that approximates a subset of the training vectors (also 
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"sample vectors" or "samples"). The dimension of the sample vectors (and the  
approximating model vectors) is called "input dimension",  and is much larger 
than 2, the dimension of the grid (called "output dimension"). Thus the SOM is 
a so-called "Vector Projection" algorithm, because it reduces dimension (from 
the high dimensional input space to 2, the dimension of grid), a property that 
has been discussed in Section 3.2. 
Once the codebook vectors are initialized with either random values or in 
another way (see Section 3.5), training begins. The training set of samples is 
presented to the SOM algorithm, and once all the samples have been selected, 
this process is repeated for t training steps. One complete round of training 
(when all of the samples have been selected once) is called an "epoch". The 
number of training steps t is an integer multiple of the number of epochs. 
For training and visualization purposes, the sample vectors are assigned to the 
most similar prototype vector, or best-matching unit (BMU), formally 

( ) argmin{ ( ) }ii
c x x m t= −  (7) 

where im  are the prototype vectors, and x is the sample vector for which the 

BMU is determined. Sometimes instead of c(x) the longer form BMU(x) is 
written. The absolute value, as described in (1), is a suitable distance metric. 
For the Democracy SOM, however, a modified version of the Euclidian 
Distance metric is used that accounts for the relative importance of the 
variables, as described in(2). The learning process itself gradually adapts the  
model vectors to match the samples and to reflect their internal properties as 
faithfully as possible, which means that input vectors which are relatively close 
in input space should be mapped to units that are relatively close on the grid 
(output space). To achieve this, the training algorithm updates the model 
vectors iteratively during a number of training steps t, where a sample x(t) is 
selected randomly, and then the BMU and its neighbors are updated as follows: 

( )( 1) ( ) ( ) ( )[ ( ) ( )]k k c x k km t m t t h t x t m tα+ = + −    (8) 

where ( )tα  is the learning rate (which is decreasing monotonically with time) 

and ( )ckh t  is the neighborhood kernel. The neighborhood kernel determines the 

influence to the neighboring model vectors and its radius ( )tσ  is also 

decreasing with time. Thus, the learning process is gradually shifting from an 
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initial rough learning phase with a big influence area and fast-changing 
prototype vectors to a fine-tuning phase with small neighborhood radius and 
prototype vectors that adapt slowly to the samples. 
The above algorithm contains elements of two key concepts of learning, 
competitive and cooperative learning. Competitive learning is covered by 
selection of the BMU, the "winner", which is updated to the largest extent. 
Principles of cooperative learning are applied by not only updating the most 
similar model vector, but also its closest neighbors are moved to the direction 
of the sample to a lesser extent, creating similar areas on the map. 
After training is finished, the SOM has folded onto the training data, where 
neighboring units usually have similar values. Each prototype is also associated 
with a Voronoi region in input space, which is defined as 

{ }k k jV x x m x m j k= − < − ∀ ≠ . (9) 

These regions reflect the area in input space for which a prototype is BMU. 
Input space is thus divided (or tessellated) into these non-overlapping Voronoi 
regions. If a unit's Voronoi region does not contain any sample vectors, it is 
called interpolating unit, which occurs if neighboring regions on the lattice 
contain distant prototypes in output space. 
The algorithm described above is referred to as "sequential training" or "basic 
SOM". Another important learning rule is called "Batch map", which is based 
on fixed point iteration, and is significantly faster in terms of computation time. 
At each step, the BMUs for all input samples are calculated at once, and the 
model vectors are updated as follows: 
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with N the number of sample vectors. Another option for updating the 
prototype vectors is calculating the weighted average of the Voronoi set 
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with kN  the number of samples in kV , or in other words, the number of 

samples for which prototype k is BMU; M denotes the number of prototype 
vectors. The batch map algorithm, with this extension, allows a very efficient 
implementation of the SOM. 

3.5. Initialization and Parameterization of the Self-
Organizing Map 
Apart from the training algorithm, there are some choices to be made which 
can be seen as parameterizations of the SOM, namely choosing the functions 

( )tα  and ( )ckh t , the lattice topology, and the number of prototype vectors (and 

their initial state). 
The initialization of the prototype vectors is usually one of the following: 

• Random initialization: The model vectors are initialized randomly, 
which is not the best policy, but has been shown to converge to   a 
topographic very similar map in the long run. 

• Linear initialization: The prototype vectors are initialized according 
ascending or descending along the x- and y-axis of the lattice; the way 
this is done usually depends on the principal components of the data 
samples (this topic will be discussed in Section 3.5). This is the method 
that will be used in the rest of this thesis. 

• Random Permutation of a subset of the samples: Similar to random 
initialization, random samples are picked as model vectors. 

The linear initialization also has the advantage of being deterministic, thus 
reducing the randomness of the SOM training algorithm. This makes the results 
easier to reproduce. 

The neighborhood kernel ( )ckh t  can be any function that decreases with 

increasing distance on the lattice c kr r− , with the components of the 2-

dimensional vectors r its positions on the map. A typical example of a 
neighborhood kernel is derived from the Gaussian bell-shaped curve: 

2

22 ( )( )
c kr r

t
ckh t e σ

−
−

= ,  (12) 
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Figures 9 and 10show four different neighborhood functions on a 30x30 lattice, 
with radius 6 (note that this is a very large map size and radius; it is only used 
for demonstration purposes). The center unit is selected as BMU and the 
influence on its neighbors is determined by the following neighborhood 
functions: 

• Gaussian (Figure 9a): this is the neighborhood kernel as described in 
formula 8; since this function can never actually become 0, all the units 
on the map are influenced, even if this influence is very small for units 
that are far away from the BMU on the grid. 

• Gaussian, cut off around radius (Figure 10a): same as above, but the 
influence region is abruptly cut off at radius ( )tσ ; the advantage of this 

is that the map is not updated too frequently by minimal amounts. 

• Bubble (Figure 10b): all of the units within the radius are updated by 
the same amount (the only values computed by this function are 0 and 
1). 

• Inverse proportional to the distance from the BMU (figure 9b), dividing 
the distance of the unit from the BMU by the square of the radius ( )tσ . 

Figure 11 shows these functions as 2-dimensional plots, where the values on 
the x-axis denote the distance from the BMU, where the blue solid line 
represents the Gaussian model, the red dotted one the "Cut-off Gaussian" 
method, black dashdotted stands for Bubble, and green dashed for the inverse 
proportional method. 

 
Figure 9a, b: Neighborhood functions: Gaussian and Inverse Proportional 
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Figure 10a, b: Neighborhood functions: Cutoff Gaussian and Bubble 
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Figure 11: Comparison of neighborhood functions 

The learning rate ( )tα  is also decreasing monotonically with time, and should 

end up at zero when training is finished. 
The choice of the map lattice (2-dimensional and hexagonal) will not be 
discussed; the number M of prototype vectors it contains, however, should be 

in the range of N  (with N the number of samples). The map itself is usually 

rectangular, but not necessarily quadratic . Topologically, it would be better to 
use the same shape for the map as for the neurons, i.e. hexagonal, but these 
shapes are very inconvenient to display. 
Surprisingly, the results do not vary significantly for different choices of any of 
the functions and parameters above, thus the SOM is a very robust algorithm 
with regards to its configuration. 
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3.6. Dealing with missing values in the data set 

3.6.1. SOM training with data sets that contain missing values 
As mentioned previously, the Democracy data set contains a number of 
missing values (MVs). The SOM is very robust with regards to MVs, but many 
of the pre- and post-processing steps cannot deal with them. 

The SOM training algorithm has to consider MVs in two cases: 
• Calculating the BMU of a sample with missing components 

• Computing the updated model vectors of the BMU and its neighbors 
with a sample that holds MVs 

Note that the model vectors must not contain MVs, and samples or dimensions  
must not consist of MVs only (that means, neither a row nor a column in the 
data matrix must consist solely of MVs). Apart from these obvious constraints, 
a sample or dimension should not contain too many missing values. The 
calculation of the BMU requires a modification of the distance metric, such 
that the missing variables are disregarded for the distance measure: 

2
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( , ) : ( , )
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E w M V i i i
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d m x w m xδ
=

= ∑ ,  (13) 

and  

if  is defined
( , ) :

0 if  is missing
i i i

i i
i

m x x
m x

x
δ

−
= 


 (14) 

This distance measure only applies to measuring distance between prototype m 
and sample x, where only the sample may contain MVs. This measure is not 
applicable to determine the distance between samples or between any two 
vectors which can potentially both contain MVs, but since the prototypes never 
contain MVs, the same missing component is simply ignored for all the 

candidates likewise. However, if , ,E w M Vd  would be introduced as a distance 

measure between any two vectors, it would not qualify as a metric, since 
vectors with many MVs would be automatically closer than vectors that do not 
hold MVs. 
Once the BMU has been determined and the training algorithm has to update 
the model vectors for the BMU and its neighbors, the prototypes' variables for 
which the sample's variable is missing are not updated, formally 
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( ) ( ) ( )[ ( )] if  is defined
( 1) :

( ) if  is missing
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
,  (15) 

which is a slight modification of the usual learning rule, as it defines the 
updated vectors component wise (for each dimension i). 
As shown above, the SOM can deal with MVs very effectively, but this does 
not hold for many clustering and visualization methods, and for methods that 
are compared to the SOM in any way (for example the vector projection 
methods discussed in 3.5.). As a preprocessing step, the gaps in the original 
data set have to be filled; in the following two sections, two methods will be 
introduced to interpolate MVs, one that is directly related to the SOM, and one 
that requires a priori knowledge of the structure of the data as intended by the 
Pilot Ranking. Of these two possibilities the SOM-related approach is taken 
and the modified data set is used throughout the rest of the thesis. 

3.6.2. Interpolation with BMUs 
Once the SOM has been trained with the data set that contains missing values 
as described in the previous section, the gaps in the data matrix can be filled in 
a very intuitive way. Since the model vectors are by definition approximations 
of the sample vectors, the BMU for each sample to be interpolated can be 
found, and the missing components are simply copied from the model vector, 
formally 

if  is defined
:

( ) if  is missing
i i

i
i i

x x
y

m x x


= 


, (16) 

where iy  denotes the i-th component of (interpolated) vector y, and ( )im x  is 

the i-th component of the BMU of sample x. The resulting sample vectors do 
not contain MVs any more. This approach is recommendable only if there are 
not too many MVs, and if the MVs are distributed uniformly over the data set, 
such that similar samples which are mapped to the same BMU do not all lack 
the same component, otherwise the training algorithm cannot update the 
component in question in a meaningful way. For the Democracy data set, this 
is problematic, because countries for which many values are missing are 
usually rather the less-developed ones, which are mapped to similar regions of 
the SOM, and the differences to the approach that was taken by the Democracy 
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Ranking are significant for several countries. Since this method requires 
decisions outside the scope of this thesis it will not be considered. 

3.6.3. The Democracy Ranking approach to fill missing values 
The approach that is taken by the Democracy Ranking exploits the obvious 
(and intended) similarity between dimensions within the same category. The 
missing values are approximated by determining the overall performance 
within their categories. For example, if P6 and P8 are missing, the weighted 
average of the rest of the variables within the politics dimension are calculated 
and the MVs filled with the resulting mean. This makes sense since the 
variables have been selected because of their high correlation and to provide a 
stable means of rating the quality of a specific aspect of a democracy. There 
are some exceptions, however, that are dealt with separately. For Bosnia and 
Herzegovina, for example, only one variable (of 9) is provided in the economy 
category; this variable is E7 - "Labor force, children 10-14 (% of age group)" 
with value of 0, which is the best this variable can achieve; this value is of 
course misleading and should not replace the missing values in the economy 
dimensions, because this would result in ranking Bosnia and Herzegovina 
higher than any other country in the economy category. Thus, the missing 
values are filled with averages from 2 other categories. It is obvious that 
assumptions of this kind cannot be made for the (rather technical) SOM-based 
approach of this thesis. 
It is nevertheless interesting to compare the differences of the two interpolated 
data sets; the countries that differ most significantly are Bosnia and 
Herzegovina, Croatia, Georgia, India, Macedonia, Mexico, Moldova, 
Mongolia, Peru, and Sri Lanka. 

3.7. Parameters for the experiments 
The data set this SOM is trained with ("Democracy data set") is acquired by the 
following steps: 

1. the original Pilot Ranking data is taken and normalized to zero mean 
and unit variance 

2. a 7x7 map is trained with this data set (which still contains missing 
values) 

3. the missing values are filled as described in Section 3.6.2. 
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Note that the SOM computed as described above is then discarded; its only 
purpose is to fill the gaps in the data matrix. 
The Democracy SOM consists of a hexagonal lattice with 7x7 map units. The 
codebook vectors are initialized in a linear way as described in Section 3.5, 
with PCA performed on the data set, and the units initialized along the two 
most important axes. For training, the batch algorithm is applied for 25 epochs 
(5 epochs of rough training, 20 epochs of fine-tuning). This second map does 
not differ very significantly from the first one, it is rather used because some of 
the algorithms discussed in this thesis, like VP methods, do not work with 
missing values, and thus the Democracy SOM is more convenient to compare 
the results. 
So, unless otherwise noted, the experiments and visualizations described in the 
following chapters are either performed on this Democracy SOM or the 
interpolated Democracy data set which is free of any MVs. 
The mask for measuring the distance has been described in Section 2.2, and 
exact weights of all indicators are given in Appendix A. 
The Iris SOM has a rectangual lattice of 16x4 map units with hexagonal layout. 
It is also initialized in a linear way, the training length is 23 epochs. Other than 
the Democracy map, this map uses traditional Euclidian distance, without a 
mask, so all the components have the same weight. 

3.8. Quality measures of the SOM 
After training has finished, it is important to measure the quality of the 
resulting map. As described in Sections 3.1 and 3.2, the SOM's strengths lie 
especially in the fields of vector quantization and vector projection. In the 
following paragraphs, several functions will be presented that provide a 
measure for these properties. 
Firstly, the vector quantization properties of a map will be investigated. In 
Section 3.1, the quantization error eq(mi) has been introduced. The mean 
quantization error Eq is based on this concept, formally 
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E e m
M =

= ∑ , (17) 
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where M is the number of model vectors of the map. This value measures the 
data representation accuracy. If this value is high, the codebook vectors do not 
fit the data manifold. 
Another error function measures the quality of the map from a vector 
projection point of view, or in other words, the structure of the map is 
considered. It compares the topology of the input and the output space. A 
simple method investigates the location of all the samples on the map. The key 
idea behind this is that the best-matching unit (BMU) should be next to the 
second-best-matching unit, otherwise this is regarded as violation of topology 
and thus penalized by increasing the error value. Formally, this can be written 
as 

1

1
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t k
k

E u x
N =

= ∑ , (18) 

this is called the topographic error, with 

0 if the BMU of  is next to the 2nd BMU of 
( )

1 otherwise
x x

u x


= 


. (19) 

For the topology preserving properties of the SOM, othe r measures and error 
functions exist, see for example [Vil97]. 
If the SOM is initialized in the linear way as described in Section 3.5, the 
topographic error will usually increase during training and the mean 
quantization error will decline. In Section 4.9 the training process will be 
visualized, and the quality measures Eq and  Et will be given and compared at 
several stages during training. 
However, the previous two functions cannot be considered energy functions 
that have to be minimized by the SOM algorithm to find the optimal solution. 
The topographic and mean quantization errors have to be considered as a trade-
off between two important properties of the SOM algorithm, namely VP and 
VQ. The SOM has been shown to be hard to describe mathematically. 
However, it is possible to define an energy function for the SOM if the 
neighborhood kernel does not change, which is called the map distortion 
measure 
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This cost function has been shown to be minimized by the SOM in [Koh91a]. 
This function is subject to current research, see [Lam00] for an in-depth 
discussion. 
To summarize, the numbers of each of the quality measures for both the Iris 
and the Democracy SOM are given in Table 2. The results indicate that the 
Democracy SOM performs especially good in terms of topology preservation, 
mostly due to the linear nature of the data set. Note that the two SOMs in this 
table can not be compared due to different map sizes and training set quantities. 
 

 Eq Et  Ed 

Iris SOM 0.3030 0.0667 1.8953 
Democracy SOM 0.5066 0 2.5146 

Table 2: Quality measures of the Iris SOM and the Democracy SOM 
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4. Visualization of the SOM 

4.1. Overview and introduction to visualization 

4.1.1. Importance of visualization 
Once a SOM has finished the trained process, it is ready for post-processing 
and visualization. This step is particularly important, since it actually presents 
results for further data analysis. The intuitive and meaningful visualizations are 
actually one of the most important strengths  of the SOM. While neural 
networks usually are very hard to visualize, the SOM is a notable exception; 
this is one of the reasons for the popularity of the SOM. Visualizations that 
stress clusters usually work either with differences between neighboring 
codebook vectors (U-Matrix) or perform a clustering of the map and visualize 
this by coloring similar regions of the map with the same color. Visualizations 
that perform a projection usually require a data set which is then projected to 
the map, most prominently hit histograms. Other visualizations aim at 
clarifying the data's internal structure, like correlation, degree of linear 
dependency, etc. 
The rest of this chapter is organized as follows: 
Sections 4.1.2 and 4.1.3 introduce several ways to present and plot values on a 
map lattice. Section 4.2 describes a visualization that is applied to one single 
dimension at a time. Section 4.3 describes distance matrices which express the 
similarity between neighboring map-units. Sections  4.4 to 4.8 describe 
visualization methods that take the distribution of a set of data samples mapped 
onto the SOM into account (which does not have to be identical to the training 
set). In Section 4.9, a method is presented that directly visualizes both the 
codebook and the sample vectors in input space with vector projection 
methods. Section 4.10 shows an attempt to combine multiple component planes 
in a single plot. 

4.1.2. Plots that show a single value per map unit 
Most of the visualization techniques rely on computing a single value for each 
of the map units in a specific way. To make the results reproducible, explicit 
formulas will be given in each section, similar to this: 

...ivalue = , 
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where valuei is the value of the i-th model vector. The index i is running across 

the hexagonal grid as shown in Figure 12, and satisfies 1 i M≤ ≤ , where M is 
the number of prototype vectors. 

index i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 

Figure 12: Indices of SOM units on a hexagonal lattice 

In the rest of this chapter, the possibilities of generating figures with Matlab, 
the "SOM Toolbox", and the "SDH Toolbox" will be shortly described. If a 
single value has to be visualized for each map unit (as described above), there 
are several ways the plot can reflect this. Figure 13a shows (random) values 
that will be illustrated with these methods: 

• Color coding : When all colors have been calculated, the patches are 
colored either according to Matlab "jet" colors (Figure 14a) such that 
the largest value is always dark red, the smallest dark blue, and cyan, 
green and yellow in between, or using grayscale (Figure 13b). The 
coloring scheme is always scaled linearly, so when two figures are 
compared, equal colors can possibly refer to different values, which can 
be misleading. Also, the color bar can be divided into a discrete number 
of classes. Figure 14b for example uses only 4 colors from the jet color 
bar. 

• Patch size : Adjusts the patch size to reflect the value, large values 
result in large hexagons and vice versa. This is especially useful for 
visualization of distance matrices (to emphasize borders) and hit 
histograms, since it suggests that the large patches are "more important" 
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than smaller ones. This type of visualization can easily be combined 
with other methods. 

• Contour plots : To visualize the values as an analogy to mountains and 
canyons, contour plots can be employed, which first use interpolated 
values for the space between the units, and plot the surfaces with 
different levels of detail (Figure 15b shows the contour plot with 4 
levels). The peaks in this type of plot suggest that this area is very 
crowded, thus this visualization is best used for hit histograms and SDH 
(Sections 4.4 and 4.7). 

• Markers : According to the value, the marker's size is scaled and 
painted atop the underlying map unit, which can be seen in Figure 16. 
The largest value corresponds to the marker which is as large as a 
whole hexagon. This visualization method is very similar to the patch 
sizes, since the value is depicted by adjusting the size of a geometric 
figure. To maximize the amount of information represented by the plot, 
it can be used in combination with other techniques like color coding. 
Like contour plots, this is useful for showing how crowded a region is. 
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Figure 13a, b: Values shown as numbers (a); gray shading (b) 
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Figure 14a, b: MatLab "jet" color map (a); "jet" colormap with 4 levels (b) 
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Figure 15a, b: Patch size according to value (a); contour plot with 4 levels (b) 

SOM 11-Jan-2004  
Figure 16: Marker size according to value on top of lattice 

4.1.2. Plots that show multiple values per map unit 
If a visualization technique requires plotting different variables, there are two 
methods to do this, depending on what kinds of variables have to be plotted: If 
the variables are coequal, if they are results of a computing algorithm that has 
more than one output value, like a vector, the plot should reflect this; if, on the 
other hand, the variables do not stem from the same source, the plot should 
preferably consist of a combination of multiple visualizations, for example 
patch size coding some value and color of the hexagon coding another one. The 
former case will be explained here in more detail. It can be used to visualize 
several components of a vector, which is suitable for a low number of 
dimensions. For the Democracy SOM, with a dimensionality of 60, this does 
not seem advisable, but later (in Chapter 6), several methods are proposed 
which are best visualized with these types of plots. In particular, the following 
styles are applicable (like above, Figure 17a shows the values for each vector, 
which will be depicted with the methods introduced here): 
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• Bar charts : Each component is represented by a bar, and each map unit 
holds a bar chart. The height of each bar corresponds to how large the 
corresponding value is. Negative values are depicted by bars that are 
below the horizontal axis. Also, bars on different units always have the 
same color, which makes it easy to identify single components, which 
makes this type of visualization advisable for low dimensional vectors 
(up to around 10). This plot is hard to combine with other visualization 
techniques. 

• Pie charts: This type of visualization shows a single pie chart for each 
map unit. Other than bar charts, pie charts can not be applied to vectors 
that contain negative values. Pie charts show the relative part of each 
variable as fraction of the sum of all parts. Each component is depicted 
as a slice, the size of which reflecting the value to be displayed (see 
Figure 18a). However, the pie charts alone do not indicate how big the 
values are in comparison to other map units. This can be resolved by 
combining this visualization with adjusting the patch size according to 
the absolute size of the values, as shown in Figure 18b. 

• Projection into color space: This requires a vector projection method 
like PCA. The high-dimensional vector is projected onto a color plane. 
Consider Figure 19, where the color value is obtained by projection of 
the 3 components to the 1st (most important) axis of the PCA 
decomposition. The problem with this is the obvious loss of 
information, and the fact that it is hard to imagine what the value 
obtained by this method actually means. 

One type of visualization that is used in this thesis has not been explained yet, 
namely trajectories, because it is easier to describe in context of the algorithm 
it is used with in Section 4.8. 
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Figure 17a, b: Values as numbers (a); bar charts (b) 

 
Figure 18a, b: Pie charts (a); pie charts with size according to sum of values (b) 
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Figure 19: Projection to color plane (PCA) 
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4.2. Component planes 
The codebook vectors usually cannot be visualized directly at once, since they 
are very high dimensional. This can be done with yet another vector projection 
method, i.e. application of another SOM to the codebook vectors of the first 
one, but this is not always convenient. It is, however, sometimes useful to look 
at individual variables and to identify regions on the map where they are 
influential to the distribution of the prototype vectors. These direct 
visualizations of variables are called "component plane visualizations". Pair 
wise comparison of component planes can reveal correlations, linear or non-
linear dependencies between the dimensions in question. In case of very high 
dimensional data, the component planes become more difficult to evaluate 
because of the high number of plots. Several methods have been proposed to 
cope with this difficulty, i.e. arranging the component planes such that similar 
ones are displayed close together using a SOM-based projection [Ves00]. This 
can also be performed manually, but this is a very tedious and time-consuming 
task. 
The colors are computed by simply selecting a single variable: 

( )k k icolor m= , (21) 

where (mk)i denotes the i-th component of codebook vector mk, and i must be 
between 1 and N, the input dimension of the codebook and data vectors. In 
other words, component plane visualizations are projections to a single variable 
axis. 
The component planes of the Iris data set are especially interesting, since there 
are only 4 of them. The Democracy data set consists of 60 dimensions, thus 
there are 60 component planes, which is not very concise anymore. Figure 20 
shows the component planes for the Iris data. The upper right plot ("SepalW") 
is the most interesting one here, since very high (red) and very low (blue) 
values are close on the map: This leads to the assumption that there is some 
sort of border between these regions (which will be affirmed by the U-Matrix 
visualization in Section 4.3). Also, it seems that the remaining three variables 
are highly correlated, with minor deviations on the bottom of the plot. 
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Figure 20: Component planes of the Iris Map 

Figures 21 and 22 provide examples for component planes of the Democracy 
SOM. Figure 21a depicts dimensions H2 – "Health expenditure, private (% of 
GDP)"  and K13 – "Information and communication technology expenditure (% 
of GDP)". Figure 22a shows P1 – "Political rights"  and G1 – "Employees, 
agriculture, female/male (% of economically active female/male population)" . 
Dimension P1 is the most important in terms of its weight, and is thus the most 
representative of the Democracy SOM as a whole, with high values on the 
upper right border of the map, and lower values along the low border. With 
K13, the high values are also located in the upper right area, but the low values 
are centered around the middle of the left area. With H2, the centers of the 
highest and lowest values are even very close together, both left of the middle. 
G1 again shows a distribution of high values in the upper right and the center 
of low values close to the peak values of H12 as described above. This leads to 
the assumption that most (not all) dimensions have high values in the upper 
right corner of the map, while the low values have different centers, but tend to 
be located on the lower part of the map. 
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H2 K13

 

Figure 21a, b: Component planes H2 (a) and K13 (b) 

P1 G1

 

Figure 22a, b: Component planes P1 (a) and G1 (b) 

4.3. Distance Matrices 
Distance Matrices are among the most commonly used means of visualization 
of the SOM. Other than the component planes, they investigate the differences 
of adjacent prototype vectors. Thus, the resulting plot reveals the contiguous 
regions, areas with sharp borders to the rest of the map (this corresponds to the 
definition of clusters, see Section 5.4), and interpolating units, that are usually 
highly different from all of their neighbors. The two most prominent examples 
of distance matrices are the unified distance matrix, or U-Matrix [Ult90], and 
the D-Matrix. 
The U-Matrix calculates pair wise distances of adjacent prototype vectors, 
according to the same distance metric the map was trained with (this is usually 
the Euclidian Distance, in case of the Democracy map, weighted Euclidian 
distance). For visualization purposes, the resulting values are displayed 
between the actual prototype vectors; the color of the prototype vectors 
themselves is usually an average of the surrounding units, so that the re are no 
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missing units on the plot. Thus, the U-Matrix map is actually bigger than the 
original one (approximately twice the size for both axes, thus about four times 
the number of map units). 
The formula for U-Matrix computation is 

,i j i jcolor m m= − ,  (22) 

with i, j being indices of adjacent map units, and this formula only determining 
color of patches between codebook units. 
Figure 23 shows the U-Matrix of the Iris Map. As suspected in the previous 
section, there is a sharp border below the upper third of the map. The map is 
essentially split into two regions, the upper third is occupied by Setosa species, 
and the lower two thirds correspond to the Versicolor and Virginica species, 
between which no strict boundary can be determined. 

 

Figure 23a, b: U-Matrix for the Iris Map: normal colors (a) and log-scaled (b) 
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Figure 24a, b: U-Matrix for the Democracy Map: normal colors (a) and log -scaled (b) 

For the Democracy data set, the U-Matrix shows the gap in the center right part 
of the map. This is due to the fact that the upper right corresponds to the 
highest rated countries, while the lower right corresponds mostly to developing 
countries; the transition between these regions can be clearly seen.  Also, the 
bottom right part is rather incoherent, and the middle of the bottom part is 
separated from the left side. 
There are actually two problems with visualizations of the U-Matrix: First, as 
mentioned above, the squares/hexagons between the units do have a color-
value, but the units themselves (in the center) do not, so an interpolated value 
has to be used. Consider, for example, the dark blue hexagon in the center of 
the right border that is surrounded by yellow and red units; the yellow units on 
its left and right create the impression that the units in the horizontal line are 
highly different, which they are not, there is actually very little difference 
between them. The other problem has to do with the color scale. Since 
interpolating units yield high values, and the values between similar units are 
so low that they cannot be distinguished on the plot; as can be seen in Figures 
23a and 24a, most hexagons are blue, only a few are red and yellow, where 
yellow should correspond to the middle of the scale. To be able to view borders 
between more homogenous clusters, either the color scale has to be 
transformed or the axis of the colors has to use logarithmic values. This is done 
in Figures 23b and 24b, with the effect that the plots seem brighter. In Figure 
23b, one can see that the upper third of the map (which corresponds to Setosa) 
is more similar within its borders than the lower two thirds. In Figure 24b, that 
shows the Democracy SOM, it can be seen that the lower right area, which 
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corresponds to the countries with the least score, is somewhat separated from 
the rest of the map, while the lower left region is highly coherent. 
The D-Matrix is a derivate of the U-Matrix. For each map unit, the median of 
the previously computed distances to the neighbors is determined. Figure 25 
shows the D-Matrix for the Democracy map (note that the values are rescaled, 
so the colors are different from Figure 24a). However, a better way to visualize 
the D-Matrix is by adjusting the size of the map hexagons, such that large 
patches correspond to small values. This way, it is very easy to recognize 
coherent regions from the plot. 
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0.487

SOM 11-Jan-2004
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Figure 25a, b: D-Matrix visualization of the Democracy SOM: color coding (a) and patch 
size coding (b) 

4.4. Hit Histograms 
Hit histograms are a form of visualization that require an input data set which 
does not necessarily have to be identical to the training set. The data set is then 
visualized with the help of the SOM, namely by drawing the distribution of the 
data on top of the map lattice. Hit histograms are computed by finding the 
BMUs for the set of input vectors and counting how often each prototype 
vector has been selected. The units on the map lattice are then visualized such 
that they represent the number of times they have been selected. Most 
commonly,  either a color scale is used to perform this visualization or a marker 
is placed on top of the map lattice plot, or sometimes this is done by changing 
the size of the unit in a way that frequently selected hexagons are large. Hit 
histograms are also a very reliable way of identifying interpolating units. Hit 
histogram computation can be written formally as 

{ }( )i ihits BMU x x X= ∈ , (23) 
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where X is the set of data samples, and i  denotes the cardinality of a set (i.e. 

the number of elements of this set). 

Total hits Setosa Versicolor Virginica

 

Figure 26a, b, c, d: Hit histograms: All samples (a), Setosa (b), Versicolor (c), Virginica 
(d) 
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Figure 27a, b: Hit histograms: Iris Map with multiple hits (a), Democracy Map (b) 

Figures 26 show the hit histograms for the Iris data set on top of a U-Matrix 
visualization. The first plot shows hits for the whole set of 150 samples without 
distinction of class. If only a representative subset of the samples is selected 
that represents a certain category of samples, the hit histogram becomes even 
more important. This is done with the remaining three plots which show 
histograms for the three species of iris flowers separately, and finally Figure 
27a shows multiple hit histograms simultaneously in different colors. The hit 
histogram visualization for the Democracy map provides useful insight into the 
distribution of the countries as can be seen in Figure 27b. Note that obviously 
not only the regions around the center right are interpolating units, also 
numerous nodes around the center left of the map. Note also that in both cases, 
with the Iris and the Democracy data sets, the samples tend to be crowded near 
the borders of the map (this is called "Border Effect"), however this is less 
obvious in case of the Iris map due to the map's lengthy shape. 
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4.5. Labels 
Another similar approach to show how well the map responds to the input data 
is labeling of the map units. How this technique is applied depends on the how 
many samples there are, or whether the samples are unique or occurrences of a 
class. Labeling is performed by assigning each sample's label to its BMU, and 
then displaying the map and showing the labels attached to the map units. If the 
number of samples is relatively low, each label can be plotted, but if there is 
more than approximately five labels per unit, the visualization will become 
very inconcise. In case of the Democracy data, each sample represents a unique 
class, since any two countries are always considered distinct. For the Iris data 
set, each sample is a randomly selected occurrence of one of the three classes 
of iris flower species. The labels for the Democracy data are thus i.e. 
"Albania", "Turkey" etc. while the samples of the Iris data set are labeled 
"Setosa" etc., where each label occurs more than once. It would be redundant 
to assign the same label to a unit repeatedly. 
Figure 28 shows a labeled map of the Iris data set (the plot has been rotated by 
90 degrees so the labels do not overlap). The approach taken here to prevent 
too many labels is called "voting", only the label with the most occurrences is 
shown. This leads to every model vector having at most one label (units that 
are not selected as BMU for any sample do not receive a label). Exactly the 
same visualization is shown in Figure 30 with a slightly different presentation: 
The labels are not printed verbally, but shown as color codes (green units are 
occupied mainly by Versicolor species, yellow refers to Setosa, blue to 
Virginica, and black fields are not selected as BMU at all). 
Figure 29 show a labeled Democracy map on top of a U-Matrix visualization. 
Here, each label is assigned exactly once, but the map units can hold more than 
one label; in this case, voting is not applicable. 
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Figure 28: Labels acquired by voting of Iris Map 
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Figure 29: Labeled Democracy Map (on top of U-Matrix) 

 

Figure 30: Colors according to most dominant labels of the Iris Map 
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4.6. The LabelSOM method 
A different approach is taken by the LabelSOM method [Rau99]. It does not 
label the units with its samples, but with the variables that are most significant 
for them. For each map unit, the samples mapped to it are determined and for 
each of the components the deviation from the codebook value is determined, 
formally 

( )2

k k k

j i

i i j
x C

q m x
∈

= −∑ , (24) 

where k is the dimension in question. Units that are not selected as BMU are 
not subject to labeling with this method. Also, since the map unit is supposed 
to be the mean of the samples it represents, the above formula is very similar to 
the standard deviation among these samples (if the standard deviation is used, 
then not only units with no samples mapped to it are not labeled but also units 
that only hold one sample, since computation of the standard deviation only 
makes sense for more than one value). Then, the dimensions can be ordered in 

an ascending way according to their 
ki

q , which leads to the most similar 

variables among the samples to be ranked highest. These are the most 
characteristic properties of that unit. Usually, the number of labels is the same 
for all of the units, e.g. the  3 most important ones are then displayed. An 
example for LabelSOM will be given in Section 5.5 when visualizing the 
Growing Hierarchical SOM. 

4.7. Smoothed Data Histograms 
Another recently developed technique is the smoothed data histogram (SDH, 
see [Pam02]). As the name says, they are based on hit histograms, but the map 
units' counters are increased in a different way. For each sample, a ranking can 
be made for the map units ordered by the difference between the sample and 
the prototype vector, so the first entry is the best matching unit, the second one 
the second-best matching unit, to the worst-matching unit. The s best matching 
units are considered as hits and have their counters increased. The parameter s, 
the "spread", determines the length of the trace each sample leaves on the map. 
Since the s best-matching units usually lie on adjacent units in output space 
(unless the topology is violated), the resulting visualization does not suffer 
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from the border effect as much as traditional hit histograms. Large s values 
leads to a blurring effect that results in only one big cluster with a peak value in 
the middle of the map, while the special case s = 1 is identical with the hit 
histogram. Additionally, a weighting scheme has to be defined that constitutes 
the decrease of influence the lower ranked units receive. Formally, this requires 
extra definitions for the membership degree, which employs a linear weighting 
scheme 

i
nd

i

i

/ if m  is BMU for x
( 1)/ if m  is 2  BMU for x

( )
1/ if m  is s-th BMU for x
0 otherwise

s
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c s i
−

=
= −∑ , (26) 

so total membership adds up to 1. The SDH is then acquired by adding all 
membership values for a specific map unit: 

{ }( )i isdh membership x x X= ∈  (27) 

Figure 31 shows a SDH contour plot for the Iris data set (note that it is slightly 
inaccurate since it assumes rectangular lattices). Again, it is obvious that there 
is a sharp border between the upper and the lower two thirds. The peaks are 
approximately in the same positions as they were in the hit histogram. Figure 
32 shows the SDH as a contour plot for the Democracy data: Compared to the 
hit histogram, the peak regions are much more spread apart and form three 
clusters, one in each corner. Figures 33b shows the same SDH as a colored 
plot, and Figure 33a the normal hit histogram so they can be directly compared. 
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Figure 31: Contour plot of SDH applied to Iris Map with s=3 

 

Figure 32: Contour plot of SDH applied to Democracy SOM with s=3 
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Figure 33a, b: Color codi ng for SDH of Democracy Map: Hit histogram (SDH with s=1) 
(a); SDH with s=3, same as figure above with contour plot (b)  

4.8. Fuzzy response and hit trajectories of an individual 
sample 
Sometimes it can be beneficial to visualize how one single, previously selected 
sample of interest is represented by the map. For example, it may be of interest 
what can be learnt from the Democracy SOM about Argentina. Several ways to 
do this have already been introduced in the previous sections, most based on 
BMU computations. In this section, however, two methods will be explained 
that show the Democracy SOM from a country's point of view.  It will be 
shown how countries that share the same BMU differently respond to the 
neighboring units, which is related to the concept of quantization errors (as 
described in Section 3.1). 
The first one visualizes the actual distances between a sample and each 
codebook vector in input space, formally 

( )i icolor x m x= − , (28) 

where x is the sample for which the distance is visualized. 
The results can then be visualized for a plot of the map with color coded units 
representing the distance from the sample. Figure 34a shows the results for 
Argentina, where red units are relatively close to it, and blue ones are very 
distant. The unit with the lowest value (dark red) is this sample's BMU. This 
visualization method is called the fuzzy response of a sample. 
Another method of visualizing the response of a samples is trajectories, which 
takes ranking of distances into account. This gives an answer to the question of 
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how well a single data sample is represented by its BMU. Trajectory plots are 
usually applied to time-series related SOMs, but can also be used to clarify the 
ranking of a sample. Here, it will be used to show the sequence of distance of a 
sample to the map units. Figure 34b shows Argentina's BMU, 2nd BMU etc as a 
trace. If BMU and 2nd BMU are not neighbors on the map, the topology is 
violated (see Section 3.8). In case of Argentina, it is from a topological point of 
view very well represented by the SOM, because its 2nd to 7th BMU are all 
neighbors to its BMU. 

SOM 09-Jan-2004

Argentina  

SOM 09-Jan-2004

Argentina

 

Figure 34a, b: Democracy Map's fuzzy response to sample "Argentina" (a); trajectory of 
BMU, 2nd BMU, up to 7th BMU (b) 

Visualizations of this kind can be interesting for comparing different samples 
mapped to the same unit, in other words, samples that share the same BMU.  
Also, units on the edges or in the corners are specifically interesting since 
outliers are likely to be projected to these positions. Figures 35a and 35b show 
maps for two samples mapped to the lower left corner, Georgia and Singapore. 
Of these, Singapore is clearly an outlier, it has a large quantization error and is 
not represented well by its BMU (the coloring of the map has been set to 
grayscale  so the differences between the two figures are clearly distinct). 
Georgia is also not too typical for this unit, since its trace can be followed 
across a series of non-adjacent units. 
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Figure 35a, b: Fuzzy response (non-scaled color code) and BMU trajectory: Georgia (a) 
and Singapore (b) 

4.9. Projections of codebook vectors 
This section describes the visualization of the map in (a projection of) input 
space. Principal Component Analysis (see Section 3.5) will be used here as 
projection method. This kind of visualization does not show the map lattice as 
in the previous sections, but a 2-dimensional plane with continuous axes. Both 
the data samples the map was trained with and the prototype vectors can be 
projected to this plane. Further, the codebook vectors are connected according 
to their neighborhood relations, thus the map is given its characteristic net- like 
look. Also, this visualization is useful to identify outliers and interpolating 
units. It will also explain which regions are more or less crowded than others. 
This type of plot is especially useful for understanding the training process, if 
several of these projections are produced periodically during of SOM learning 
after certain steps. A disadvantage of this method, however, is, that the input 
space cannot be visualized directly, and thus one has to rely on another 
projection algorithm for reducing dimensionality. 
Figure 36a shows sample and codebook vectors for the Iris data set. The black 
dots represent the model vectors, the lines between them show that these units 
are neighbors on the map. Blue dots denote Setosa samples, green means 
Versicolor, and red Virginica. Compared to the Iris Map visualizations that plot 
the map in its own topology, large distances for the connecting lines suggest 
that there is a "gap" in the map between the region that corresponds to Setosa 
and the rest of the data set. 
In Figure 36b, the codebook of the Democracy map and the countries have 
been projected, and some countries have been highlighted to show the 



 52 

orientation of this plot. Again, it can be seen clearly that there is an 
interpolation region where the distances between the units are large. However, 
it has to be kept in mind that the PCA projection (as described in Section 3.5) 
only covers approximately 50% of the variance in the data manifold. 
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Figure 36a, b: Projection of data and SOM for Iris data (a) and for Democracy data (b) 

An example of how the map adapts to the data manifold during training is 
shown in Figures 37 to 38. The initial state of the map is depicted in Figure 
37a, after the prototype vectors have been set along the 2 greatest principal 
components (linear initialization, see Section 3.5). The diagonal connections 
between the units indicate that the lattice is hexagonal, since the nodes in the 
middle each have six neighbors. Then batch training starts, and Figure 37b 
shows the state of the codebook vectors after the first epoch. At the end of the 
5th epoch, the rough training phase ends, and the training parameters for 
learning rate and the size of the neighborhood kernel are reduced considerably. 
Figure 38a shows the codebook projection before the fine-tuning phase starts. 
After another 20 epochs, training is finished, and the final map is shown in 
Figure 38b. When these figures are compared, it is obvious that most of the 
actual adaptation process happens in the first epoch of training. The difference 
between the map after rough and fine-tuning phases are not noticeable on these 
plots. The whole training process is summarized in table 3, where also the 
quality measures for topographic error and quantization error are given. In this 
example, the quantization error is steadily declining. The topographic error also 
declines after a short initial deterioration. The fact that it ends up at zero 
usually indicates that the data manifold is close to 2-dimensional. 
The sequential training algorithm, which will not be discussed in detail, 
converges much slower than the batch version. 
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State Quantization 
Error 

Topographic Error Figure 

After initialization 0.6763 0.02 37a 
After 1 epoch 0.5845 0.06 37b 

After 5 epochs 0.5069 0 38a 
After 25 epochs 0.5066 0 38b 

Table 3: Training process of the Democracy SOM in detail 
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Figure 37a, b: Training of Democracy SOM: Initial state (a) and after 1st epoch (b) 
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Figure 38a, b: Training of Democracy SOM: After rough training 5 epochs (a) and final 
state (b) 

4.10. Attempts to combine several component planes in 
one plot 
As described above, the codebook vectors cannot be displayed directly for high 
dimensions, so this is also not possible for the model vectors. The 
Visualizations discussed here try to show several components planes in output 
space simultaneously. Again, this is only relatively concise for low-
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dimensional input spaces. Also, if the components are highly correlated, plots 
of this category are easier to interpret. 
The first method presented here is to show the model vectors' components with 
multiple bar-charts. The bars are arranged from the left to the right, and the size 
of the bar corresponds to the relative size of the va lue. Negative values are 
plotted below the horizontal axis. Also, each variable's bar is assigned its own 
color, so the components are easier to track across the plots. Each of the 
Figures 39 and 40 shows the component bars for Iris and Democracy maps. 
The Iris Map can be interpreted relatively easy. In case of the Democracy 
SOM, the individual components are impossible to distinguish. With 60 
variables, this visualizations usually would not make any sense, but since the 
variables are very highly correlated, a fact that has already been exploited in 
large parts of this thesis, the bar-plots suggest that areas are depicted instead of 
independent components. Thus, regions can be clearly recognized, like the 
lower and upper right areas. 

 

Figure 39: Components of Iris Map visualized as bar charts 
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Figure 40: Components of Democracy Map visualized as bar charts 
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5. Clustering of the SOM 

5.1. Introduction to clustering 
Clustering is the task of dividing data points into blocks of similar objects. 
Since the whole data set is represented by a lower number of clusters, some of 
the details are lost, but the resulting subset is simpler and more significant 
regarding the characteristics of the data manifold. It is important to understand  
what actually makes a cluster a cluster: A "good" solution to clustering is 
usually defined as minimizing the distances between vectors mapped to the 
same cluster and maximizing distances between different clusters. Thus, once a 
partitioning has been found, it can be analyzed for the characteristics of the 
samples it holds, especially which features they have in common and which 
variables have a significant variance, and to identify the differences between 
distinct clusters. 
Clustering is also a form of vector quantization, which aims at substituting the 
initial set of data sample by a smaller number of prototype vectors. The SOM 
actually performs vector quantization, since the sample vectors are mapped to 
the usually much fewer prototype vectors. In case of the Democracy data set, 
100 countries are mapped onto a 7x7-SOM (= 49 prototype vectors), a 
reduction by approximately 50 %, but these are still too many units to be 
regarded as clusters. To achieve a better partitioning of the SOM, its prototype 
vectors are usually subjected to a clustering algorithm [Ves00], which ideally 
results in a partitioning into about 2 to 10 classes. Once this clustering has been 
computed, it can be visualized e.g. by plotting the map's grid and coloring the 
prototype vectors with a distinct color for each cluster. This provides an 
implicit quality measure of the SOM that the clusters are actually adjacent on 
the map. 
The two most important categories of clustering algorithms are hierarchical and 
partitioning methods. Hierarchical clustering generates a cluster hierarchy that 
can be visualized as a tree- like graph ("dendrogram"). Usually, the algorithm 
starts with clusters that contain one sample each, in other words, every sample 
has its own cluster. Then, the two most similar clusters are merged at each 
iteration step, until there is only one cluster left which holds all the samples. 
Hierarchical clustering is discussed in Section 5.3. Partitioning algorithms  
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usually have a fixed number of clusters to which the samples are assigned. 
Starting from an initial configuration, the samples are relocated between the 
clusters iteratively to gradually improve them. The most prominent example of 
partitioning clustering is the k-means algorithm, which will be described in 
section 5.2. Other clustering algorithms include grid-based methods and 
density-based algorithms. Grid-based methods divide the input space into 
regions, like of course the SOM, which generates a Voronoi Tessellation of the 
input space. Density-based methods try to identify highly crowded regions. 
There are, however, many more clustering methods than the ones presented in 
this thesis, for a more in-depth discussion and comparison of the algorithms see 
[Ber02, Eck80, Jai99]. 
Clustering algorithms can also be categorized by the type of partitionings that 
are produced, either crisp or fuzzy clusters. This determines how the data 
samples are assigned to the clusters; in crisp clustering, each sample belongs to 
exactly one cluster, while in fuzzy clustering, the samples are members of 
several or all clusters to a varying degree. A prominent example for fuzzy 
clustering is fuzzy c-means. Only crisp clustering methods are discussed in this 
thesis. 
Once a partitioning of the data samples (or in this case the SOM's prototype 
vectors) has been found, it is important to know if the clustering is plausible. 
Similar to the quality measures of the SOM (Section 3.8), a series of quality 
measures exist that evaluate the clustering. In section 5.4., the Davies-Bouldin 
Index will be introduced and applied to the previously found partitionings. 
Section 5.5 introduces a recent extension to the SOM, the Growing 
Hierarchical Self-Organizing Map, which will be used to inspect the 
Democracy SOM at various levels of detail. 

5.2. k-means clustering 
K-means [Mac67] is probably the most popular clustering tool in scientific 
applications. It is an iterative partitioning clustering method that distributes the 
input vectors among k clusters. Each cluster is represented by the mean of the 

samples assigned to it, the centroid jc . The error function the algorithm 

minimizes is 
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where k is the number of clusters, ix  are the samples, and jC  are the actual 

clusters. After usually random initialization of the centroids, the samples are 
assigned to the clusters and the centroids are recomputed as the arithmetic 
mean of the samples. This step is repeated until the solution does not change 
anymore. 
It has been shown that the k-means algorithm is actually a special case of the 
SOM with neighborhood radius of 0. Since the units cannot influence each 
other as opposed to the SOM algorithm, k-means is much more dependant on 
the initialization of the prototypes (centroids), and it is possible that one or 
more of the clusters remain empty. 
Another disadvantage is that the number of clusters k has to be defined in 
advance. This can, however, be overcome by making use of an algorithm that 
automatically adapts to the best clustering size determined by a validity index, 
for an example see [Sip01]. One of these indices will be described in Section 
5.4. 
For the Iris data set, it is especially interesting to see if the k-means clustering 
algorithm yields the same partitioning results that the findings from the 
previous visualization methods suggested. The U-Matrix and SDH 
visualizations showed a gap that separates the upper third from the rest of the 
map, suggesting that for k = 2, the cluster should cover these regions 
separately. Figure 41a shows the iris map's partitions for 2 clusters, which 
matches this assumption. Another interesting choice is k = 3, to see whether the 
clusters also match the distribution of the iris species (compare Figure 27a on 
page 43). Figure 41b shows a k-means clustering of k = 3. When compared to 
the results for k = 2, note how the clusters overlap. This redistribution of 
vectors between clusters is characteristic for partitioning clustering algorithms, 
this could not happen with hierarchical clustering methods (see the next 
section). Again, the k-means clustering algorithm does not say anything about 
the plausibility of the choice of k or the quality of the partitioning. 
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Figure 41a, b: k-means clustering of the Iris SOM: k = 2 (a), and k = 3 (b) 

Figure 42 shows a possible k-means clustering of the Democracy map with 6 
clusters. This choice for k is actually quite a good one, as the next sections  will 
show, so the clusters will be described here (this description refers to 
"democratic score", which will be introduced at a later point, Section 6.4, 
which provides a quality measure of the sample and prototype vectors similar 
to the Pilot Ranking): 

• Yellow cluster (top right): highest democratic quality countries, mostly 
industrialized countries (EU, Israel, North American and Australian 
countries, Japan) 

• Dark red cluster (top left): second-best democratic score, Eastern 
European, South American and some Caribbean countries, Korea, 
Greece 

• Dark blue cluster (bottom left): average ranked countries, South 
American and Asian (Middle Eastern) countries, Turkey, Bosnia and 
Herzegovina, Croatia, Morocco 

• Light blue cluster (bottom right): relatively low ranked countries, 
mostly developing and poor countries from Asia and Africa 

• Orange cluster (bottom center): lowest score, note that this cluster is in 
between two higher ranked ones (light blue, dark blue). This cluster 
holds 3 map units only, with developing countries from Africa, and 
Kuwait 

• Cyan cluster (center right): holds mostly interpolating units, thus the 
democratic score is not very helpful; its lengthy shape is due to the 
border region between the yellow and the light blue cluster. 
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Figure 42: k-means of the Democracy SOM with k=6 

5.3. Hierarchical Clustering 
Hierarchical clustering differs from partitioning clustering in the way that the 
number of clusters does not have to be given in advance as a parameter, and 
elements can not be redistributed between clusters at later iterations. 
Hierarchical clustering algorithms are categorized into divisive and 
agglomerative methods, where only the latter will be discussed in this section, 
and an example for a divisive method will be given in the Section 5.5. 
Agglomerative methods build a hierarchy of partitions in a bottom-up manner 
starting with each element in its own cluster. At every iteration, the two closest 
(according to a specific distance measure) clusters are merged, until there is 
only one big cluster left that contains all the elements. This whole process can 
be visualized as a dendrogram, a tree- like figure that shows exactly at which 
step two clusters are joined. The distance measure, also called linkage metric, 
is very important here (note that "distance" is meant as distance between 
clusters, not between vectors, so Euclidian Distance, for example, is not 

applicable). The distance measure is written as ( , )d r s  with r, s distinct cluster 
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indices (also, in the following, rix  and sjx  are the vectors assigned to clusters r 

and s, respectively), and the major linkage metrics are: 

• Single Linkage (also "nearest-neighbor linkage"): This metric is 
defined as the distance between the closest vectors across the 
clusters, formally 

single( , ) min( )ri sjd r s x x= − . (30) 

One of the problems with single linkage is that it is subject to a 
phenomenon called chaining, which may occur in special kinds 
of data-sets, and refers to the fact that clusters are wrongly 
joined in case of outlier data points ("chaining points")  
connecting them. Single linkage is related to finding the  
minimal spanning tree. For an example of how single linkage 
works, see Figure 43a; it shows the distances from cluster I to 
clusters II and III, obviously I will be joined with III. Single 
linkage is able to find clusters of arbitrary shape, which means 
that these clusters are not necessarily close to a cluster center. 
This makes single linkage unique compared to the other 
clustering methods discussed in this work, which all discover 
spherical clusters. A disadvantage of single linkage is that it 
tends to join single vectors (outliers) very late in the hierarchy, 
which often leads to many meaningless clusters and few very 
large ones. 

• Complete Linkage (also "furthest neighbor linkage"): This distance 
measure is defined as distance between the two vectors that are 
farthest away from each other,  

complete ( , ) max( )ri sjd r s x x= − .  (31) 

Figure 43b depicts how complete linkage works with the same 
clusters as above: Instead of joining clusters I and III, according 
to this distance metric, I is closer to II. Complete linkage, as 
opposed to single linkage, finds spherical clusters instead of 
clusters of arbitrary shape, and does not suffer from chaining 
effects. 
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• Average Linkage: This distance measure is defined as the mean of the 
distances between all possible pairs of data points across the 
clusters, formally 

1 1

1
( , )

sr nn

average ri sj
i jr s

d r s x x
n n = =

= −∑∑   (32) 

where rn  and sn  are the number of samples that belong to iC  

and jC . Average linkage results in a partitioning of the data 

points that is somewhere in between single and complete 
linkage partitionings. Average linkage also finds spherical 
clusters. 

III
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Figure 43a, b: Distances measures of hierarchical clustering methods: Single linkage (a) 

and complete linkage (b) 

Other important linkage methods include Ward's hierarchical clustering 
method (also "error sum of squares method") and centroid linkage, which will 
be discussed in Section 5.4. All these algorithms have been proven to be 
special cases of the equation of Lance and Williams [Lan67]. 
In Figures 44, 45, and 46, the Iris Map is shown after it has been clustered with 
the 3 linkage methods described above, and the results depicted for direct 
comparison of the dendrogram and clustering results for 10, 5, 3 and 2 clusters. 
Figure 44 shows the results for single linkage, Figure 45 for average linkage, 
and Figure 46 for complete linkage. There is a significant difference between 
single linkage and the other two methods. The most interesting figures are the 
ones that show 3 clusters. In case of average and complete linkage, these 
approximate the expected division into the regions occupied mainly by either 
of the 3 iris flower species. Here, single linkage differs: The interpolating 
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border between the upper third and the rest is identified as a cluster. It has to be 
noted though, that the distances between the clusters are very close in simple 
linkage distance as can be seen from the dendrogram in Figure 44a The 
similarities between complete and average linkage are also reflected by their 
similarly- looking dendrograms. 
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Figure 44a, b, c, d, e: Single linkage of Iris Map: Dendrogram (a), cluster sizes 10 (b), 5 
(c), 3 (d) and 2 (e) 
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Figure 45a, b, c, d, e: Average linkage of Iris Map: Dendrogram (a), cluster sizes 10 (b), 5 
(c), 3 (d) and 2 (e) 
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Figure 46a, b, c, d, e: Complete linkage of Iris Map: Dendrogram (a), cluster sizes 10 (b), 
5 (c), 3 (d) and 2 (e) 

When applied to the Democracy Map, the results for complete and average 
linkage are also very similar, but not to the same extent as with the Iris Map. 
Yet again, single linkage differs significantly. The results of the 3 linkage 
clustering methods are shown in Figures 47, 48 and 49, with plots for 10, 7, 5 
and 3 clusters. If the dendrogram for single linkage is as skewed as in this case, 
this is an indicator that chaining (as described above) has occurred. Also, 
skewed dendrograms hint that there is one large cluster and many very small 
ones, in case of the Democracy SOM, many clusters that consist of only one 
single map unit. Although the partitionings obtained by single linkage differ 
strongly from the clustering algorithms of the other methods, the result 
indicates that the region on the center of the bottom (which is recognized as a 
cluster in Figures 47e) is clearly separated from the rest of the map. 
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Figure 47a, b, c, d, e: Single linkage of Democracy Map: Dendrogram (a), cluster sizes 10 
(b), 5 (c), 3 (d) and 2 (e) 
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Figure 48 a, b, c, d, e: Average linkage of Democracy Map: Dendrogram (a), cluster sizes 
10 (b), 5 (c), 3 (d) and 2 (e) 
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Figure 49 a, b, c, d, e: Complete linkage of Democracy Map: Dendrogram (a), cluster 
sizes 10 (b), 5 (c), 3 (d) and 2 (e) 

5.4. Cluster validity 
An important question is what actually makes a cluster a cluster. This is the 
task of cluster validity measures, which try to evaluate any given partitioning. 
To find out which partitionings are "good" or "bad", some definitions have to 
be made. It is commonly agreed upon that the clusters should be as compact 
and as sharply separated from other clusters as possible. One possible way to 
describe this formally is 

( ) ( )
( , )
i j

i j

S C S C
d C C

+
,  (33) 

where S(C) measures the compactness or density of cluster C, what is called 
within- or intra-cluster distance, and d(Ci,Cj) describes the between- or inter-
cluster distance. Thus, formula 33 has to be as low as possible for all pairs of 
clusters to achieve a good clustering. 
The distance measures d and S require additional definitions. Some of the most 
commonly-used between-cluster distances have been introduced in the 
previous section: dsingle,  daverage, and dcomplete in formulas 30, 31 and 32. A 
distance measure that is required for the definition of an important cluster 
validity index is called centroid distance, and is shown in Figure 50. The plot 
shows the clusters as in the examples above (Figure 43), and shows the cluster 
centroids, which are computed by calculating the mean of all vectors in each 
cluster. Then, the distance is measured with the usual metric between these 
points (as indicated by the red lines in Figure 50). This can be expressed 
formally as 

( , )centroid r sd r s x x= − . (34) 
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Figure 50: Centroid distance measure between clusters 

For measuring the dispersion, the following methods have to be introduced, 
which are the most important within-cluster distance metrics: 

• Nearest Neighbor: similar to the concept of single linkage, the average 
distance between each point and its nearest neighbor is 
computed. Thus, it is a so-called local method. The formula for 
this measure can be written as 
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• Centroid: As with dcentroid, this density measure is based on centroid 
computation. The average deviation is calculated from the 
cluster center and indicates how compact the cluster is, formally 

( ) ix C
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x x
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∑
.  (36) 

This method emphasizes spherical clusters, and is non- local 
since it does not rely on nearest neighbors only.  

• Variance: Similar to the centroid method, this one favors short 
distances and small clusters: 

2
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i
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x C

S C x x
∈

= −∑ .  (37) 

This is also a non- local method. 
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Now that these distance concepts have been introduced, the Davies-Bouldin 
index (DB-Index, [Dav79]) can be introduced. It is based upon centroid 
distance measures dcentroid and Scentroid , and thus assumes that (good) clusters are 
hyperspheres. This way, local methods like single linkage are penalized. The 
Davis-Bouldin index is computed as 

1

( ) ( )1
( ) max

( , )

C
centroid i centroid j

DB j i
i centroid i j

S C S C
I C

C d C C≠
=

 + 
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  
∑ ,  (38) 

where C is the set of clusters. 
When applied to the hierarchical clustering methods, this index can be 
computed for each level of the hierarchy, and since these algorithms are 
deterministic (in contrast to k-means), the resulting indices are reproduc ible. 
Other quality methods exist, especially for hierarchical clustering methods 
[Hal01], but cannot be introduced here. In Figure 51, the DB-Index is plotted 
for single (black, solid line), average (blue, dotted) and complete (red, dashed) 
linkage, where the x-axis refers to the number of clusters, and the y-axis to the 
corresponding index. This figure shows cluster sizes from 2 to 49, where 49 is 
the clustering where each cluster consists of only one vector (49 is the number 
of prototype vectors in the 7x7 map). Complete linkage seems to produce the 
best clusters according to this index, with peak values at the levels for 4 and 8 
clusters. Single linkage is constantly below the other two methods, with one 
notable exception at 3 clusters (see Figure 47e). 
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Figure 51: DB-Index for partitionings obtained by hierarchical clustering methods  

For k-means clustering, this index is important since it can be used to 
determine the number of clusters k by computing k-means clusters for a range 
of k and selecting the partitioning with the highest DB-Index. The result s for k 
between 2 and 15 are depicted in Figure 52a, for each k the best result of 20 
runs is given. The peak values are for k = 2, 5 and 13, shown in Figures 52b, 
53a and 53b. This is not deterministic and thus not necessarily reproducible. 
For k = 13, the red cluster on the bottom of the plot is split apart, indicating 
that there is a slight violation of topology due to interpolating effects. 
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Figure 52a, b: DB-Index of k-means clustering of the Democracy Map by number of 
clusters (a); k-means of Democracy Map with k=2 (b) 
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Figure 53a, b: k-means of Democracy Map with k=5 (a); k-means of Democracy Map 
with k=13 (b) 

5.5. Growing Hierarchical SOMs 
An extension to the traditional SOM is the Growing Hierarchical Self-
Organizing Map (GHSOM) [Dit00, Dit03]. It aims at adapting the net to the 
data and not vice versa (in a way, the fixed grid size of the traditional SOM is 
considered a shortcoming). It consists of several layers of rectangular 2-
dimensional SOMs that can be arranged and visualized as a quad-tree- like 
structure. During training, there are two different ways the GHSOM can grow. 
The first way is that each layer can grow in terms of its prototype units, such 
that the original 2x2 map size is enlarged by insertion of either a row or a 
column of new units between existing ones. At a certain point, the map ceases 
to grow. Then, the units are inspected, and if the samples mapped to one unit 
are highly different, such that the prototype does not represent the samples 
precisely enough, another layer of 2x2 units is added below the unit and 
training is continued as described above. Each of the two growing processes is 
governed by a parameter. The training and growing procedure is described in 
more detail in the following paragraphs. 
The uppermost layer ("layer 0") holds only a single node, the model of which 

is the mean of all input samples. Then, the mean quantization error 0mqe  for 

this prototype vector is computed, which measures the deviation of the 
samples, formally, 

0 0
1

:
j

j
x X

mqe m x
X ∈

= −∑   (39) 
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where X is the set of all samples, and m0 is the single model vector of layer 0. 

X  denotes the cardinality of X (the number of samples). Note that this 

formula is equal to (3), but has to be defined again to match the indexing and 
notation schemes of the GHSOM. In case of the single unit layer 0, all the 

sample vectors are mapped to this unit. The value 0mqe  will be referred to 

later; it denotes how far the data set is spread in input space. Below layer 0, 
layer 1 with initially 4 (2x2) units is created and trained according to the usual 
SOM learning rule (as described in Section 3.4.). After a previously defined 

number of steps λ  of the training process, the mean quantization errors for all 
the units are computed, 

1

j i

i i j
x Ci

mqe m x
C ∈

= −∑ ,  (40) 

with iC  the subset of the samples for which unit i is the BMU. Furthermore, 

the map's mean quantization error MQE can be determined, formally written as 

1
m i

i U

MQE mqe
U ∈

= ∑ . (41) 

As long as  

1m uMQE mqeτ< ⋅   (42) 

holds, the training of the current map is continued (mqeu is the quantization 
error of the corresponding unit u in the upper hierarchy layer). Here, the first 

parameter 1τ  comes into play that delimits the growth of the map's size. If the 

stopping criterion is not met, the error unit e is determined, namely the unit 
with the largest mean quantization error, formally 

argmax( )ii
e mqe= . (43) 

Then the most dissimilar unit d is computed, that is, one of up to 4 neighbors of 
e with the largest distance in input space. Between these two units a row or 
column of units is inserted that are initialized with an interpolated value (i.e. 
mean) of the existing neighboring units. Figure 54 shows this kind of growth 
process. 
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Figure 54:Insertion of a row between error unit e and most dissimilar unit d 

After that, the standard SOM training process is continued for another λ  steps, 
and when the rule in formula 42 does not hold anymore, training of the current 
layer is finished. Then the hierarchical growing is applied, if the criterion 

2 0imqe mqeτ< ⋅  (44) 

is met, where 2τ  is the second parameter. All units refer to the layer 0 unit's 

quantization error regardless on which layer the current node is located. Note 
that this growing process does not occur always, only if the unit still requires a 
more detailed representation. Also, it does not occur evenly across one layer, it 
is for example possible that a node is finished with training while its 
neighboring unit requires one (or even more) layers of fine-tuning. If this is the 
case, another SOM of initially 2x2 nodes is created on the next layer (see 
Figure 55), and trained with the subset of the samples for which the upper unit 
is the BMU. 

Layer n

Layer n + 1

Layer n

Layer n + 1

 

Figure 55: Hierarchical growth process of the GHSOM 

Thus, the parameters 1τ  and 2τ  define the thresholds for the two growth 

processes. Both parameters have to be between 0 and 1. Relatively small values 
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of 1τ  lead to a lengthy growth of each layer and big maps, while large values 

lead to a shorter training of each map and thus to smaller map sizes. If 

parameter 2τ  is relatively small, units tend to be expanded on the next layer 

more easily, while large values result in flat hierarchies. 
Trained GHSOMs can be visualized in a quad-tree like way, with deeper layers 
nested in their respective preceding unit. Most of the visualization techniques 
described in the previous chapters can not be applied to the GHSOM or are 
more difficult to apply, like the U-Matrix. However, hit-histogram based 
visualization and component planes can be visualized as with traditional 
SOMs. 

Figure 56 shows a GHSOM with 1τ  = 0.8 and 2τ  = 0.0001. The plot has been 

labeled such that the lowest level units are labeled with the countries they are 
closest. It is apparent that the GHSOM leads to a very low number of 
interpolating units (at least at upper layers, the lowest layers do actually 
contain units that are not BMU of any sample). The map's layer 1 has 4 units, 
the growth process has not enlarged the grid of this map. Also, it is very similar 
to the traditional SOM with regard to the position of the countries of the map. 
Figure 57 shows a component plane (H7 – Life expectancy at birth) of the 
same map. At an overall impression, this method results in a very similar 
distribution as the traditional Democracy SOM. 
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Figure 56: Labeled Democracy GHSOM 

 
Figure 57: Component plane H7 (grayscale) 

Another way to label the map is the LabelSOM method as described in Section 
4.6. It emphasizes on showing the characteristic dimensions for which the 
samples mapped to a node are similar. Figure 58 shows a plot of the GHSOM 
labeled with this method (note that only units with at least 2 samples are 
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shown). Obviously, there are two dimensions that dominate this visualization 
type, P5 and P6. This is due to the fact that both of these indicators are binary 
valued, which hold the value "1" for most of the countries (approximately 
95%). 
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Figure 58: LabelSOM method applied to GHSOM 
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6. In-depth discussion of the Democracy SOM 

6.1. Overview 
In this chapter, specific aspects of the Democracy SOM will be investigated. 
The visualization techniques and clustering methods will be exploited to 
provide interesting insights into the Democracy data manifold and what can be 
learnt from it using the SOM, and how these results can be presented. To 
achieve this, several plots will be combined to reflect different findings 
simultaneously and to maximize the amount of information that is transported 
in a single plot. Also, a-priori knowledge will be taken into account, like 
membership to the NATO, or the fact that dimensions can be grouped to their 
indicator categories like "Health" or "Political System". These real-world 
properties will be compared to the Democracy SOM. 
The rest of this chapter is organized as follows: 
Section 6.2. investigates labeling and coloring schemes according to 
geographic location (continents) of the countries. Section 6.3. presents hit 
histograms by countries according to membership of treaties and political 
unions. In section 6.4., the 60 component planes of the Democracy data are 
reduced to the 6 main categories, and thus a "score" is determined for each of 
them; several ways to visualize this will be shown. 

6.2. Visualizing the map according to continent 
distribution 
In this section, the countries are assigned labels according to the continent they 
are located on. Figure 59a shows a map where these labels have been 
substituted by colors: The map shows the results from the voting procedure, 
where only the label with the most occurrences is kept. The colors have the 
following meaning: 

• Red: Europe 

• Green: Africa 

• Yellow: South America 

• Blue: Asia 

• Orange: North America 

• Light blue: Australia 
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• Black: no samples assigned to this unit 
Note that the colors are not distributed evenly at all, this is partly due to the 
fact that the continents are not represented by the same number of countries 
each (i.e. there are 34 samples from European countries, but only 2 from 
Australia). It can be seen that from the upper right to the upper center part of 
the map European countries clearly dominate. North American and Australian 
countries are present only in this area. The center left is occupied mainly by 
South American and the bottom right by African countries. 
A similar approach with a different visualization type is shown in Figure 59b. 
Here, pie charts are shown that reflect the relevance of each continent to a unit. 
Empty units indicate that no country has been assigned to it. The colors refer to 
the continents as with the previous plot. 

 
Figure 59a, b: Most dominant continent (a); relative distribution of continents on 

Democracy SOM as pie chart visualization (b) 

However, both plots do not show how many countries are actually mapped to 
any of the units, except for the black patches and the missing pie charts for 
interpolating units. Figure 60 shows the pie chart plot again where the size of 
the unit corresponds to its total number of hits, according to the concept 
introduced in Section 4.1.3. Thus, the plot reveals both how many countries are 
mapped to a unit, and the relative importance of each continent to this unit. 
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Figure 60: Relative distribution of Democracy Map with scaled pie charts reflecting the 

absolute number of hits 

6.3. Hit histograms by treaties 
In case of the Democracy SOM, the hit histogram visualization is used 
extensively to show the distribution of countries by certain criteria (like 
membership of a specific treaty). Figure 61 provides interesting insight in the 
location of the treaties' members and their relation to the distribution according 
to the Democracy Map, the following observations can be made: 

• Most of the treaties' countries are actually very close together in output 
space, they are obviously close together in terms of democratic value, 
with some outliers. 

• The EU (European Union), OECD (Organization for Economic Co-
operation and Development), AU (African Union) and NATO (North-
Atlantic Treaty Organization) form the most compact clusters. 

• The countries of the OAS (Organization of American States) are mostly 
on adjacent map units with some minor exceptions. 

• Countries of OIC (Organization of the Islamic Conference), APEC 
(Asia-Pacific Economic Cooperation), OSCE (Organization for 
Security and Cooperation in Europe) and CE (Council of Europe) are 
spread between rather distant regions of the map, so there seems to be 
no correlation between membership of any of these to the democratic 
score. 
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Figure 61: Hit histograms of treaties 

6.4. Computing a "score" for qualities within indicator 
categories 
Another approach takes the meaning of the dimensions and the possibility to 
group them into major categories (like "Health", "Environmental 
Sustainability") into account. This is a two-step procedure, first the variables 
have to be reduced to their categories, then the 6 resulting values can be 
interpreted as if they were component planes. Since the 60 original indicators 
have been selected in a way that higher values always mean "better", these 
aggregated values can be interpreted as a "score" of the values in question. This 
is done by simply calculating the weighted average of each category's 
indicators (see Chapter 2 for the categories and relative weights). This score 
can be written formally as 

1
( ) i i

i Ii
i I

score x w x
w ∈

∈

= ⋅∑∑
, (45) 
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where x is the data vector for which the score has to be determined, and I is a 
set of indices that denotes which dimensions should be regarded. 
The resulting score can be visualized for the prototype vectors similar to a 
component plane. For the Democracy data, 7 scores have been calculated: one 
for each category (Figure 62) and a total score (Figure 63) that averages all of 
the variables (in this case, I holds indices of all dimensions). This overall score 
is an attempt to measure the quality of a democracy very similar to the 
evaluating scheme of the Democracy Award. These quality measures allow a 
series of conclusions: 

• Political System: very similar to overall score, not surprisingly since 
this category is as influential as the rest of the categories combined.  

• Knowledge : similar to overall score and politics dimension, but the 
lowest values are on the rightmost part of the bottom instead of the  
middle part. 

• Health: high values in this category are spread towards regions with a 
medium score, and similar to the Knowledge dimension, the worst 
score is assigned to the bottom right corner. 

• Economy : very bad score along the left border (i.e. Russian 
Federation), apart from that, similar to Knowledge 

• Gender Equality: very similar to Health, but the countries in the 
bottom part of the map receive slightly below average values 

• Environmental Sustainability: almost directly opposed to other 
ratings; good values for lower right (Liberia, Malawi, mostly 
developing countries), bad values for upper right (US, Canada, EU) and 
center of left border (Russian Federation, less developed former Eastern 
Bloc). This is partly due to the fact that this category consists of only 5 
indicators, 2 of which measure CO2 emissions, and several samples 
have many MVs. 
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Figure 62: Reduced component planes 

Figure 63 shows a color coded map with the total Democracy score. It also 
shows the labels for the countries. Again, it can be seen from all of these plots 
that there seems to be a border on the right center of the map. Apart from this 
gap, the visualizations are mostly very continuous. This leads to the 
assumption that the data is ordered this way, in a U-shape manner, from the 
lower right, to the left, and to the upper right according to its quality of 
democracy.  
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Figure 63: Democratic score 

The scores can of course be visualized in a single plot with multiple bar charts, 
which is especially helpful in discovering correlations between the indicator 
categories. As opposed to Figure 40 (in section 4.10.) which depicted all of the 
60 indicators at once, this visualization type does make sense with only 6 
components to be visualized. Figure 64 shows the reduced planes (the order of 
the bars, from left to right: "Political System" (red), "Knowledge" (yellow), 
"Health" (green), "Economy" (cyan), "Gender Equality" (blue), and 
"Environmental Sustainability" (purple)). This figure is, however, not entirely 
accurate and misleading with respect to the relative importance of the "Political 
System" dimension, which has a 5 times higher weight than the other 
dimensions. To reflect the real significance of the first component here, Figure 
65 shows the same but with repeating the PS-category due to its true influence, 
the rest of the categories are shifted to the right. The purpose of this second 
plot is to explain how the overall score is acquired. 
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Figure 64: Reduced components to 6 main categories visualized as box plots 

 

Figure 65: Reduced components to 6 main categories visualized as box plots, repeating 
"Politics" component 4 times to reflect its importance according to the Pilot Ranking 
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7. Conclusion 
In this thesis, the SOM algorithm and its application to a political data set have 
been investigated. 
In Capter 2, the data set, consisting of countries and political indicators, has 
been described. Also, a benchmark data set was introduced and several 
distance metrices between the data points have been investigated.  
In Chapter 3, the Self-Organizing Map was discussed, and compared to similar 
algorithms from the areas of Vector Projection and Quantization. Further, 
several ways to initialize and configure the SOM has been shown. The 
Democracy SOM has been described in detail, which served as the basis for 
experiments in the later chapters. Also, several ways to deal with missing 
values have been shown, where especially the interpolation method using 
SOMs has proven very valuable.  
In Chapter 4, a range of common visualization methods of the SOM has been 
described. These visulizations have been applied to the Democracy SOM to 
provide insight into the distribution of the countries on the map. Other 
techniques showed the values of individual indicators across the map, labels, 
local distanced between neighboring units, and multiple components. In 
particular, the visualizations revealed the rather linear nature of the Democracy 
data set, and hinted that the countries on the map are distributed in groups that 
reflect how developed and advanced the countries are. The Democracy SOM is 
evenly crowded along its upper, left and lower parts, while there is an 
interpolating gap in the center of the right part that separates the least 
developed countries from the most developed ones. 
In Chapter 5, clustering methods of the SOM have been described. The purpose 
of clustering is to identify coherent regions, and several partitionings of the 
map have been shown. Hierarchical clustering methods have been compared to 
the k-means algorithm, and have been tested by a validity measure. The 
experiments reaffermed the assumption that the only large gap has been the 
interpolating region on the right side of the map, while the map was slightly 
less coherent on the lower side than on the upper side. Further, a variant of the 
SOM, the Growing Hierarchical SOM, has been discussed. 



 84 

The combination of the visualization concepts to investigate whether the 
Democracy SOM (and also the underlying data set) can be compared to real-
world categories like political treaties has been perfomed in Chapter 6. First, 
the geographical distribution was analyzed. It was obvious, that the upper part 
was largely dominated by European, and the lower part mostly by African 
countries. Then, hit histograms were used to show the positions of members of 
certain political and economic treaties on the map. Most of them have been 
located in contingent areas of the map (with a few exceptions), which indicates 
that the members of those treaties are on similar levels according to democratic 
value. Finally, an attempt was made to reduce the indicators to a single "score" 
that reflects this democratic value on a qualitative scale, similar to the 
Democracy Award Pilot Ranking. These experiments showed that the highest 
score was assigned to the upper right area (EU, USA), steadily declining to the 
lower right area (developing countries). 
The SOM has provided several interesting insights into the Democracy data 
set. It is also very interesting that the SOM's way to handle missing values 
produces very similar results as the Pilot ranking approach. Regarding the data 
set, the SOM has revealed that the countries ranked in the upper half in terms 
of democratic score have a very stable linear correlation regarding the 
dimensions, while on the lower end of the ranking, the variables are not as 
related anymore. This is revealed by the reduced compont planes, which partly 
show the low values in different places, while high values are constantly in the 
upper right region. The distribution of the countries according to treatie s and 
continents affirmed this hypothesis, since treaties between industrial countries 
are more compact that i.e. the Organization of the Islamic Conference. 
Further research could aim at automatic report generation or finding more 
diverse visualization methods. The most interesting part of this work was 
definitely Chapter 6, and efforts could be undertaken to furher simplify SOM 
visualizations for mainstream use. These visulizations are relatively easy to 
comprehend even to persons who are not experts with SOMs, so maybe this 
could be a promising research field. 
In the field of political sciences, it will be interesting to see how the quality 
measurement of democracies evolves. Currently, there are very few projects 
that try to rank democracies qualitatively, and research in this area is rather 
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limited. The Global Democracy Award could be an important stimulus for this 
type of academic research.  
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Appendix A: Countries and Data Collections 

List of Countries 
Country Name Abbreviation Country Name Abbreviation 

Albania ALB Liberia LBR 
Argentina ARG Lithuania LTU 
Armenia ARM Macedonia, FYR MKD 
Australia AUS Madagascar MDG 
Austria AUT Malawi MWI 
Azerbaijan AZE Malaysia MYS 
Bangladesh BGD Mali MLI 
Belgium BEL Mauritius MUS 
Benin BEN Mexico MEX 
Bolivia BOL Moldova MDA 
Bosnia and Herzegovina BIH Mongolia MNG 
Botswana BWA Morocco MAR 
Brazil BRA Mozambique MOZ 
Bulgaria BGR Namibia NAM 
Burkina Faso BFA Nepal NPL 
Canada CAN Netherlands NLD 
Central African Republic CAF New Zealand NZL 
Chile CHL Nicaragua NIC 
Colombia COL Norway NOR 
Costa Rica CRI Panama PAN 
Croatia HRV Papua New Guinea PNG 
Czech Republic CZE Paraguay PRY 
Denmark DNK Peru PER 
Dominican Republic DOM Philippines PHL 
Ecuador ECU Poland POL 
El Salvador SLV Portugal PRT 
Estonia EST Romania ROM 
Ethiopia ETH Russian Federation RUS 
Finland FIN Senegal SEN 
France FRA Singapore SGP 
Gabon GAB Slovak Republic SVK 
Georgia GEO Slovenia SVN 
Germany DEU South Africa ZAF 
Ghana GHA Spain ESP 
Greece GRC Sri Lanka LKA 
Guatemala GTM Suriname SUR 
Guinea-Bissau GNB Sweden SWE 
Honduras HND Switzerland CHE 
Hungary HUN Tanzania TZA 
India IND Thailand THA 
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Ireland IRL Trinidad and Tobago TTO 
Israel ISR Turkey TUR 
Italy ITA Uganda UGA 
Jamaica JAM Ukraine UKR 
Japan JPN United Kingdom GBR 
Jordan JOR United States USA 
Korea, Rep. KOR Uruguay URY 
Kuwait KWT Venezuela, RB VEN 
Latvia LVA Zambia ZMB 
Lesotho LSO Zimbabwe ZWE 
 

List of Indicators 

Political System 
Indicator 
name Description 

Relative 
importance

Overall 
influence 

P1 Political rights 12.5 % 6.25 % 

P2 Civil liberties 12.5 % 6.25 % 

P3 Freedom of Press 12.5 % 6.25 % 

P4 Transparency versus corruption 12.5 % 6.25 % 

P5 Change of the government head 12.5 % 6.25 % 

P6 Partial or complete change of government parties 12.5 % 6.25 % 

P7 Duration of months with female head(s) of government 12.5 % 6.25 % 

P8 Average percentage share of female cabinet members 12.5 % 6.25 % 
 

Gender Equality (Educational and Economic) 
Indicator 
name Description 

Relative 
importance

Overall 
influence 

G1 
Employees, agriculture, female/male (% of 
economically active female/male population)  

5 % 0.5 % 

G2 
Employees, industry, female/male (% of economically 
active female/male population)  

5 % 0.5 % 

G3 
Employees, services, female/male (% of economically 
active female/male population)  

5 % 0.5 % 

G4 
Labor force activity rate, female/male (% of 
female/male population ages 15-64)  

5 % 0.5 % 

G5 
Labor force activity rate, female (% of female 
population ages 15-64)  

10 % 1 % 

G6 
Unemployment, female/male (% of female/male labor 
force)  

5 % 0.5 % 

G7 Unemployment, female (% of female labor force)  10 % 1 % 

G8 Primary education, pupils (% female)  10 % 1 % 

G9 School enrollment, secondary, female (% gross)  10 % 1 % 

G10 School enrollment, secondary, female (% net)  10 % 1 % 
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G11 
Illiteracy rate, adult female/male (% of females/males 
ages 15 and above)  

5 % 0.5 % 

G12 
Illiteracy rate, adult female (% of females ages 15 and 
above)  

10 % 1 % 

G13 Life expectancy at birth, female (years)  10 % 1 % 
 

Economy 
Indicator 
name Description 

Relative 
importance

Overall 
influence 

E1 Central government debt, total (% of GDP)  11.1 % 1.1 % 

E2 GDP per capita, PPP (current international $)  11.1 % 1.1 % 

E3 GNI per capita, PPP (current international $)  11.1 % 1.1 % 

E4 Overall budget deficit, including grants (% of GDP)  11.1 % 1.1 % 

E5 Inflation, consumer prices (annual %)  11.1 % 1.1 % 

E6 Food price index (1995 = 100)  11.1 % 1.1 % 

E7 Labor force, children 10-14 (% of age group)  11.1 % 1.1 % 

E8 Unemployment, total (% of total labor force)  11.1 % 1.1 % 

E9 
Unemployment, youth total (% of total labor force ages 
15-24)  

11.1 % 1.1 % 

Health 
Indicator 
name Description 

Relative 
importance

Overall 
influence 

H1 
Health expenditure per capita, PPP (current 
international $)  

5.6 % 0.56 % 

H2 Health expenditure, private (% of GDP)  5.6 % 0.56 % 

H3 Health expenditure, public (% of GDP)  5.6 % 0.56 % 

H4 Hospital beds (per 1,000 people)  5.6 % 0.56 % 

H5 Immunization, DPT (% of children under 12 months)  5.6 % 0.56 % 

H6 
Immunization, measles (% of children under 12 
months)  

5.6 % 0.56 % 

H7 Life expectancy at birth, total (years)  50 % 5 % 

H8 Mortality rate, infant (per 1,000 live births)  5.6 % 0.56 % 

H9 Mortality rate, under-5 (per 1,000 live births)  5.6 % 0.56 % 

H10 Physicians (per 1,000 people)  5.6 % 0.56 % 
 

Knowledge 
Indicator 
name Description 

Relative 
importance

Overall 
influence 

K1 School enrollment, secondary (% gross)  6.7 % 0.67 % 

K2 School enrollment, secondary (% net)  6.7 % 0.67 % 

K3 School enrollment, tertiary (% gross)  6.7 % 0.67 % 

K4 Pupil-teacher ratio, primary  6.7 % 0.67 % 

K5 
Illiteracy rate, adult total (% of people ages 15 and 
above)  

6.7 % 0.67 % 
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K6 Daily newspapers (per 1,000 people)  6.7 % 0.67 % 

K7 Telephone mainlines (per 1,000 people)  6.7 % 0.67 % 

K8 Television sets (per 1,000 people)  6.7 % 0.67 % 

K9 Personal computers (per 1,000 people)  6.7 % 0.67 % 

K10 Internet hosts (per 10,000 people)  6.7 % 0.67 % 

K11 Internet users (per 1,000 people) 6.7 % 0.67 % 

K12 Mobile phones (per 1,000 people)  6.7 % 0.67 % 

K13 
Information and communication technology 
expenditure (% of GDP)  

6.7 % 0.67 % 

K14 Research and development expenditure (% of GNI)  6.7 % 0.67 % 

K15 Scientists and engineers in R&D (per million people)  6.7 % 0.67 % 
 

Environmental Sustainability 
Indicator 
name Description 

Relative 
importance

Overall 
influence 

En1 CO2 emissions, industrial (kg per PPP $ of GDP) 20 % 2 % 

En2 CO2 emissions, industrial (metric tons per capita) 20 % 2 % 

En3 
GDP per unit of energy use (PPP $ per kg of oil 
equivalent) 

20 % 2 % 

En4 
Organic water pollutant (BOD) emissions (kg per day 
per worker) 

20 % 2 % 

En5 Organic water pollutant (BOD) emissions (kg per day) 20 % 2 % 
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Glossary 
ANN artificial neural network 
BMU best-matching unit 
CCA Curvilinear Component Analysis 
GDA Global Democracy Award 
KMC k-means clustering 
MSE mean squared error 
MV missing value 
NLM non- linear mapping 
PCA principle component analysis 
SOM self-organizing map 
SVD Singular Value Decomposition 
VP vector projection 
VQ vector quantization 
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