
Resilient Web Services for Timeless Business Processes

Tomasz Miksa
Rudolf Mayer

Marco Unterberger
SBA Research
Vienna, Austria

{tmiksa, rmayer,
munterberger}@sba-research.org

Andreas Rauber
Vienna University of Technology

& SBA Research
Vienna, Austria

rauber@ifs.tuwien.ac.at

ABSTRACT
Many business and scientific processes make extensive use
of service-oriented architectures, using distributed services.
These are often provided by third parties and are thus not
under direct control of process owners. In this paper we
discuss the issues of ensuring continuous and faithful ex-
ecution of processes in distributed environments, focusing
specifically on Web Services. Recently, we introduced a
specification of Resilient Web Services, that makes current
Web Services more robust, and a framework for the moni-
toring of Web Services, that allows detecting anomalies. In
this paper, we describe alternative implementations of the
framework for monitoring of Web Services. We also present
possible approaches easing the deployment of Resilient Web
Services: a framework consisting of tools deployable at the
Web Service operator site enabling easy transformation of a
regular Web Service into a Resilient Web Service, and a reg-
istry with notifications that decorates existing Web Services
with resilient methods.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.4.7 [Organization and Design]: Distributed
systems

General Terms
Design, Performance

Keywords
Resilient Web Services, SOA, Monitoring, WSMF, Business
Continuity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

iiWAS ’14, December 04 - 06 2014, Hanoi, Viet Nam
Copyright 2014 ACM 978-1-4503-3001-5/14/12...$15.00
http://dx.doi.org/10.1145/2684200.2684281.

1. INTRODUCTION
Rapidly changing business requirements lead to a change

of IT systems’ design, and resulted in a shift from a central-
ized designs towards modular and distributed approaches [15].
Thus Service Oriented Architecture (SOA) emerged and be-
came a firm foundation for cloud computing. Business pro-
cesses deployed in SOA are implemented using discrete, loosely-
coupled services that interoperate using a network and have
clearly defined communication interfaces. Web Services (WS)
are a common way to realize SOA services. Due to the fact
that the Web Services can be reused and shared by different
business processes, the time needed for implementation of
new business requirements has decreased [18]. Besides pro-
viding access to the internal resources of the organization,
Web Services are used to access external resources hosted
and maintained by external business partners, for example,
in order to exchange information about customers, bookings,
financial data, and so on.

The popularity of Web Services and Service Oriented Ar-
chitecture is not limited to the business domain, it is also
common in the domain of scientific research, especially in
e-Science [9], where scientists cooperate by exchanging facil-
ities and sharing information in order to look for solutions
of important problems of society. Their research is highly
distributed, and this is reflected by the underlying IT in-
frastructure. Web Services are a way to encapsulate func-
tionalities and provide clear interface for provision of data
to other researchers.

Despite the unarguable benefits that Web Services bring
to business and scientific processes, they can also be a new
source of risks that may affect correct execution and longevity
of processes. In [14], we identified four major kinds of dis-
ruptions: a) unavailability of the Web Service hosted by a
third-party, b) change of the Web Service’s communication
interface, c) change of functionality while the interface stays
the same, d) behavioural change of non-functional charac-
teristics. Some of these disruptions can be detected in a
straightforward manner. For example, when the Web Ser-
vice becomes unavailable, the process execution stops. How-
ever, a Web Service that returns even slightly altered results
than expected, might pass by undetected, and can jeopardise
the correctness of reasoning made in a scientific experiment,
as well as can cause a threat to business continuity.

Failure to provide business continuity can result in signif-
icant financial losses or even in a loss of business. Business
Continuity Management (BCM) is often used to discover
potential risks and introduce controls that can minimize the
negative impact of hazardous events on managed business

processes. In case of business processes relying on Web Ser-
vices, the process operator may not be the owner of all of
them. In situations when the correctness of process exe-
cution has to be proven because of liability cases, Service
Level Agreements or other legal contracts, it is of particular
importance to business operators to be able to detect any
alterations in process execution as soon as possible. For this
reason the BCM plans must also consider the threats posed
by SOA architecture. Therefore, tools that monitor correct
execution of Web Services and new requirements for Web
Service implementation are needed.

This paper discusses the issues of ensuring continuous
faithful execution of processes in highly distributed envi-
ronments which use Web Services to perform tasks. In [14]
we discussed the possible changes in Web Services and their
potential consequences to business processes. We proposed
the Web Service Monitoring Framework that facilitates de-
tection of changes in Web Services. We also defined foun-
dations of Resilient Web Services (RWSs) which are an ex-
tension to the current specification of Web Services making
them more robust. This paper extends previous work by a
description of alternative implementation for WSMF frame-
work using proxy mechanism and specifies in detail the re-
silient methods of RWS. Furthermore, we describe two alter-
nate approaches enabling implementation of Resilient Web
Services, namely: a Resilient Web Service Framework which
is a suite of tools deployable at the Web Service operator site
enabling easy transformation of a regular Web Service into
a Resilient Web Service, and a register with notifications
that decorates existing Web Services with resilient meth-
ods using a third party service. Although the discussion is
focused particularly on Web Services, the concepts and so-
lutions presented in this paper can in principle be applied
to other kinds of distributed services.

The paper is organized as follows. Related work is dis-
cussed in Section 2. The requirements and the specification
of the Resilient Web Services is provided in Section 4. The
alternative implementations of RWS are discussed in Section
5. Section 6 discusses possible usage scenarios for the Re-
silient Web Services. Finally, conclusions and future work
are provided in Section 7.

2. RELATED WORK
Although SOA facilitates the quick adaptation to changes,

it can itself affect the business process directly. These can
happen when changes in the underlying Information and
Communication Technology (ICT) systems appear. In this
section we discuss what kinds of such changes can happen
in Web Services. Then we discuss how these changes can
be monitored and detected. We also discuss available ex-
tensions to Web Services that aim at mitigating the conse-
quences of changes.

2.1 Changes in Web Services
In [14] we divided the ICT changes into two categories:

internal and external. The internal changes are all these al-
terations that are under control of the process owner. This
means that the effects of any software or hardware modifica-
tions, for example, installation of updates or upgrades in the
hardware stack, can be traced and the impact on the correct-
ness of process execution can be evaluated. Furthermore,
the internal changes can be planned in advance and any
possible risks can be identified and corresponding controls

mitigating them can be assigned. The external changes are
all these modifications that are beyond direct control of the
process owner. This is a case when the services are hosted
by third parties, for example, using Cloud provider. Then
it may happen that the administrator modifies the software
or hardware environment, or the system automatically allo-
cates different resources than usually and the business task
is affected. The changes can also be further broken down
into four categories that differentiate ways the Web Services
have changed. Table 1 presents overview of them.

2.2 Monitoring
The goal of Business Activity Monitoring (BAM) is to

provide real time information about the status and results
of various tasks and processes, thus enabling the manage-
ment to make better business decisions and quickly address
detected problems and opportunities [13]. However, the fo-
cus of BAM tools is on monitoring and analysing the pro-
cesses in view of maximizing revenue and modelling business
needs. They are powerful tools for managers, but are not
able to detect directly any change of execution stemming
from changes in the underlying ICT infrastructure. Only if
proper execution of processes is monitored at the technical
level, a trustworthy business process execution can be guar-
anteed. Below we present an overview of solutions capable
of monitoring, testing or validating the Web Services.

The first group of papers have the WS-Business Process
Execution Language (BPEL) language as a common denom-
inator. The framework presented in [4] generates and exe-
cutes automatically ”online” tests for conformance testing
of a composite of Web Services described in BPEL. This
”online” approach was combined with passive testing, that
verifies time traces with respect to a set of constraints in [3].
Both papers are limited to Web Services which are imple-
mented according to BPEL specification. When the specifi-
cation is unavailable, the methods cannot be applied. Veri-
fication of behavioural conformance of services during run-
time is presented in [6]. An idea to apply Stream X-machines
in order to check the control flow of a Web Service and the
values of the data in the generated responses is shown. The
traffic is intercepted from a live system and continuous mon-
itoring for changes is performed. Manual development of an
Stream X-machine is required. The other implies access to
the Web Service specification which limits the application of
this method. A classification of Web Services is also carried
out in this paper. Three major criteria are distinguished:
conversational / non-conversational, private-state / shared-
state, transient-state / persistent-state. In the remaining of
this paper we consider these criteria as sub-criteria of the
stateful / stateless criterion.

The WS-TAXI framework, which seems to have higher
applicability during Web Service development and testing
rather than for monitoring of already deployed SOA solu-
tions, is presented in [1]. It combines the coverage of Web
Service operations with data-driven test generation. It is
able to deliver a complete suite of test messages ready for
execution, which were generated using a WSDL file. The
WS-TAXI generates and uses purely synthetic data which
may be quite different from the data exchanged in a pro-
cess.

Monitoring if Service Level Agreements (SLA) conditions
are fulfilled by Web Services is a problem related to monitor-
ing Web Services for changes. In [8] a run-time monitoring

Change type Description
Unavailability Likely stops the execution of the process. The reasons can range from temporary technical problems,

to bankruptcy of the service provider. It can be easily detected, for example by using time-outs
which would alert to unavailability of the Web Service.

Interface change Such situation may also be easily detected. It may require short pauses in the process execution
until the changes will be adopted into the process. Of course, in case of significant changes in the
communication interface (e.g. switch from REST to WSDL), time needed for reconnecting the Web
Service into the process may require more effort.

Functionality change Outputs of the Web Service change, while the interface stays the same. This threat is hard to detect,
as the process may not break, but instead deliver outputs which are not correct. These could be,
for example, changes at the semantic level, e.g. switching the unit of measurement from inches to
centimetre due to a server configuration change. Other possibilities are bug fixes in the underlying
algorithm (which may introduce other bugs as well), or intentional changes in the functionality, e.g.
faster but less accurate computational algorithms.

Behavioural change It may not always refrain the process from correct execution, but can occur temporally and therefore
be hard to notice. The examples of such cases could be different timing characteristics or delays,
effects of buffering, and so on.

Table 1: Summary of changes in Web Services [14]

framework which allows concurrently accessing exchanged
messages and comparison of them against designed scenar-
ios was designed and developed. The work focuses on QoS
aspects, an example of time-out mechanism detecting un-
availability of the service is given. It is required to model the
monitored Web Service in Orc language. In case of [7] em-
phasise is put on detection of violations at functional level.
SLAs are described formally using temporal logic and are
used in SLAMonitor to verify the behaviour of Web Ser-
vices at runtime. The authors demonstrate the capabilities
of their solution on an example of a detection of violation of
maximum response time.

The common problem of all mentioned solutions is the
fact that they demand some specific knowledge: not only
the kind and the nature of the Web Service, but also the
kind of change which will be monitored, is required to de-
ploy a proper solution. In typical situations, however, only
the URL and interface of the service are known. There might
be no information on whether the Web Service is conversa-
tional, stateful, deterministic, etc. This kind of knowledge
is, however, required to apply the correct tool. The Web
Service Monitoring Framework (WSMF) presented in [14]
does not hold these requirements and limitations. It allows
investigation of any kind of Web Service, and facilitates rea-
soning about the kind and nature of a service. Then, if
the Web Service is deterministic, the monitoring process
can be launched and all four types of changes (see Table
1) can be detected. In case of the Web Service being non-
deterministic, the monitoring framework is not able to detect
any functional changes, but the other three types of change
can still be monitored. Details on the monitoring framework
are described in Section 3.

2.3 Web Service Extensions
Apart from monitoring of technological level of business

processes, many authors postulate a set of improvements
in the specification of Web Services, which should lead to
a higher sustainability of processes, as well as reduction of
the need for continuous monitoring. Below we present an
overview of such solutions.

The Universal Description Discovery and Integration (UDDI)
is a registry which holds information on registered Web Ser-

vices. However, neither the registration of the service is
necessary, nor does the registry contain sufficient additional
information on the service, which would allow the user to
obtain information on the kind, nature, behaviour, quality,
etc. There are some attempts to enrich the purely functional
description of Web Services (bindings, ports, etc.) with per-
formance aspects, namely Quality of Service (QoS). These
focus mainly on timing aspects, availability, reputation [5]
and pricing [12]. Most work is dedicated to the creation of
frameworks which enable detection of Web Services with dif-
ferent QoS [17], rather than solutions which allow to specify
explicitly the common qualities for every service. [19] speci-
fies requirements for QoS for Web Services. It lists 13 points
which should be fulfilled, but none of them concerns guar-
anteeing continuity or non-modifiability.

Another approach is represented by works dealing with
versioning of Web Services. Yet in this case, approaches
do not aim at specifying a way to interweave versioning
into Web Service specification, but present workarounds to
deal with the currently underspecified Web Service stan-
dards [11]. One of the exceptions to this rule is [10], which
provides functional requirements for a registry which noti-
fies clients when a version of an interface changes. [11] is
a good example of the current common view on version-
ing. Versioning is understood as a change of interface. Yet,
changes in functionality while the interface stays the same
are not considered. This is an obvious deficiency. Some best
practices are described in [2], but they are predominantly
a kind of workaround for only one of the problems, rather
than a holistic solution. Summing up, there is a wide range
of approaches that deal with assessment of non-functional
aspects of Web Services. In most cases, the need for these
solutions arises from the fact that current specification of
Web Services is not sufficient. In [14] we introduced a con-
cept of Resilient Web Services which also aims at extending
specification of Web Services. They are discussed in detail
in Section 4.

3. WEB SERVICE MONITORING FRAME-
WORK

The Web Service Monitoring Framework, introduced in [14],

can be employed to monitor services and subsequently de-
tect changes. It consists of the following four steps:

1. Capture - the communication to and from the the ser-
vice is intercepted and stored.

2. Transform - requests and responses are grouped and
enriched with additional meta-data.

3. Reason - data is analysed and a type of the Web Ser-
vice is determined.

4. Monitor - requests collected in the Capture step are re-
played and the responses obtained are compared against
those captured in the first step.

The following situations can occur during the Monitor
step. If no responses are received, this may mean that the
Web Service is not available: a change in availability oc-
curred, or a change in the interface caused the unavailabil-
ity. If only some of the messages are missing, then we can
assume that the service is available but only a part of the in-
terface has changed. When the service is deterministic and
responses do not match the ground truth, then it indicates
a change in functionality. If the service is non-deterministic,
changes in functionality cannot be detected easily. If times-
tamps of recorded messages are stored and time intervals
between request and response are calculated, then a change
in response timing behaviour can be detected regardless of
determinism. The time period required to detect changes is
mainly driven by the interval of checks defined in the moni-
toring schedule.

A crucial requirement for using the approach described
above is that the Web Service it is applied to does not cause
any changes on the world outside the system observed. In
situations where this is not the case, e.g. credit card pay-
ment transaction systems, such replaying of messages for
monitoring purposes cannot be employed. Thus, while not
universally applicable, the approach is still useful for a ma-
jority of situations, specifically in e-Science settings, where
Web Services are deployed primarily for information trans-
formation, collection or computational services.

Figure 1: Communication between parties involved
using the WSMF framework in a proxy mode.

If the communication can not be directly intercepted at
the service consumer or provider side, an alternative imple-
mentation is to use a proxy mode. In this case, the com-
munication between the consumer and the provider is tem-
porarily redirected through a proxy server, which captures

the requests, and forwards them to the actual server; sub-
sequently, the server responses are relayed to the consumer.
Thus, the exchange of real requests and responses can be
intercepted. Figure 1 depict the communication paths be-
tween the involved parties in the proxy mode. Figure 2
shows the proof of concept tool that implements the Web
Service Monitoring Framework. The figure depicts a situa-
tion in which three requests are tested against the originally
recorded results, and their response validity is evaluated.
The implementation also includes the proxy mode.

4. RESILIENT WEB SERVICES
In this section we discuss Resilient Web Services as an ex-

tension to the WSDL Web Service specification. We identify
and describe methods that are required in order to transform
a regular Web Service into a Resilient Web Service.

4.1 Motivation and design principles
The main aim of the resilient methods is to help the

WS consumer to react to changes within the service. The
long-term sustainability and usage of WSs would positively
impact the longevity of business processes depending on
them. Having analysed the existing monitoring and exten-
sion mechanisms, we defined principles of RWS design.

4.1.1 Minimal availability date
It is very common, especially in the scientific domain, that

when the WS consumers select WSs, which are used in their
processes, they have no information and guarantee on how
long the given WS is going to be available and thus how
sustainable their process is. The RWSs provide minimum
availability date of the WS. This information is a commit-
ment from the WS owner, and states how long the WS is
going to be present on-line in an unchanged form. The only
exceptions to this agreement are the alterations caused by
force majeure. The services that specify this date could be
considered more trustworthy than those without such a com-
mitment. It also implies that the owner of the WS is pro-
viding rather a stable service that has secured funding and
resources for the maintenance of the WS. The WS consumer
knowing in advance when the WS may become unavailable
in the current form may prepare for this. They can either
contact the WS owner and discuss the changes, so that the
business process is adapted to changes, or may look for a dif-
ferent WS or another solution that delivers the functionality
of a given WS.

4.1.2 Identification data
Many of the available WS are not registered in services

like the UDDI and therefore it is hard to obtain any informa-
tion going beyond the technical specification described in the
WSDL. Sometimes the complementary descriptions are pub-
lished on the web sites of the WS owners. However, in cases
when the WS owner runs a wide range of similar services
(e.g. ranging in precision of computing algorithms) then it
may be not obvious which description applies to which WS.
For this reason, we believe that provision of basic informa-
tion about the WS, which is obtained using the WS methods,
can highly ease the WS discovery process. The essential in-
formation which must be provided is: version, description,
type of methods, and metrics related to the Quality of Ser-
vice. The version number allows unambiguous identification
of the WS. The description should summarize the function-

Figure 2: Software Support for the Web Service monitoring framework, including a proxy mode

ality of the WS and be kind of the release notes, that is,
describe the differences towards the previous versions. The
information about the method type is essential for monitor-
ing and testing of WSs. At least information on whether the
method is stateful or stateless, and whether it is determin-
istic or non-deterministic, has to be provided. Also a list of
metrics related to the Quality of Service, for example, the
date of the last update or a number of changes to the WS
since its first deployment should be provided. Such infor-
mation helps in assessment of the stability of the WS, and
is a good premise for reasoning about the future frequency
of changes of the WS.

4.1.3 Documenting Changes in the SW/HW stack
Web Services usually encapsulate complex processes which

depend on various software tools, libraries, codecs, databases,
or virtual machines, not to mention the hardware platforms
and special instruments used, for example, in scientific re-
search. For this reason, any change in one of these com-
ponents may result in a different behaviour of the service,
including the final result it computes. Of course, not every
change within the underlying system has the impact on the
WS, however, in cases when there is such an impact, the list
of software or hardware components that have been modi-
fied needs to be provided. For example, if a new sensor type
is used to take measurements, then the information on the
sensor introduced must be provided. Similarly, if a software
library was replaced with another library that implements a
different computational model, then this information must
also be provided. Currently, there is no mechanism that
provides such information and hence unexpected changes in
the WSs occur. For that reason a common way of providing
information on changes in software or hardware that consti-
tutes the system behind the WS is needed. This informa-
tion helps the WS consumer to estimate the impact of the
technological change on the performance of the whole busi-
ness process. For example, if the change resulted in more
detailed results of some computation and the software at
the WS client can process this data (because there was no
change in format and no other business conditions are vio-
lated), then the WS consumer may continue using a given
WS. Obviously, some of the information provided might in-

cur vulnerabilities on a security level. Therefore, the level of
details provided should be parameterised on different level
depending on the trustworthiness of the environment or au-
thentication levels of the client services.

4.1.4 Notification on changes
As already discussed (see Table 1) the changes are inextri-

cably intertwined with WSs. The common belief of the IT
community is that the changes are inevitable and instead
of suppressing them we need to be able to react to them
quickly and therefore design systems and processes that can
adapt quickly. The WSs and the SOA architecture were de-
signed having this in mind. However, their aim is to adapt
to changes in the business requirements, not to the changes
in the underlying infrastructure that implements the SOA
and the WSs. Due to this fact, the extension of WSs with
a mechanism that provides notification on changes in the
service itself complements the WS design with the focus on
the infrastructure changes. Hence each RWS has a method
that notifies the WS consumers, when any kind of change to
the WS happens. The Web Service communication is asym-
metrical and this notification can only be received when re-
quested by the WS consumer. Hence, the WS consumers
will have to poll for this information, but such a solution
still has an advantage over traditional monitoring at the WS
consumer side, mainly because it is easier to implement in
comparison to a deployment of any of the monitoring frame-
works. Furthermore, the user receives not only information
that something has changed, but also knows what kind of
change it is and also a message from the WS operator ex-
plaining it. Further information concerning the change can
be requested using the methods that provide a list and de-
scription of changes as described in the paragraph above.

4.1.5 Service owner and contact data
The importance of the need for contact between the WS

consumer and the WS provider was already recognized by
the architects of the UDDI registry and is reflected by the
business entity data structure. This information is also sim-
ilar to the whois protocol used for querying DNS databases
and consists of contact data of the WS owner: name, phone,
e-mail address, and so on. However, there are many WSs

<xs : element name=”response ”>
<xs : complexType>

<xs : sequence maxOccurs=”unbounded ” minOccurs=”1 ”>
<xs : element type=”xs : dateTime ” name=”changeDate ”/>
<xs : element type=”CHANGETYPE” name=”changeType ”/>
<xs : element type=”xs : s t r i n g ” name=”changeDescr ipt ion ” use=”opt i ona l ”/>
<xs : element type=”xs : s t r i n g ” name=”changesL i s t ”/>

</xs : sequence>
</xs : complexType>

</xs : element>
<xs : simpleType name=”CHANGETYPE”>

<xs : r e s t r i c t i o n base=”xs : s t r i n g ”>
<xs : enumeration value=”U n a v a i l a b i l i t y ” />
<xs : enumeration value=”Inter faceChange ” />
<xs : enumeration value=”Funct ional i tyChange ” />

<xs : enumeration value=”BehaviouralChange ” />
</xs : r e s t r i c t i o n >

</xs : simpleType>

Figure 3: Fragments of an XSD schema defining format of the response for getChangesSince method.

that are not registered in any registry and due to this fact,
the contact between the WS consumer and WS owner is
impossible. Despite the fact, that other resilient methods
aim to describe the WSs comprehensively and provide in-
formation about the changes, thus decreasing the need of
direct communication between the parties, it may happen
that the direct contact may considerably facilitate dealing
with changes and can enable support from the WS owner to
the WS consumer. For this reason, the RWSs have a method
that provides contact data of the WS owner. We believe
that a standardised method for obtaining this information
will become more popular than the centralized registry like
the UDDI. This is because the registration at the UDDI was
optional and in some cases cumbersome. Furthermore, sim-
ilarly to the methods dealing with identification of the WS,
we believe that the provision of the contact data directly
by the RWS results in less ambiguities concerning not only
the ownership of the WS, but also matching the description
with a particular service.

4.2 Specification
Using the requirements from the previous section we elab-

orated a list of methods that constitute RWS. In this section
we specify the methods and provide examples of responses
obtained from these methods.

minAvailabilityDate() This method has no input pa-
rameters and in its output provides the guaranteed mini-
mum availability date of the WS. In other words it provides
the deadline till which the given WS is going to perform in
an unchanged way. This method addresses the requirements
defined in Section 4.1.1.

identifyYourself() This method address the requirements
defined in Section 4.1.2. This method has no input param-
eters. The output consists of multiple information:

• version - number indicating release version of the WS,
the version number is updated every time the WS
owner modifies intentionally the WS,

• description - textual description of the latest release of
the WS, it should contain information on differences
towards the previous version,

• methods and their types - a list of all methods of-

fered by the WS and information on its type, there are
four available types: StatelessDeterministic, Statless-
NonDeterministic, StatfulDeterministic, StatefulNon-
Deterministic,

• first release data - date since when the WS is available,

• total number of changes - integer indicating how many
changes to the web service have been detected since
its beginning, it includes both expected (new versions)
and unexpected changes,

• availability percentage - availability of the WS expressed
in percentage.

getSystemEnv() This method has no input parameters.
It addresses requirements provided in the Section 4.1.3. The
output is an ontology describing software and hardware com-
ponents which are crucial for functioning of the WS. To
describe the system environment in a structured way, we
employ a meta-model that is well-known and widely used
in the domain of Digital Preservation, namely the PREMIS
Data Dictionary [16]. PREMIS allows to describe various
aspects of computing infrastructure, including hardware and
software of systems, which is of particular interest for our
purpose. The data dictionary defines five types of entities:
Intellectual, Object, Event, Agent, and Rights. It then de-
fines 45 concepts belonging to these types, as well as rela-
tions between the concepts and properties of the concepts.
For describing the system environment, we use the OWL on-
tology representation of PREMIS1. Specifically, the concepts
of Hardware can be described by name, type, and additional
free-text descriptive information, while the concept of Soft-
ware has in addition also a property to specify the software
version. A piece of software might require another software
to be installed to properly function, which can be described
by using the relation hasSoftwareDependency between two
specific software instances. With these concept, we can suf-
ficiently describe the current hardware and software setup
of a specific system. This detailed description is only avail-
able to certain actors, namely a web service owner who is
providing the service on serviced infrastructure.

1http://id.loc.gov/ontologies/premis.html#

getChangesSince(DateTime) There is one input pa-
rameter to the method which is the exact date and time
since which all potential changes are listed in the output.
This date could be the date of the last request sent to the
RWS by the WS consumer. If no changes were detected
since that time, then the result is empty. Otherwise a list of
all changes is returned. Each change is described with the
following information:

• change date and time - exact date and time of the
change,

• change type - type of change as defined in Table 1,

• change description - textual description of the change,
it is optional and to be used in cases when the change
notification is done manually,

• change list - ontology listing hardware and software
components that were modified.

Changes in the system environment can also be described
using PREMIS. To this end, the Event concept can be utilised.
For example, we can indicate a replacement of a software
component as an event of type migration, with an asso-
ciated description using the EventOutcome concepts. The
old and new components are related to the event via source
and outcome relations. Figure 4 provides an excerpt from
an example response. Figure 3 presents an excerpt of the
XSD schema defining the format of the response send by
this method. The types of changes are encoded as enumer-
ations and the ontology with a list of changes is provided as
a string directly in the body of the response. The method
addresses requirements described in the Section 4.1.3 and
4.1.4.

getContact() This method has no input parameters. It
addresses the requirements from the Section 4.1.5. The out-
put provides contact details using entities from the UDDI
schema. The following information is returned:

• organisation - name of the organisation owning the
WS,

• person name - name of the person to be contacted, it
is not necessarily identical with the WS owner,

• message - optional message from the contact person,

• phone - optional phone number,

• email - email address used for contacting,

• address - optional address.

5. IMPLEMENTATION
Industry uptake of a new standard can be a slow process.

Thus, we propose two approaches to make our proposed Re-
silient Web Services easier and quicker to be deployed. The
first approach is by providing an external registry that moni-
tors the service and its behaviour, and thus can provide some
of the resilient methods without any need for modification
of the original service. This will be described in detail in
Section 5.1. The second approach is in providing tools to
the service owner to quickly transform an existing service
to a resilient service, by deploying it on top of a framework
that already implements most resilient methods; we show
this in Section 5.2 with a prototype implemented in Java.

5.1 External Registry
To allow resilient methods to be provided on top of an ex-

isting service, without requiring any changes in the service
or its deployment, we propose the concept of an external
registry, which send notifications to the service consumer.
The main task of the registry is the decoration (design pat-
tern) of existing Web Services with resilient methods.The
registry is a service provided by a third party. Such an ap-
proach should substantially increase the acceptance of Re-
silient Web Services among service operators and thus con-
siderably decrease the adoption time. In this section, we
therefore discuss how such a registry works, what actions
are required from the parties involved and in what way it
can be implemented.

Figure 5 illustrates the process of converting a WS into a
RWS using the registry. There are three actors involved: the
Web Service provider, the Web Service consumer, and the
registry operator. When using traditional Web Services, the
WS provider publishes a WSDL specification of the WS,
and the consumer uses it to establish a connection to the
WS. In the approach utilising the registry, the communica-
tion is still realised directly between the provider and the
consumer, but the consumer obtains information about the
port bindings from a different WSDL definition that is pro-
vided by the registry operator. The WSDL that is obtained
from the registry consists of two logical parts. The first one
is generated using the original WSDL file of a given Web
Service, by verbatim copying information about the Web
Service methods. The second one provides bindings to the
resilient methods provided by the registry. Thus no changes
at the side of WS provider are required. Furthermore, the
communication between the provider and consumer remains
unaltered and therefore no unnecessary complexity is added.

The data provided by the resilient methods consists of
two types of information: static and dynamic. The static
information is provided once when a given WS is registered
at the registry. This is only possible when the registration
is made by the WS provider, because they have the neces-
sary knowledge about the WS. An example of such a static
information that can only be provided by the WS owner
is the expiration date. The active information comes from
the monitoring of the registered Web Service. This func-
tionality is provided regardless of who registered the WS.
Both provider and consumer can register the WS, however,
it is recommended that the registration is made by the WS
owner, because more resilient methods can be used.

The active information provided by resilient methods of
the registry come from monitoring that can be implemented
using the Web Service monitoring framework described in
Section 3. However, the implementation described in [14],
which uses network packet capturing in order to collect data
used for monitoring, cannot be applied in case of the reg-
istry. This is because the registry is provided by a third
party and therefore does not have a direct access to the net-
work interface of the service consumer. For this reason two
alternative approaches can be used. Either a set of synthet-
ically generated requests can be used, as described in [1], to
query the original WS and collect responses, or the proxy
mechanisms described in Section 3 can be applied.

We implemented the proposed registry in Java, and made
a use of the aforementioned monitoring tool using the proxy
mode. We simulated changes on a number of Web Services
for which we had access to the source code, to detect all

<ClassAsse r t ion>
<Class IRI=”http :// id . l o c . gov/ o n t o l o g i e s / premis . rd f#Event ”/>
<NamedIndividual IRI=” [s e r v i c e L o c a t i o n] / [i d e n t i f i e r] / SoftwareReplacement ”/>

</Clas sAsse r t ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”http :// id . l o c . gov/ o n t o l o g i e s / premis . rd f#l ink ingSourceObjec t ”/>
<NamedIndividual IRI=” [s e r v i c e L o c a t i o n] / [i d e n t i f i e r] / SoftwareReplacement ”/>
<NamedIndividual IRI=” [originalModelURI]#OracleJava1 . 6 . u44 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”http :// id . l o c . gov/ o n t o l o g i e s / premis . rd f#linkingOutcomeObject ”/>
<NamedIndividual IRI=” [s e r v i c e L o c a t i o n] / [i d e n t i f i e r] / SoftwareReplacement ”/>
<NamedIndividual IRI=” [s e r v i c e L o c a t i o n] / [modifiedModelURI]#OpenJDK1 . 7 . u65 ”/>

</ObjectPropertyAssert ion>

Figure 4: Description detailing the changes made to the system by replacing Oracle Java version 1.6 with 1.7

Figure 5: Business process model, depicting the transformation of a Web Service into a Resilient Web Service.

types listed in Table 1.

5.2 On-site Monitoring
In a second approach towards implementing Resilient Web

services, we deploy certain components directly on site of the
web service provider. Compared to the purely register based
approach, this setup allows us to detect potential causes for
service changes directly in the environment, for example,
changes in the hardware or software setup that might in-
fluence the functionality of the Web Service. Thus, we can
trigger in a more informed way when we have to run our
monitoring again, and if changes occurred, the likely source
can be specified.

Most of the resilient methods introduced in Section 4 do
not require an implementation specific to a given Web Ser-
vice. As such, the hardware or software setup of the machine
can be determined via methods that are generic regardless
of the actual implementation of the Web Service, but can be
determined in the same or similar fashion for all Web Ser-
vices using e.g. the same type of Operating System. Some
methods may depend on the specific programming language
used for implementing a Web Service, e.g. the type of li-
braries that can be utilised, and the way they are declared
as dependencies, but again, these aspects can be generalised
for Web Services using the same type of development plat-
form. Therefore, we can provide an implementation of many
of the resilient methods tailored for a specific platform or

programming language. These implementations can then
be used by the service provider to augment the service to
become a Resilient Web Service. As an example, we de-
scribe below an implementation of such a Resilient API for
the Java Programming language.

Manually providing information on hardware and soft-
ware, and monitoring for the changes, can be a tedious task.
However, many of these steps can be automated, or be semi-
automated. Regarding hardware, several tools provide au-
tomatic detection of the components accessible to the op-
erating system, such as the platform-independent SIGAR
framework2, or utilities such as lhw3 for Linux. Regarding
the software environment, several methods allow identifica-
tion of the currently installed software, such as via the Win-
dows Management Instrumentation Command-line (WMIC)
for Windows systems, or package managers such as the De-
bian package manager dpkg or the RedHat package manger
rpm. In the course of the EU FP7-funded Project TIMBUS4,
which deals with the digital preservation and continuity of
business processes, software modules that periodically cap-
ture this information, store it in the PREMIS ontology, and
monitor for changes in the environment, were developed. We
utilise this software, which is specifically targeted to Linux
Operating Systems, at the side of the service provider to im-

2http://www.hyperic.com/products/sigar
3http://ezix.org/project/wiki/HardwareLiSter
4http://timbusproject.net/

Table 2: Support of resilient methods in different
deployment scenarios

External On-site
Method registry Monitoring
identifyYourself() Y Y
getContact() Y Y
minAvailabilityDate() Y Y
getSystemEnv() N Y
getChangesSince() ∼ Y
- change type N Y
- change description N Y
- environment changes list N Y

plement the getSystemEnv method. Subsequently, once we
detect a change in the software or hardware environment,
a monitoring of the Web Service as with the registry ap-
proach described in Section 5.1 is triggered. Only if there
is a change in the Web Service functionality due to the en-
vironment change, the getChangesSince method will report
these changes. In addition to the registry approach, also the
description and list of environment changes is provided.

Similar to Section 5.1, we modified a web service environ-
ment, by upgrading the Java Virtual Machine from version
6 to version 7 (cf. the example in Figure 4). The on-site
monitoring was successfully detecting the change of the en-
vironment. This in turn triggered the monitoring of the
service functionality, where no change was detected; thus,
no notification was sent to the Web Service consumer.

5.3 Client Side Implementation
Once the Web Service has been upgraded into a Resilient

Web Service, the service consumer needs to implement sup-
port for resilient methods. This implementation can e.g. be
similar to the exception handling mechanisms used in pro-
gramming languages. Due to the fact, that the Web Service
communication is asymmetrical, i.e. the provider cannot
provide any information without any prior request, the WS
consumer must implement a method that regularly polls the
resilient method getChangesSince() that provides informa-
tion whether there was a change to the WS, and if so what
kind of a change it was. Depending on the kind of change
detected, a corresponding scenario can be performed, for
example, the execution of the processes using this Web Ser-
vice can be stopped, or the WS can be substituted with
another. Additional information provided by other resilient
methods may also be useful in selecting appropriate recovery
solution. An overhead resulting from the necessity of these
improvements should be acceptable by the WS consumers,
because they are the main beneficiaries of the Resilient Web
Services. An alternative implementation may use push-style
notifications to propagate information on changes, for exam-
ple, using RSS or e-mail. The advantage of such an imple-
mentation is the fact that no polling for changes is required.
On the other hand, the client needs to support additional
communication protocols (not only SOAP).

6. DISCUSSION
There are several different usage scenarios for the deploy-

ment of Resilient Web Services, with different actors and
roles involved. On the one hand, there is a potential differen-
tiation on who is registering a service at an external registry.

In the ideal case, the service owner is performing this task,
but there might also be cases where the service owner is not
registering the service himself. In such a case, a service con-
sumer might be allowed to register the service. Such a situa-
tion will also imply limited functionality of resilient methods
– basically only the getChangesSince method is available, as
all the meta-data that the service owner would be providing
(availability, contact, and so on) is missing.

Another distinction might be if the Web Service provider
is hosting the service using services from a third-party, e.g.
Infrastructure as a Service (IaaS) or Platform as a Service
(PaaS). In such a scenario, the IaaS or PaaS provider is
the only one to provide certain information needed for the
on-site monitoring and the getSystemEnv method, and thus
the Web Service provider would become a consumer of this
information from the hosting provider.

Web Services are sometimes used to create mashups com-
bining functionality of various Web Services, thus providing
a new service. If the Resilient Web Services are used to
create such a mashup, then it is possible to forward infor-
mation on changes from the RWSs used to create it to the
mashup. Hence, the mashup is also a Resilient Web Service.
In this scenario the mashup owner uses the getChangesS-
ince() method to receive notifications on changes from the
dependent RWSs. Such a Resilient Web Service chaining is
possible regardless of the implementation of the RWS. The
mashup owner needs to design mechanisms to handle notifi-
cations from dependent RWSs and add the resilient methods
to the interface of his mashup. The mashup owner does not
have to use the registry nor the on-site tools suite, as long
as he does not provide any new in-house developed methods
that do not depend on RWSs.

Another important aspect, especially in the getSystemEnv
method, is security. Exposing the exact hardware and soft-
ware setup to anyone on the Internet might introduce se-
curity risks, as potential attack vectors based on vulnera-
bilities in the hardware, operating system or other software
components are easier to identify. Thus, in many scenarios,
it might be useful to restrict the information provided by,
or the access to the getSystemEnv method. Other security-
related concerns are also of importance. For example, en-
cryption of the Web Service with one-time keys requires that
the monitoring framework can still understand the messages
exchanged. Also, tokens or authentication mechanisms that
might prevent replaying of messages need to be considered.
While these aspects can be easily circumvented with the con-
sent of the parties involved, their commitment that this is
desired and allowed needs to be explicit, and the monitor-
ing framework by default is not configured to perform such
man-in-the-middle approaches.

7. CONCLUSIONS
In this paper we discussed issues of ensuring continuous

and faithful execution of processes in environments that
use distributed services to perform tasks. We focused on
Web Services and analysed potential changes stemming from
them that impact business continuity. The monitoring and
testing of Web Services, as well as extension mechanisms
enriching the Web Services with additional information on
their behaviour and availability were investigated.

Our work put special attention to the recently proposed
extension of Web Services, namely the Resilient Web Ser-
vices. We discussed motivation behind this concept and out-

lined the requirements it fulfils. We also provided a detailed
specification of the resilient methods. Furthermore, we de-
scribed two alternative implementations that should ease its
uptake and make the deployment easier and quicker. First,
the external RWS registry that allows converting any Web
Service into a Resilient Web Service without modification at
the WS provider site. For that purpose we had to provide
a new implementation of the existing Web Service Moni-
toring Framework that uses proxy mode to intercept com-
munication. Second, the on-site monitoring tools suite that
enables full utilization of resilient methods including infor-
mation automatically collected from the underlying system.
Both of the solutions are capable of providing notification
on changes to the WS consumer and thus contribute signif-
icantly to the minimization of the impact of changes in the
ICT infrastructure on the business processes. Although the
discussion in this paper focused on Web Services, we believe
that the solutions proposed here can also be applied in other
implementations of distributed computing environments.

Currently we are working on identification of basic set
of tools that can be used on different platforms to provide
ready to use software kit allowing broader community of WS
operators to make their services resilient. We are also going
to investigate the scalability of the RWS registry and release
an open source version of it.

Acknowledgements
This work has been co-funded by COMET K1, FFG - Aus-
trian Research Promotion Agency and by the EU-FP7 funded
TIMBUS project (grant agreement no. 269940).

8. REFERENCES
[1] C. Bartolini, A. Bertolino, E. Marchetti, and

A. Polini. WS-TAXI: A WSDL-based Testing Tool for
Web Services. In ICST ’09. International Conference
on Software Testing Verification and Validation, pages
326 –335, april 2009.

[2] K. Brown
and M. Ellis. Best practices for Web services versioning.
http://www.ibm.com/developerworks/webservices/library/ws-
version/, 2004. Accessed:
30/06/2014.

[3] T.-D. Cao, R. Castanet, P. Felix, and G. Morales.
Testing of Web Services: Tools and Experiments. In
Services Computing Conference (APSCC), 2011 IEEE
Asia-Pacific, pages 78 –85, dec. 2011.

[4] T.-D. Cao, P. Felix, R. Castanet, and I. Berrada.
Online testing framework for web services. In Third
International Conference on Software Testing,
Verification and Validation (ICST), pages 363 –372,
April 2010.

[5] M. Comuzzi and B. Pernici. A framework for
QoS-based Web service contracting. ACM Trans.
Web, 3(3):10:1–10:52, July 2009.

[6] D. Dranidis, E. Ramollari, and D. Kourtesis.
Run-time Verification of Behavioural Conformance for
Conversational Web Services. In 7th IEEE European
Conference on Web Services (ECOWS), pages 139
–147, Nov. 2009.

[7] N. Goel, N. N. Kumar, and R. Shyamasundar. SLA
Monitor: A System for Dynamic Monitoring of
Adaptive Web Services. In 9th IEEE European

Conference on Web Services (ECOWS), pages 109
–116, Sept. 2011.

[8] N. Goel and R. Shyamasundar. Automatic Monitoring
of SLAs of Web Services. In Services Computing
Conference (APSCC), 2010 IEEE Asia-Pacific, pages
99 –106, Dec. 2010.

[9] T. Hey, S. Tansley, and K. Tolle, editors. The Fourth
Paradigm: Data-Intensive Scientific Discovery.
Microsoft Research, 2009.

[10] B. Kalali, P. Alencar, and D. Cowan. A
service-oriented monitoring registry. In Conference of
the Centre for Advanced Studies on Collaborative
research (CASCON), pages 107–121. IBM Press, 2003.

[11] P. Kaminski, H. Müller, and M. Litoiu. A design for
adaptive web service evolution. In Proceedings of the
2006 international workshop on Self-adaptation and
self-managing systems, SEAMS ’06, pages 86–92, New
York, NY, USA, 2006. ACM.

[12] Y. Liu, A. H. Ngu, and L. Z. Zeng. QoS computation
and policing in dynamic web service selection. In 13th
International World Wide Web conference, pages
66–73, New York, NY, USA, 2004. ACM.

[13] D. W. McCoy. Business Activity Monitoring: Calm
Before the Storm. Gartner Research, 2002.

[14] T. Miksa, R. Mayer, and A. Rauber. Ensuring
sustainability of web services dependent processes.
International Journal of Computational Science and
Engineering (IJCSE), 2015. In press.

[15] A. Mulholland, R. Daniels, and T. Hall. The Cloud
and SOA. Capgemini, 2008.

[16] PREMIS Editorial Committee. Premis data dictionary
for preservation metadata. Technical report, 2008.

[17] M. Tian, A. Gramm, H. Ritter, and J. Schiller.
Efficient Selection and Monitoring of QoS-Aware Web
Services with the WS-QoS Framework. In Proceedings
of the 2004 IEEE/WIC/ACM International
Conference on Web Intelligence, pages 152–158,
Washington, DC, USA, 2004. IEEE.

[18] M. van den Berg, N. Bieberstein, and E. van
Ommeren. SOA for Profit, A Manager’s Guide to
Success with Service Oriented Architecture. IBM
Press, 2007.

[19] W3C Working Group. QoS for Web Services:
Requirements and Possible Approaches.
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/,
2003. Accessed: 30/06/2014.

