Multi-Modal Music Information Retrieval -Visualisation and Evaluation of Clusterings by Both Audio and Lyrics

Robert Neumayer and Andreas Rauber {neumayer,rauber}@ifs.tuwien.ac.at

Vienna University of Technology Institute for Software Technology and Interactive Systems Favoritenstraße 9-11, 1040, Vienna, Austria

> presented at RIAO'07 May 30, 2007

motivation for multi-modal analysis

generally increasing amount of digital audio private users commercial holdings

novel interfaces & music classification

clustering/maps: PlaySOM,

PocketSOMPlayer

classification into categories: genres,

emotions, situations,...

explore the influence of relevant information

christmas songs

love songs

snoken documents

generally increasing amount of digital audio private users commercial holdings

novel interfaces & music classification clustering/maps: PlaySOM, PocketSOMPlayer classification into categories: genres,

emotions, situations,...

generally increasing amount of digital audio

private users commercial holdings

novel interfaces & music classification

clustering/maps: PlaySOM,

PocketSOMPlayer

classification into categories: genres,

emotions, situations,...

explore the influence of relevant information

christmas songs love songs spoken documents

what to expect from this presentation

information retrieval

text ir music ir

integration of both audio and text features clustering

self-organising map (som) multi-modal clustering

user interface

multi-modal cluster evaluation

audio features

multi-modality in mir

computed from the audio waveform abstract representation can be computed for every piece of audio a few feature sets MPEG7 standard features MARSYAS features rhythm patterns (1440) rhythm histograms (60) statistical spectrum descriptors (168)

text features

multi-modality in mir

plain text lyrics retrieval three lyrics portals are accessed missing values issues (e.g. lyrics cannot be retrieved) 'bag-of-words' approach stop word removal: yes stemming: no tfidf weighting still abstract, may yet be helpful interpretability content words / semantic categories high dimensionality → reduction needed

self-organising map clustering

multi-modality in mir

unsupervised neural network model
data mapping
from high-dimensional input space
to low-dimensional output space
topology preservation
simplification and visualisation

som training process

multi-modality in mir

Figure: self-organising map training algorithm

map based user interfaces

Figure: PlaySOM application

clustering music by lyrics

audio/lyrics collection (7500 songs / 54 genres) som of 20×20 units comprises a range of styles and genres: metal, r&b, indie, ...

Figure: clustering of songs centred around the love topic

multi-modality in mir

•000000000

why not cluster according to each modality? connect instances/songs on both maps identify differences in the data distributions on the map across clusterings

genre-wise distribution across mappings

lyrics clustering

Figure: clustering of Christmas songs on the 2D audio map

Figure: clustering of Christmas songs on the 2D lyrics map

Figure: full view of the visualisation prototype

Figure: full view of the visualisation prototype – the vertical map clusters songs by audio features, the horizontal map is trained on lyrics features

detailed view of connections equally distributed artist 'Kid Rock' colour-coded connections

Figure: Kid Rock's songs

Figure: Christmas songs

distribution across mappings

Figure: clustering of Christmas songs on the 2D audio map

Figure: clustering of Christmas songs on the 2D lyrics map

multi-modality in mir

000000000

select instances belonging to one artist/genre compute spreading factors on each map considering individual clusterings integrate these values for both maps

quantitative evaluation by example

introduction

(a) Upper (b) Dicorner agonally (audio) (lyrics)

1	1	1	1	1	
		1			
					1
					1

(c) Non- (d) Sub-Continuous clusters (audio) (lyrics)

average distance ratio contiguity ratio bonus for continuous clusters

	adr _{a,I}	cr _{a,I}	adr · cr
a/b	.48	.20	.06
c/d	.76	.73	.55

introduction

multi-modality in mir

000000000

Artist	CR	ADR	ADR × CR
Sean Paul	.4152	.4917	.2042
Good Riddance	.8299	.7448	.6181
Shakespeare	.2626	.3029	.0795
Kid Rock	.9640	.9761	.9410

Genre	CR	ADR	ADR × CR
Speech	.8092	.3417	.2765
Christmas Carol	.5800	.7779	.4512
Reggae	.9495	.8475	.8047
Rock	.9740	.9300	.9059

multi-modality in mir

multi-modal clustering plus evaluation possible usage

introduction

artist genre identification additional info for music information retrieval systems quality metrics for cluster evaluation (focusing on music context)

... and we'll be hosting the ISMIR conference in September!