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Abstract. Because of the increasing number of music distributors of-
fering an ever growing number of albums and tracks on the Internet,
access methods such as retrieval, interactive exploration or similarity-
based search demand more sophisticated technologies than metadata-
based approaches currently offer including queries for artists, albums, ti-
tles or manually assigned genre information. This requirement also holds
for private collections with the tracks being more and more often stored
uniformly in a library of, e.g., MP3 or OGG files as opposed to just a few
tracks stored on separate media such as vinyl records, tapes or compact
discs that have to be changed when playing more than one album.
The SOM-enhanced JukeBox (SOMeJB) system provides automatic in-
dexing and organization of music repositories based on perceived sound
similarity of the single tracks using a map metaphor for visualization
with similar songs being placed into similar regions on the map. In this
paper we present the PlaySOM , a novel interface allowing to browse a
music collection by navigating a map and selecting regions of interest
containing similar tracks for playing. This approach offers content-based
organization of music as an alternative to conventional playlists, i.e. flat
or hierarchical listings of music tracks sorted and filtered by some meta
information.

1 Introduction

The requirement of sophisticated methods for organizing digital music reposi-
tories is driven by their increasing popularity and size. In a commercial setting
the quality of organization and representation of such collections is crucial for
satisfying the needs of all three of the participating groups, i.e. users, publish-
ers/retailers as well as artists. Users who can easily find what they are looking
for are likely to return using the same service again in the future. Furthermore,
offering users additional information about songs or artists that are similar to



those they were actually searching for, increases the chance of buying more songs
than they actually intended to. Amazon.com has impressively shown that the
concept of linking similar items and presenting them to users bears fruits. Please
note that this particular linking concept is based on browsing and buying behav-
ior as opposed to content-based similarity. Moreover, the possibility of searching
for music similar to already known titles or artists also offers artists that are
unknown so far a chance to become popular.

Regarding access to private music repositories the main motivations are most
likely to be fun, entertainment and overcoming limitations of current media
players. An important aspect of selecting music for listening is the mood one
is currently in, or maybe the mood one wants to get into. Besides genre, mood
(e.g. romantic) is also a main theme of so-called music samplers or compilations,
i.e. albums containing songs of multiple artists adhering to a common motif.
Hence, the functionality of generating playlists according to perceived sound
similarity is the continuation of the concept of music samplers on a larger scale.
This functionality can hardly be achieved by a conventional system with even
well-maintained genre information of the tracks, because sound similarity often
crosses genre borders. Furthermore, genre information is often attributed to
whole albums or even artists and not songs in particular. Consider for example
the rather slow and soothing song Nothing Else Matters by Metallica which
would usually be classified as Metal or the like. From the perspective of perceived
sound similarity, this song is actually closer to the genre classical music than to
the rest of most Metallica songs.

Common query mechanisms for large music collections usually implement
text-based metadata searches by keyword, allowing the user to search for a spe-
cific term either in the artist, title, or album fields of the songs’ metadata. For
a collection of audio files, especially MP3 files, a certain set of metadata can
be provided, but this is often not the case. However, even though a metadata
set kept in good condition makes such text-based queries easy, it does not pro-
vide to search by means of similarity. Text-based queries in large repositories
require a certain a priori knowledge from the user about the music contained
or an enormous manual editorial effort to provide linking between music items
(e.g. allmusic3). However, those entries may be incomplete, inappropriate, too far
oriented towards the personal likes of the contributor, or simply wrong. There-
fore relying on those data may lead to results distorted by personal influence, in
particular considering genre definitions and missing or wrong values. This might
prevent users from finding new titles they had never heard of before.

Additionally, advanced search techniques become more necessary with the
growing size of a collection. Although a user might not experience any problems
when browsing a collection of a few hundred songs she or he knows quite well,
navigating through thousands of songs one is not familiar with, may lead to an
intrinsic restriction regarding access to this collection. A user would not be able
to gain access to the majority of songs in such collections. Another approach is to
provide access via genre hierarchies. This turns out not to be a feasible solution as

3 www.allmusic.com



well because of possible data inconsistencies, the user’s acceptance for arbitrarily
predefined genre hierarchies and the great effort needed for providing a clearly
structured genre hierarchy. Therefore, a mechanism to group music by similarity
in combination with innovative access mechanisms is required.

We propose a novel interface, namely the PlaySOM , visualizing pieces of
music organized on a two-dimensional map in such a way that similar songs are
located close to each other with respect to a feature set that is automatically
extracted from audio data. We use the feature extraction mechanism of the
SOM-enhanced JukeBox (SOMeJB) system in order to extract the information
from music tracks in MP3 or raw audio format. A Self-Organizing Map is used
to cluster the numeric representations of the songs that are entirely based on
the music itself without the use of any metadata.

Users can interactively explore the resulting two-dimensional map, select ar-
eas of interest and play those songs located there in any media player. The map
metaphor in combination with the interactive features of the user interface pro-
vides an overview of a collection as well as insight into relations between tracks
based on sound similarity. A music collection consisting of over 8,000 songs is
used to demonstrate the capabilities of the SOMeJB system and the PlaySOM
interface for clustering, visualization and user interaction.

The remainder of this paper is organized as follows. Section 2 briefly reviews
the related work followed by a description of the SOMeJB system in Section 3
including a brief overview of the feature extraction as well as the SOM clustering
algorithm. The PlaySOM interface is introduced in Section 4 by visualizing a
music collection consisting of over 8,000 tracks of a variety of genres. Finally,
some conclusions are provided in Section 5.

2 Related Work

A significant amount of research has been conducted in the area of content-based
music retrieval (cf. [1, 2]). Methods have been developed to search for pieces
of music with a particular melody. Users may express a query by humming a
melody, which is then usually transformed into a symbolic melody representa-
tion. This is matched against a database of scores given, for example, in MIDI
format. For example, research in this direction is reported in [3] and [4]. Other
than melodic information it is also possible to extract and search for style in-
formation using the MIDI format. Yet, only a small fraction of all electronically
available pieces of music are available as MIDI. A more readily available format
is the raw audio signal, which all other audio formats can be decoded to. A sys-
tem where hummed queries are posed against an MP3 archive for melody-based
retrieval is presented in [5]. Both melody-based retrieval of music, as well as
access to music available in MIDI-format are outside the scope of this paper.

However, this paper focuses on methods extracting style or genre information
directly from the audio content, i.e. by indexing e.g. MP3 or WAV files. This
kind of similarity-based organization and detection has gained significant inter-
est recently. One of the first works to incorporate psychoacoustic modeling into



the feature extraction process and using the SOM for organizing audio data is
reported in [6]. A first approach, classifying audio recordings into speech, music,
and environmental sounds is presented in [7]. A system performing trajectory
matching using SOMs and MFCCs is presented in [8]. Specifically addressing
the classification of sounds into different categories, loudness, pitch, brightness,
bandwidth, and harmonicity features are used in [9] to train classifiers. Further-
more, work on similarity-based music retrieval is also reported in [10]. A wide
range of musical surface features is used by the MARSYAS system [11, 12] to
organize music into different genre categories using a selection of classification
algorithms. The set of features that are used for clustering the music collection
are Rhythm Patterns used in the SOMeJB system [13].

Regarding intelligent playlist generation, an exploratory study using an au-
dio similarity measure to create a trajectory through a graph of music tracks is
reported in [14]. An implementation of a map-like playlist interface not described
in scientific literature is the Synapse Media Player4. This player tracks the user’s
listening behavior and generates appropriate playlists based on previous listen-
ing sessions and additionally offers a map interface for manually arranging and
linking pieces of music for an even more sophisticated playlist generation.

3 SOM-enhanced JukeBox

3.1 Feature Extraction from Audio Signals

The feature extraction process for the Rhythm Patterns is composed of two
stages. First, the specific loudness sensation in different frequency bands is com-
puted, which is then transformed into a time-invariant representation based
on the modulation frequency. Starting from a standard Pulse-Code-Modulated
(PCM) signal, stereo channels are combined into a mono signal, which is fur-
ther down-sampled to 11kHz. Furthermore, pieces of music are cut into 6-second
segments, removing the first and last two segments to eliminate lead-in and fade-
out effects, and retaining only every second segment for further analysis. Using
a Fast Fourier Transform (FFT), the raw audio data is further decomposed into
frequency ranges using Hanning Windows with 256 samples (corresponding to
23ms) with 50% overlap, resulting in 129 frequency values (at 43Hz intervals)
every 12 ms. These frequency bands are further grouped into so-called critical
bands, also referred to by their unit bark [15], by summing up the values of the
power spectrum between the limits of the respective critical band, resulting in
20 critical-band values. A spreading function is applied to account for masking
effects, i.e. the masking of simultaneous or subsequent sounds by a given sound.
The spread critical-band values are transformed into the logarithmic decibel
scale, describing the sound pressure level in relation to the hearing threshold.
Since the relationship between the dB-based sound pressure levels and our hear-
ing sensation depends on the frequency of a tone, we calculate loudness levels,
referred to as phon, using the equal-loudness contour matrix. From the loudness
4 www.synapseai.com



levels we calculate the specific loudness sensation per critical band, referred to
as sone.

To obtain a time-invariant representation, recurring patterns in the indi-
vidual critical bands resembling rhythm are extracted in the second stage of
the feature extraction process. This is achieved by applying another discrete
Fourier transform, resulting in amplitude modulations of the loudness in indi-
vidual critical bands. These amplitude modulations have different effects on our
hearing sensation depending on their frequency, the most significant of which,
referred to as fluctuation strength, is most intense at 4Hz and decreasing to-
wards 15Hz (followed by the sensation of roughness, and then by the sensation
of three separately audible tones at around 150Hz). We thus weight the modu-
lation amplitudes according to the fluctuation strength sensation, resulting in a
time-invariant, comparable representation of the rhythmic patterns in the indi-
vidual critical bands. To emphasize the differences between strongly reoccurring
beats at fixed intervals a final gradient filter is applied, paired with subsequent
Gaussian smoothing to diminish unnoticeable variations. The resulting 1.440
dimensional feature vectors (24 critical bands times 60 amplitude modulation
values) capture beat information up to 10Hz (600bpm), going significantly be-
yond what is conventionally considered beat structure in music. These Rhythm
Patterns are further used for data signal comparison.

3.2 Self-Organizing Map

The Self-Organizing Map (SOM) is an unsupervised neural network providing
a mapping from a high-dimensional input space to a usually two-dimensional
output space while preserving topological relations as faithfully as possible [16,
17]. The SOM consists of a set of i units arranged in a two-dimensional grid
with a weight vector mi ∈ <n attached to each unit. Elements from the high-
dimensional input space, referred to as input vectors x ∈ <n, are presented to the
SOM and the activation of each unit for the presented input vector is calculated
using an activation function. Commonly, the Euclidean distance between the
weight vector of the unit and the input vector serves as the activation function.
In the next step the weight vector of the unit showing the highest activation
(i.e. the smallest Euclidean distance) is selected as the ‘winner’ and is modified
as to more closely resemble the presented input vector. Pragmatically speaking,
the weight vector of the winner is moved towards the presented input signal by
a certain fraction of the Euclidean distance as indicated by a time-decreasing
learning rate α. Thus, this unit’s activation will be even higher the next time
the same input signal is presented. Furthermore, the weight vectors of units in
the neighborhood of the winner as described by a time-decreasing neighborhood
function are modified accordingly, yet to a smaller amount as compared to the
winner. This learning procedure finally leads to a topologically ordered mapping
of the presented input signals. Consequently, similar input data are mapped onto
neighboring regions of the map.



3.3 Visualization Techniques

Since the cluster structure of a trained SOM is not inherently visible, several
visualization techniques have been reported in literature with the most promi-
nent being the U-Matrix by Ultsch and Siemon [18]. This technique maps the
distances between the weight vectors of adjacent units onto a color palette with
the result of homogeneous clusters, i.e. the weight vectors of neighboring units
have rather small distances, being colored differently from cluster boundaries
with larger distances between the respective units’ weight vectors.

The visualization of component planes is another useful method to gain in-
sight into the structure of a trained SOM . Here, only a certain component of
the weight vectors is taken into account to color-code the map representation. In
other words, the values of a specific component of the weight vectors are mapped
onto a color palette to paint units accordingly allowing to identify regions that
are dominated by a specific feature. In the case of Rhythm Patterns, four com-
binations of component planes have been chosen according to psychoacoustic
features, because single component planes do not directly translate into psychoa-
coustic features noticed by the human ear. In particular, maximum fluctuation
strength evaluates to the maximum value of all vector components representing
music dominated by strong beats. Second, bass is the aggregation of the val-
ues in the lowest two critical bands with a modulation frequency higher than
1Hz indicating music with bass beats faster than 60 beats per minute. Third,
non-aggressiveness takes into account values with a modulation frequency lower
than 0.5Hz of all critical bands except the lowest two. Hence, this feature indi-
cates rather calm songs with slow rhythms. Finally, how much low frequencies
dominate is measured as the ratio between the five lowest and the five highest
critical bands. A more detailed explanation can be found in [19]. Examples of
these visualizations are shown in Figure 1 in the next section.

4 PlaySOM Interface and Experiments

In this section we show experimental results of clustering our collection of over
8,000 songs according to perceived sound similarity. Moreover, we present the
features of our PlaySOM interface for interactive exploration of the audio infor-
mation space. We have to point out the difficulty of quantitatively assessing the
cluster quality due to the highly subjective nature of the data, i.e. the sound
similarity of songs. Nevertheless, we will provide an overview of the organization
of our collection and pick some sample areas of the map to demonstrate the good
results of our approach.

A Self-Organizing Map consisting of 60×40 units has been trained using the
Rhythm Patterns of over 8,000 tracks from variety of genres. The majority of
the songs stem from the last couple of decades covering nearly anything from
Soul, Pop, Punk, Alternative, Rock or Metal, but the collection also contains
some classical pieces from, e.g. Liszt, Smetana and others. In Figure 1, the
PlaySOM interface is depicted. The largest part of the user interface is occupied
by the interactive map itself. The main elements on the left-hand side are the



(a) Maximum fluctuation strength. (b) Bass.

(c) Non-aggressiveness. (d) Low frequencies dominant.

Fig. 1. PlaySOM interface with different visualizations of Rhythm Patterns.

list of selected tracks, a birds-eye-view on the complete map indicating the area
currently visible in main map as well as controls for selecting the visualization.

Figures 1(a)-(d) show the complete map visualizing the four different Rhythm
Patterns described in the previous section, respectively. The visualizations pro-
vide an important clue to the overall organization of the map and offer starting
points for interactive exploration depending on the characteristics of music one
is interested in. A linear gray scale comprising 16 colors from dark gray to white
representing feature values from low to high is used. For on-screen use, we em-
phasize the map metaphor by using a fine-grained color palette ranging from
blue via yellow to green reflecting geographical properties similar to the Islands
of Music [20].

The organization of the songs according to the maximum fluctuation strength
feature is clearly visible in Figure 1(a) where pieces of music having high values
are located primarily on the right-hand side of the map. Especially Hip Hop and
Rap songs exhibit high values and therefore tracks by artists such as the Wu-
Tang Clan or Eminem can be found there. Contrarily, songs with low values are



(a) Upper right corner with the num-
ber of songs written on the respective
units.

(b) High zoom level showing more de-
tail, i.e. song names on the respective
units.

Fig. 2. Depending on the zooming level, different kinds of information are presented
depending on the displayed map size.

located in the lower left corner. Some examples of rather tranquil music are the
afore mentioned classical pieces, a large number of songs by Pink Floyd as well
as by Mark Knopfler, Dire Straits, Tom Waits, Tori Amos or Peter Gabriel.

Figure 1(b) shows that the feature bass corresponds to the maximum fluc-
tuation strength with high values, again being distributed across the right-hand
side of the map but to a larger extent. In Figure 1(c), the majority of clusters
containing non-aggressive music can be identified in the lower left area of the
map as one would expect regarding the distribution of the maximum fluctuation
strength, which represents music dominated by strong and fast beats. One ex-
ception that should be noted is the cluster located on the right-hand side border
in the upper half. This area contains mainly songs from the album Journey to
Jah by Gentleman who is attributed the genre of Roots Reggae. The songs on
this album combine the feature of bass with those of non-aggressiveness. Finally,
a large cluster where low frequencies dominate is located in the lower half of the
map as shown in Figure 1(d).

The major ways of interacting with the map of the music collection are
panning, zooming and selecting. An important characteristic of the map interface
is that the level of zooming influences the amount and type of information that is
displayed. The more a user zooms into the map, the more details of the mapped
data are presented. A zooming sequence is depicted in Figure 2 with a rather
coarse overview of the top-right corner of the map in Figure 2(a). At this zoom
level, only the number of songs mapped onto the respective units are displayed.
By zooming further into the region of interest the actual song titles become
visible (see Figure 2(b)).

Currently, pieces of music can be selected by either clicking on single units
or by selecting a rectangular region of the map by dragging the mouse. As soon
as the map selection changes, the list of selected tracks is updated. It is then



Fig. 3. Selection of an area with the list of the respective songs being displayed on the
left-hand side of the user interface.

possible to further edit the playlist by deleting single tracks that are unwanted.
Any media player supporting playlists in M3U format can then be called for
playing the songs selected via the map.

Regarding similarity search, query by example is easily realized by extract-
ing the Rhythm Patterns of a sample song, mapping the numerical representa-
tion onto the Self-Organizing Map and by highlighting the unit with the best-
matching weight vector. Our approach can also be combined with metadata-
based search in order to identify stylistic regions on the map where songs by a
particular artist are located. Again, units containing songs that match a certain
metadata-based query can be highlighted to show this information.

5 Conclusions

We have presented the PlaySOM , a novel interface to music collections for in-
teractive exploration, track selection and similarity-based search. The audio fea-
tures of the songs are automatically extracted and used for training of a Self-
Organizing Map, i.e. a neural network model with unsupervised learning func-
tion. The PlaySOM offers a two-dimensional map display with similar songs
being located in spatially close regions on the map. This approach is especially
appealing for large collections that can now be explored by sound similarity
rather than by arbitrarily assigned genre information, which often shows to be
incorrect or biased by personal preferences. This interface unveils the abundance
of music present in large repositories at a glance, which can hardly be seen using
conventional text-based search mechanisms.
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